
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 17.12.2025
Elisabeth Lempa Homework due on 07.01.2026 at 16:00

Exercise Sheet 10 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place in the second half of the lecture time slots. The homework, which is op-
tional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since this would defeat the purpose of the exercises.

In-class exercise 10-1 Shortening an Abstract The following 344-word abstract2 is
long and verbose.

We identify a tradeoff curve between the number of wheels on a train car,
and the amount of track that must be installed in order to ensure that the
train car is supported by the track at all times. The goal is to build an ele-
vated track that covers some large distance ℓ, but that consists primarily of
gaps, so that the total amount of feet of train track that is actually installed
is only a small fraction of ℓ. In order so that the train track can support the
train at all points, the requirement is that as the train drives across the track,
at least one set of wheels from the rear quarter and at least one set of wheels
from the front quarter of the train must be touching the track at all times.

We show that, if a train car has n sets of wheels evenly spaced apart in its
rear and n sets of wheels evenly spaced apart in its front, then it is possible
to build a train track that supports the train car but uses only O(ℓn) feet of
track. We then consider what happens if the wheels on the train car are not
evenly spaced (and may even be configured adversarially). We show that
for any configuration of the train car, with n wheels in each of the front and
rear quarters of the car, it is possible to build a track that supports the car

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf
2William Kuszmaul, “Train Tracks with Gaps: Applying the Probabilistic Method to Trains,” Theoretical

Computer Science 899, pp. 39–47, 2020.

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

for distance ℓ and uses only O(ℓ log n
n) feet of track. Additionally, we show

that there exist configurations of the train car for which this tradeoff curve
is asymptotically optimal. Both the upper and lower bounds are achieved
via applications of the probabilistic method.

The algorithms and lower bounds in this paper provide simple illustrative
examples of many of the core techniques in probabilistic combinatorics and
randomized algorithms. These include the probabilistic method with alter-
ations, the use of McDiarmid’s inequality within the probabilistic method,
the algorithmic Lovász Local Lemma, the min-hash technique, and the
method of conditional probabilities.

a) Shorten the abstract by at least 25% using the haircut and amputation approaches
while preserving its essence, without using generative artificial intelligence assis-
tants.

b) Now use artificial intelligence to do the same for you. What is your prompt?

c) Compare your solutions for tasks (a) and (b).

d) Prepare a unified abstract that combines the best ideas from both versions.

Homework 10-2 Incorporating Feedback For your bachelor’s thesis about a topic
in computational geometry, you have written the following background section. It is
designed to give a brief introduction to computational geometry problems and to serve
as a motivational example for the algorithms you present in later sections.

Imagine you are walking on a university campus and suddenly you realize
that you need to make an urgent phone call. There are many public phones
on campus, and of course you want to go to the nearest one. But which one
is the nearest? It would be helpful to have a map on which you could look
up the nearest public phone, wherever on campus you are. The map should
show a subdivision of the campus into regions, and for each region indicate
the nearest public phone. What would these regions look like? And how
could we compute them?

This is just one example of a geometric problem requiring carefully de-
signed geometric algorithms for their solution. The field of computational
geometry emerged in the 70ies, and deals with such geometric problems. It
can be defined as the systematic study of algorithms and data structures for
geometric objects.

To illustrate the issues that arise in developing a geometric algorithm, this
section deals with one of the first problems that was studied in computa-
tional geometry: the computation of planar convex hulls.

A subset S of the plane is called convex if and only if for any pair of points
p, q ∈ S, the line segment pq is completely contained in S. The convex hull
CH(S) of a set S is the smallest convex set that contains S. To be more
precise, it is the intersection of all convex sets that contain S.

How do we compute the convex hull? Before we can answer this question,
we must ask another question: What does it mean to compute the covnex
hull?

As we have seen, the convex hull of P is a convex polygon. A natural way
to represent a polygon is by listing its vertices in clockwise order, starting
with an arbitrary one. So the problem we want to solve is this: Given a set
P = {p1, p2, ..., pn} of points in the plane, compute a list that contains those
points from P that are the vertices of CH(P), listed in clockwise order.

Algorithm 1 ConvexHull

Input:
A set P of points in the plane.

Output:
A list L containing the vertices of CH(P) in clockwise order.

1: E← ∅
2: for all ordered pairs (p, q) ∈ P× P with p not equal to q do
3: valid← true
4: for all points r ∈ P not equal to p or q do
5: if r lies to the left of the directed line from p to q then
6: valid← false.
7: end if
8: end for
9: if valid then

10: add the directed edge
→
pq to E.

11: end if
12: end for
13: From the set E of edges construct a list L of vertices of CH(P), sorted in clockwise

order.

Analyzing the time complexity of CONVEXHULL is easy. In the outer loop,
we check n2 − n pairs of points. For each pair, we look at the n − 2 other
points to see whether they all lie on the right side. This will take O(n3) time
in total. An algorithm with a cubique running time is too slow to be of prac-
tical use for anything but the smallest input sets. To improve upon, this we
apply a standard algorithmic design technique: an incremental algorithm.

Your supervisor and your cosupervisor have given you the following feedback in re-
sponse to this section. Please rewrite the background section to take the feedback into
consideration.

“The prose in the introduction is too flowery. Also, public phones are no
longer relevant. All in all, you should make sure to write more formally.”

“Algorithm 1 is a float, but it’s not referenced in the text.”

“I really like the beginning. It was a good informal motivation and fun to
read.”

“There is a jarring break between the first part and the example, and the
second part and the algorithm. You should write some transition text.”

“There are some typos and spelling errors, like ‘covnex’. You should get
into the habit of using a spellchecker.”

	In-class exercise 10-1 Shortening an Abstract
	Homework 10-2 Incorporating Feedback

