
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 07.01.2026
Elisabeth Lempa Homework due on 14.01.2026 at 16:00

Exercise Sheet 11 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place in the second half of the lecture time slots. The homework, which is op-
tional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since this would defeat the purpose of the exercises.

In-class exercise 11-1 Missing Titles Suggest titles for five papers based on their
abstracts, given below. The titles may be catchy, informative, or double-barreled.

a) A two-party cryptographic protocol for evaluating any binary gate is
presented. It is more efficient than previous two-party computations,
and can even perform single-party (i.e. satisfiability) proofs more ef-
ficiently than known techniques. As in all earlier multiparty computa-
tions and satisfiability protocols, commitments are a fundamental build-
ing block. Each party in our approach encodes a single input bit as 2 bit
commitments. These are then combined to form 5 bit commitments,
which are permuted, and can then be opened to reveal the output of
the gate.

b) As a vast number of ingredients exist in the culinary world, there are
countless food ingredient pairings, but only a small number of pairings
have been adopted by chefs and studied by food researchers. In this
work, we propose KitcheNette which is a model that predicts food in-
gredient pairing scores and recommends optimal ingredient pairings.
KitcheNette employs Siamese neural networks and is trained on our
annotated dataset containing 300K scores of pairings generated from
numerous ingredients in food recipes. As the results demonstrate, our

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf


model not only outperforms other baseline models, but also can rec-
ommend complementary food pairings and discover novel ingredient
pairings.

c) We develop and explain the design decisions of a framework for the for-
mal specification and analysis of interactions in generalized distributed
systems. Our approach is suitable to reason about various types of
agents and supports the modeling of synchronous interactions between
any finite number of agents. Our proposal provides a common ground
for existing modeling techniques for cryptographic protocols and secu-
rity ceremonies, by generalizing and unifying them in a single formal-
ism. We discuss the specification of security properties in our frame-
work and demonstrate on a short voting ceremony a technique to model
our ceremonies in the Tamarin prover.

d) The Lean mathematical library Mathlib features extensive use of the
typeclass pattern for organising mathematical structures, based on
Lean’s mechanism of instance parameters. Related mechanisms for
typeclasses are available in other provers including Agda, Coq and Isa-
belle with varying degrees of adoption. This paper analyses represen-
tative examples of design patterns involving instance parameters in the
finalized Lean 3 version of Mathlib, focussing on complications arising
at scale and how the Mathlib community deals with them.

e) We study transformational program logics for correctness and incor-
rectness that we extend to explicitly handle both termination and non-
termination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both
finite and infinite executions. This understanding of logics as abstrac-
tions of a semantics facilitates their comparisons through their respec-
tive abstractions of the semantics (rather that the much more difficult
comparison through their formal proof systems). More importantly,
the formalization provides a calculational method for constructively de-
signing the sound and complete formal proof system by abstraction of
the semantics. As an example, we extend Hoare logic to cover all possi-
ble behaviors of nondeterministic programs and design a new precon-
dition (in)correctness logic.

In-class exercise 11-2 Skip Lists Read the Wikipedia page for the skip list data
structure.2

Pretend you are the inventor of skip lists. Suggest a title for a paper introducing skip
lists and write an abstract.

2https://en.wikipedia.org/wiki/Skip_list

https://en.wikipedia.org/wiki/Skip_list


Homework 11-3 Comparing Tables of Contents Compare the following tentative
tables of contents for a bachelor’s thesis with the title A Learning Game for the Myhill–
Nerode Theorem. Select the one that you prefer, then answer the following questions
about it:

• What does it do differently than the other two tables of contents?

• What are its advantages?

• Is there anything you would like to improve about it?



(1)

1. Introduction

2. Background and Related Work

2.1 Formal Languages

2.1.1 Regular Languages and DFAs
2.1.2 The Myhill–Nerode Theorem

2.2 Game Design Theory and Learning Psychology

2.2.1 Learning Types
2.2.2 Game-Based Learning

3. Game Application Development

3.1 Tools and Dependencies

3.2 REST-API Design

3.3 JVM Optimization

3.4 Classes and Methods

4. Game Application Design

4.1 Equivalence-Class Validation Algorithm

4.2 UI and UX

4.3 Feedback Generation

4.4 Benefits for Learning

4.5 Challenges in Development

5. Conclusion



(2)

1. Introduction

2. Theoretical Background

2.1 Regular Languages and the Myhill–Nerode Theorem

2.2 Design Principles in Educational Games

3. MyNeCraft—A Game for the Myhill–Nerode Theorem

3.1 Design

3.1.1 Learning Goals
3.1.2 Feedback Generation

3.2 Gameplay and Usage

3.2.1 Overview and Level Selection
3.2.2 Crafting the Equivalence Classes
3.2.3 Suffix Matching Mode

3.3 Implementation

3.3.1 Server–Client Architecture
3.3.2 Validation of the Crafted Classes
3.3.3 Dynamic Suffix Generation

4. Related Work

5. Conclusion



(3)

1. Introduction

2. Methodology

2.1 Game-Based Learning

2.2 Myhill–Nerode Theorem

2.3 Searching Algorithms

2.4 Benchmarking

3. Results

3.1 The Application

3.2 Basic Game Loop

3.3 Equivalence-Class Validation Algorithm

3.4 Performance Problems

3.5 Bug in JavaFX

4. Discussion

4.1 Performance Optimization

4.2 Future Work: Multiplayer Mode

5. Conclusion



Homework 11-4 Assessing Writing Advice Read “The Young Person’s Guide to
Writing Economic Theory”3, available on Moodle, and describe its essence in an essay
of about 300 words that answers the following questions:

• What are your main takeaways?

• Are there parts with which you disagree?

• What is specific to economic science and what also applies to computer science?

3William Thomson, Journal of Economic Literature 37(1), pp. 157–183, 1999.

https://www.jstor.org/stable/2564728
https://www.jstor.org/stable/2564728

	In-class exercise 11-1 Missing Titles
	In-class exercise 11-2 Skip Lists
	Homework 11-3 Comparing Tables of Contents
	Homework 11-4 Assessing Writing Advice

