
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 17.12.2025
Elisabeth Lempa Homework due on 07.01.2026 at 16:00

Possible solution for Exercise Sheet 10 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place during the second half of the lecture time slots. The homework, which is
optional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since that would defeat the purpose of the exercises.

Homework 10-2 Incorporating Feedback For your bachelor’s thesis about a topic
in computational geometry, you have written the following background section. It is
designed to give a brief introduction to computational geometry problems and to serve
as a motivating example for the algorithms you present in later sections.

Imagine you are walking on a university campus and suddenly you realize
that you need to make an urgent phone call. There are many public phones
on campus, and of course you want to go to the nearest one. But which one
is the nearest? It would be helpful to have a map on which you could look
up the nearest public phone, no matter where you are on campus. The map
should show a subdivision of the campus into regions, and for each region
indicate the nearest public phone. What would these regions look like? And
how could we compute them?

This is just one example of a geometric problem requiring carefully de-
signed geometric algorithms for their solution. The field of computational
geometry emerged in the 70ies and deals with such geometric problems. It
can be defined as the systematic study of algorithms and data structures for
geometric objects.

To illustrate the issues that arise in developing a geometric algorithm, this
section deals with one of the first problems that was studied in computa-
tional geometry: the computation of planar convex hulls.

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf


A subset S of the plane is called convex if and only if for any pair of points
p, q ∈ S, the line segment pq is completely contained in S. The convex hull
CH(S) of a set S is the smallest convex set that contains S. To be more
precise, it is the intersection of all convex sets that contain S.

How do we compute the convex hull? Before we can answer this question,
we must ask another question: What does it mean to compute the covnex
hull?

As we have seen, the convex hull of P is a convex polygon. A natural way
to represent a polygon is by listing its vertices in clockwise order, starting
with an arbitrary one. So the problem we want to solve is this: Given a set
P = {p1, p2, ..., pn} of points in the plane, compute a list that contains those
points from P that are the vertices of CH(P), listed in clockwise order.

Algorithm 1 ConvexHull

Input:
A set P of points in the plane.

Output:
A list L containing the vertices of CH(P) in clockwise order.

1: E← ∅
2: for all ordered pairs (p, q) ∈ P× P with p not equal to q do
3: valid← true
4: for all points r ∈ P not equal to p or q do
5: if r lies to the left of the directed line from p to q then
6: valid← false.
7: end if
8: end for
9: if valid then

10: add the directed edge
→
pq to E.

11: end if
12: end for
13: From the set E of edges construct a list L of vertices of CH(P), sorted in clockwise

order.

Analyzing the time complexity of CONVEXHULL is easy. In the outer loop,
we check n2 − n pairs of points. For each pair, we look at the n − 2 other
points to see whether they all lie on the right side. This will take O(n3) time
in total. An algorithm with a cubique running time is too slow to be of prac-
tical use for anything but the smallest input sets. To improve upon, this we
apply a standard algorithmic design technique: an incremental algorithm.

Your supervisor and your cosupervisor have given you the following feedback in re-
sponse to this section. Please edit the section in light of the feedback.



“The prose in the introduction is too flowery. All in all, you should try to
write more formally.”

“Public phones are no longer relevant.”

“Algorithm 1 is a float, but it’s not referenced in the text.”

“I really like the beginning. It was a good informal motivation and fun to
read.”

“There is a jarring break between the first part with the example and the
second part with the algorithm. You should write some transition text.”

“There are some typos and spelling errors, like ‘covnex’. You should get
into the habit of using a spellchecker.”

POSSIBLE SOLUTION:

Imagine you are walking on a university campus and suddenly you realize that
you need to charge your smartphone. There are many power outlets on campus,
and of course you want to go to the nearest one. But which one is the nearest? It
would be helpful to have a map on which you could look up the nearest power
outlet, no matter where you are on campus. The map should show a subdivision
of the campus into regions, and for each region indicate the nearest power outlet.
What would these regions look like? And how could we compute them?

This is just one example of a geometric problem requiring carefully designed ge-
ometric algorithms for their solution. In the 1970s, the field of computational
geometry emerged, dealing with such geometric problems. It can be defined as
the systematic study of algorithms and data structures for geometric objects.

To illustrate the issues that arise in developing a geometric algorithm, we will
give as a motivating example one of the first problems that was studied in com-
putational geometry: the computation of planar convex hulls.

A subset S of the plane is called convex if and only if for any pair of points p, q ∈
S, the line segment pq is completely contained in S. The convex hull CH(S) of
a set S is the smallest convex set that contains S. To be more precise, it is the
intersection of all convex sets that contain S.

As we have seen, the convex hull of P is a convex polygon. A natural way to rep-
resent a polygon is by listing its vertices in clockwise order, starting with an arbi-
trary one. So the problem we want to solve is this: Given a set P = {p1, p2, . . . , pn}
of points in the plane, compute a list that contains those points from P that are
the vertices of CH(P), listed in clockwise order. Algorithm 1 is a naive approach
to solve the problem.



Algorithm 1 ConvexHull

Input:
A set P of points in the plane.

Output:
A list L containing the vertices of CH(P) in clockwise order.

1: E← ∅
2: for all ordered pairs (p, q) ∈ P× P with p not equal to q do
3: valid← true
4: for all points r ∈ P not equal to p or q do
5: if r lies to the left of the directed line from p to q then
6: valid← false.
7: end if
8: end for
9: if valid then

10: add the directed edge
→
pq to E.

11: end if
12: end for
13: From the set E of edges construct a list L of vertices of CH(P), sorted in clock-

wise order.

Analyzing the time complexity of CONVEXHULL is easy. In the outer loop, we
check n2 − n pairs of points. For each pair, we look at the n − 2 other points
to see whether they all lie on the right side. This will take O(n3) time in total.
An algorithm with a cubic running time is too slow to be of practical use for
anything but the smallest input sets. To improve upon this, we apply a standard
algorithmic design technique: an incremental algorithm.

(Adapted from Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark
Overmars, Computational Geometry: Algorithms and Applications, Springer, 2008.)


	Homework 10-2 Incorporating Feedback

