Exercise 8-1 Recall the definition of the group \mathbb{Z}_N^* and that its order, i.e. the number of elements, is denoted $\phi(N)$.

a) Show $\phi(p^e) = p^e(p - 1)$ for any prime p and any $e \leq 1$.

b) Show that $\phi(pq) = \phi(p)\phi(q)$ if p and q are relatively prime.
 Hint: Use the Chinese Remainder Theorem.

Exercise 8-2 Let p and q be the primes 17 and 23. Let $N := pq$ and $e := 3$.

a) Compute a number d, such that $d = e^{-1} \mod \phi(N)$.

b) Encrypt the message abc using Plain RSA, where $\text{Enc}(m) = m^e \mod N$ and $\text{Dec}(m) = m^d \mod N$. Use an appropriate encoding. Verify that it decrypts correctly.

Exercise 8-3

a) Find all the elements the group \mathbb{Z}_{13}^* of that generate cyclic subgroups of prime order.

b) Show: If g generates \mathbb{Z}_p^*, where $p > 2$ is prime, then g^2 generates $\{x \mid \exists y. x \equiv y^2 \mod p\}$.

Exercise 8-4 The Diffie-Hellman protocol uses a group generating algorithm that outputs a description of a finite cyclic group G together with its order q and a generating element g.
In practice one often uses subgroups of prime order of \mathbb{Z}_p^*, for some p. Then, one can take the triple (p, q, g) as the output of the group generating algorithm. This denotes the subgroup of \mathbb{Z}_p^* of order q that is generated by $g \in \mathbb{Z}_p^*$, i.e. $G = \{g^i \mod p \mid i \in \mathbb{N}\}$.
Suppose in the first step of the Diffie-Hellman protocol, the group generating algorithm output $(11, 5, 3)$. Work through the rest of one run of the algorithm with this group.