
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 21.01.2026
Elisabeth Lempa Homework due on 28.01.2026 at 16:00

Possible solution for Exercise Sheet 13 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place during the second half of the lecture time slots. The homework, which is
optional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since that would defeat the purpose of the exercises.

In-class exercise 13-1 Grasping grep The grep tool is a command-line program
that is available on Linux and similar systems. Make yourself familiar with the manual
page, abbreviated as man page, for grep. You can access the man page by typing man

grep in your terminal if you are working on a Linux-like system or by visiting https:

//man7.org/linux/man-pages/man1/grep.1.html.

Write a brief tutorial for grep of 200 to 400 words where you describe its purpose and
explain its basic usage. In particular, explain how to search multiple files by using
file-name patterns (such as grep hello *.txt) and the -r option.

POSSIBLE SOLUTION:

What Is grep?

grep, which abbreviates “global regular expression print,” is a command-line tool
for searching for text patterns. The following brief tutorial will illustrate its basic
usage.

Searching in One File

The most straightforward application of grep is searching for a given text in a
single file.

$ grep "hello" greetings.txt

hello is a casual greeting

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

https://man7.org/linux/man-pages/man1/grep.1.html
https://man7.org/linux/man-pages/man1/grep.1.html
https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

Searching in Multiple Files

One way to search through multiple files is to use the -r option. When this option
is enabled, grep searches a directory recursively, i.e., including all its subdirecto-
ries.

$ grep -r "TODO" .

notes.txt:after we fix all TODOs we will sell the app for 1 million

app.py:#TODO add input parameter

server.py:#TODO improve logging

Another way to search multiple files is to use a file-name pattern. The following
example searches all Java source files in the current directory:

$ grep "throws" *.java

Main.java:void readUserName() throws IOException {

Note that the expansion of *.java is handled by your shell, before grep itself
is called. This means that the -r option will not work together with file-name
patterns. Compare:

$ grep -r "TODO" .

notes.txt:after we fix all TODOs we will sell the app for 1 million

app.py:#TODO add input parameter

server.py:#TODO improve logging

bio/bird_counter.py:#TODO Add special case for the empty list

$ grep "TODO" *.py

app.py:#TODO add input parameter

server.py:#TODO improve logging

Because grep receives a concrete list of all files in the current directory ending
in .py, and not a directory, subdirectories will not be searched, even with the -r

option. To search recursively for file names matching a specific pattern, use the
--include option:

$ grep -r --include="*.py" "TODO" .

app.py:#TODO add input parameter

server.py:#TODO improve logging

bio/bird_counter.py:#TODO Add special case for the empty list

Searching for a Regular Expression

If you do not only want to search for a specific string, but for a pattern, grep
natively supports some regular expressions, such as character classes:

$ grep -r [0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9] .

./book/chapter_1.tex:%% Markus, 2011-12-13: Added handling of umlauts

./book/chapter_4.tex:%% Markus, 2012-02-04: Added handling for long ↱

source lines

To enable support for advanced regular expression patterns, use the -E option.

Controlling the Shape of the Output

More options such as -l (show only file names) and -c (count matches per file)
can be used to control what grep outputs. This is can be especially useful if you
are using grep in conjunction with other command-line tools.

$ grep -rl "TODO" . | wc -l

412

In-class exercise 13-2 Javadoc for a Number Queue Class The WaitingList class is
a Java implementation of a number queue system that can be used to manage people
who are waiting for their turn. Write appropriate Javadoc comments for all public
methods of the class and for the class itself. Make sure to include relevant @ tags.

1 public class WaitingList {

2 private List<Integer> items;

3 private Random random;

4

5 public WaitingList() {

6 this.items = new ArrayList<>();

7 this.random = new Random();

8 }

9

10 public int drawNumber() {

11 int number;

12 do {

13 number = random.nextInt(1000) + 1;

14 } while (items.contains(number));

15

16 items.add(number);

17 return number;

18 }

19

20 public Integer callNextNumber() {

21 if (items.isEmpty()) {

22 return null;

23 }

24 return items.remove(0);

25 }

26

27 public void addNumber(int number) {

28 if (items.contains(number)) {

29 throw new IllegalArgumentException("Number "

30 + number + " is already in the waiting list");

31 }

32 items.add(number);

33 }

34 }

35 }

POSSIBLE SOLUTION:

1 /**

2 * A waiting list that manages unique random numbers

3 * in FIFO order.

4 */

5 public class WaitingList {

6 private List<Integer> items;

7 private Random random;

8

9 public WaitingList() {

10 this.items = new ArrayList<>();

11 this.random = new Random();

12 }

13

14 /**

15 * Generates a random number not already in the

16 * waiting list, adds it to the list, and returns it.

17 *

18 * @return an integer between 1 and 1000 that

19 * was newly added to the waiting list (and was not

20 * present in the list previously).

21 */

22 public int drawNumber() {

23 int number;

24 do {

25 number = random.nextInt(1000) + 1;

26 } while (items.contains(number));

27

28 items.add(number);

29 return number;

30 }

31

32 /**

33 * Removes and returns the next number from the

34 * front of the waiting list.

35 *

36 * @return the next number in line, or null if

37 * the waiting list is empty

38 */

39 public Integer callNextNumber() {

40 if (items.isEmpty()) {

41 return null;

42 }

43 return items.remove(0);

44 }

45

46 /**

47 * Adds a specific number to the back of the

48 * waiting list.

49 *

50 * @param number the number to add to the

51 * waiting list

52 * @throws IllegalArgumentException if the number is

53 * already in the waiting list

54 */

55 public void addNumber(int number) {

56 if (items.contains(number)) {

57 throw new IllegalArgumentException("Number "

58 + number + " is already in the waiting list");

59 }

60 items.add(number);

61 }

62 }

	In-class exercise 13-1 Grasping grep
	In-class exercise 13-2 Javadoc for a Number Queue Class

