Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universitat Miinchen

Dr. Martin Desharnais-Schéafer Institut fiir Informatik
Dr. Michael Kirsten Discussion on 10.12.2025
Elisabeth Lempa Homework due on 17.12.2025 at 16:00

Possible solution for Exercise Sheet 9 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place during the second half of the lecture time slots. The homework, which is
optional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarismﬂ However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since that would defeat the purpose of the exercises.

In-class exercise 9-1 Citations Check and, if necessary, correct the following pas-
sages to use accurate and stylistically correct citations and quotations.

a) Friedrich Godel pointed out that for every finite subsystem to be satisfiable, it is
necessary and sufficient that it is a countably infinite system of formulas. [1]

References

[1] Kurt Godel. “The completeness of the axioms of the logical function calcu-
lus.” In: Monatshefte fiir Mathematik und Physik 37.1 (1730), pp. 349-360. DOI:
10.1007/BF01696781.

POSSIBLE SOLUTION:

Kurt Godel pointed out that for a countably infinite system of formulas to
be satisfiable, it is necessary and sufficient that every finite subsystem is
satisfiable [1].

Ihttps://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

https://doi.org/10.1007/BF01696781
https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

b)

References

[1] Kurt Godel. “Die Vollstindigkeit der Axiome des logischen Funk-
tionenkalkiils.” In: Monatshefte fiir Mathematik und Physik 37.1 (1930),
pp- 349-360. DOI: 10.1007/BF01696781.

In computability theory, Rice’s theorem states that all nontrivial semantic proper-
ties of programs are undecidable [1].

References

[1] Wikipedia. Rice’s theorem. 2025. URL: https://en.wikipedia . org/wiki/
Rice’27s_theorem.

POSSIBLE SOLUTION:

In computability theory, it follows from Rice’s theorem [1] that all nontrivial
semantic properties of programs are undecidablef

References

[1] Henry Gordon Rice. “Classes of recursively enumerable sets and their
decision problems.” In: Transactions of the American Mathematical Society
74.2 (1953), pp. 358-366. DOI: 10.2307/1990888.

In the original source, the theorem does not directly mention the property of “decidabil-
ity,” but “complete recursiveness,” which Rice intuitively equates in the introduction.

In the seminal work “On computable numbers, with an application to the entschei-
dungsproblem,” Alan Turing defined a fundamental machine model that he called
after himself as Turing machine [2]]. He also gave an influential definition of arti-
ficial intelligence within his paper “computing machinery and intelligence” by
defining a so-called animation game [1].

References

[1] Alan Mathison Turing. “computing machinery and intelligence.” In: Mind
LIX.236 (1900), pp. 460—433. DOI:|10.1093/mind/LIX.236.433|

[2] Alan Mathison Turing. “On computable numbers, with an application to the
entscheidungsproblem.” In: Proceedings of the London Mathematical Society s2-
42.1 (1800), pp- 230-265. DOI:110.1112/plms/s2-42.1.230.

https://doi.org/10.1007/BF01696781
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://doi.org/10.2307/1990888
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1112/plms/s2-42.1.230

POSSIBLE SOLUTION:

In the seminal work “On Computable Numbers, with an Application to
the Entscheidungsproblem,” Alan Turing defined a fundamental machine
model that was later called a Turing machine [2]. He also gave an influ-
ential definition of artificial intelligence, before this term gained currency,
within his paper “Computing Machinery and Intelligence” by defining the
so-called imitation game [1].

References

[1] Alan Mathison Turing. “Computing machinery and intelligence.” In:
Mind LIX.236 (1950), pp. 433—460. DOI: 10.1093/mind/LIX.236.433.

[2] Alan Mathison Turing. “On computable numbers, with an application

to the Entscheidungsproblem.” In: Proceedings of the London Mathemat-
ical Society s2-42.1 (1937), pp. 230-265. DOI: 10.1112/plms/s2-42.1.
230.

In-class exercise 9-2 Over and Under The following passages both overcite and un-
dercite. Remove all superfluous citations, and mark any parts that lack citations but
should have them. (You are not asked to find the sources to cite.)

a) Abstract argumentation frameworks (AAFs) [3] are formal systems that represent
conflicting pieces of information as a set [1] of arguments, and a binary attack
relation. In recent years, AAFs have been widely used for a variety of different
tasks in knowledge representation and artificial intelligence systems [4]. Several
extensions that have been proposed for AAFs have been presented, among them
Bipolar Argumentation Frameworks [2], which include a binary support relation
in addition to the attack relation.

References

(1]

(2]

Georg Cantor. “On a property of the class of all real algebraic numbers.” In:
Crelle’s Journal for Mathematics 77.1874 (1874), pp. 258-262.

Claudette Cayrol and Marie-Christine Lagasquie-Schiex. “On the acceptabil-
ity of arguments in bipolar argumentation frameworks.” In: ECSQARU 2005.
Springer. 2005, pp. 378-389.

Phan Minh Dung. “On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.”
In: Artificial intelligence 77.2 (1995), pp. 321-357.

https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230

[4]

Nikos Karacapilidis and Dimitris Papadias. “Computer supported argumen-
tation and collaborative decision making: the HERMES system.” In: Informa-

tion systems 26.4 (2001), pp. 259-277.

POSSIBLE SOLUTION:

Abstract argumentation frameworks (AAFs) [3] are formal systems that rep-
resent conflicting pieces of information as a set of arguments, and a binary
attack relation. In recent years, AAFs have been widely used for a vari-
ety of different tasks in knowledge representation and artificial intelligence
systems [4] [more citations needed—such a claim should have multiple
sources, and ideally, more current ones]. Several extensions that have been
proposed for AAFs have been presented, among them Bipolar Argumenta-
tion Frameworks [2], which include a binary support relation in addition to
the attack relation.

b) A refinement type is a kind of dependent type that “refines” an existing type by
use of a predicate that needs to hold for every value to be admitted to the refined
type. The concept was first introduced by Freeman and Pfennig in 1991 [1], who
presented a refinement type system for a subset of Standard ML [2]]. Since then,
refinement type systems have been developed for languages such as Haskell [5],
TypeScript [6], Rust [3, 4], and Scala.

References

(1]

(2]

3]

(4]

6]

Tim Freeman and Frank Pfenning. “Refinement types for ML.” In: PLDI "91.
1991, pp. 268-277.

Robert Harper, David MacQueen, and Robin Milner. Standard ML. Depart-
ment of Computer Science, University of Edinburgh, 1986.

Nico Lehmann, Adam T. Geller, Niki Vazou, and Ranjit Jhala. “Flux: Liquid
types for Rust.” In: Proceedings of the ACM on Programming Languages 7.PLDI
(2023), pp. 1533-1557.

Hiromi Ogawa, Taro Sekiyama, and Hiroshi Unno. “Thrust: A prophecy-
based refinement type system for Rust.” In: Proceedings of the ACM on Pro-
gramming Languages 9.PLDI (2025), pp. 2056-2080.

Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-
Jones. “Refinement types for Haskell.” In: ICFP "14. 2014, pp. 269-282.

Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. “Refinement types for
TypeScript.” In: PLDI “16. 2016, pp. 310-325.

POSSIBLE SOLUTION:

A refinement type is a kind of dependent type that “refines” an existing
type by use of a predicate that needs to hold for every value to be admit-
ted to the refined type. The concept was first introduced by Freeman and
Pfennig in 1991 [1], who presented a refinement type system for a subset of
Standard ML. Since then, refinement type systems have been developed for
languages such as Haskell [5], TypeScript [6], Rust [3, 4], and Scala [citation
needed].

In-class exercise 9-3 Cite and Quote Write a paragraph of at most 200 words ex-
plaining generics in the Java programming language. Include at least one citation, one
naming of authors, one reference, and one quotation. Potential reference material in-
cludes the following:

* The Java® Language Speciﬁcatimﬂ
e The Java™ Tutorials: Genericd|

¢ Java® Platform, Standard Edition & Java Development Kilﬁ

POSSIBLE SOLUTION:

In the Java programming language, generics refers to the ability to define type-
parameterized classes, interfaces, methods, and constructors [2, Sections 8.1.2,
9.1.2, 8.4.4, and 8.8.4]. This feature avoids code duplication by making it possi-
ble to develop code that is independent of any specific type. Consider the inter-
face List<T>, which specifies an “ordered collection (also known as a sequence)
[where] the user can access elements by their integer index” [3]. The type variable
T between angle brackets is a placeholder for the type of the elements stored in
the collection. In List<Integer> and List<String>, the placeholder is replaced
by concrete class types, and the resulting types specify collections of integers and
strings, respectively. The usual compile-time checks ensure that only objects of
the specified type can be stored in each collection. Without generics, this type
safety can be achieved only by duplicating the code for each concrete type. For a
more in-depth introduction, we refer to Bracha’s tutorial [1].

’https://docs.oracle.com/javase/specs/jls/se21/html/index . html
Shttps://docs.oracle.com/javase/tutorial/extra/generics/index.html
4https://docs.oracle.com/en/java/javase/21/docs/api/index.html

https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/index.html
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

References

[1]

2]

3]

Gilad Bracha. The Java™ Tutorials. Generics. 2024-10-25. URL: https://docs.
oracle.com/javase/tutorial/extra/generics/index.html.

James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel
Smith, and Gavin Bierman. The Java® Language Specification. Java SE 21 Edi-
tion. 2023-08-23. URL: https : //docs . oracle . com/ javase /specs/ jls/
se21/html/index.html.

Java® Platform, Standard Edition & Java Development Kit. Version 21 API Speci-

fication. URL: https://docs.oracle.com/en/java/javase/21/docs/api/
index.html.

https://docs.oracle.com/javase/tutorial/extra/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/index.html
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://docs.oracle.com/javase/specs/jls/se21/html/index.html
https://docs.oracle.com/en/java/javase/21/docs/api/index.html
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

	In-class exercise 9-1 Citations
	In-class exercise 9-2 Over and Under
	In-class exercise 9-3 Cite and Quote

