Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universitat Miinchen

Dr. Martin Desharnais-Schéafer Institut fiir Informatik
Dr. Michael Kirsten Discussion on 03.12.2025
Elisabeth Lempa Homework due on 10.12.2025 at 16:00

Exercise Sheet 8 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place in the second half of the lecture time slots. The homework, which is op-
tional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarismﬂ However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since this would defeat the purpose of the exercises.

In-class exercise 8-1 Telephone Game The next two pages present the Java code of
two sorting algorithms: bubble sort and selection sort.

a) Form a team with another student.
b) Assign one of the algorithms to you and the other one to your teammate.
¢) Read your algorithm and only this one.

d) Write a description of the inner workings of your algorithm. You can assume that
the reader knows about the swap function.

e) Exchange the descriptions once you and your teammate are done writing.
f) Write a Java program that exactly follows your teammate’s description.

g) Once you and your teammate are done programming, share the Java programs
and compare them with the programs given on the next two pages.

h) Discuss how effective the descriptions are at conveying the algorithms.

Thttps://www.medien.ifi.1lmu.de/lehre/Plagiate-IfI.pdf

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

static public void bubbleSort(int[] a) {
final int n = a.length;
for (int i = 0; i < n; i++) {
for (int j = 0; j <n - i - 1; j++) {
if (aljl > alj + 1) {
swap(a, j, j + 1);
}

static public void selectionSort(int[] a) {
final int n = a.length;
for (int i = 0; i < n - 1; i++) {
int min = i;
for (int j =i + 1; j < n; j++) {
if (alj] < almin]) {
min = j;
}
}
if (min > i) {
swap(a, i, min);

Homework 8-2 Mathematical Prose Improve the presentation of the following ex-
cerpts. Follow the guidelines on mathematical prose and notation style from the lecture.

a) Consider the language L = {abc|a € L} over the alphabet & = {b, c}.

b) Consider an undirected graph G = (V,E). If V elements x,y € C, thereisaz € E
so that z; = x and z, = y = Cis a clique.

c¢) Theorem 3.7. Let n € IN, and for each i € {1,2,...,n}, let m; € IN. Consider the
family of elements
{aijllgignandl <j < m}.

Then we define the sequent

S = (all,alz,...,alml,azl,...,almz,...,anl,...,anmn>.
Suppose that for each fixed i, the elements a; are indistinguishable from each other, but
any two elements that differ in i are pairwise distinct.

Then, the number of distinct permutations of S is given by

PS _ (Z?:l ml)'

H?:1 m;!

Homework 8-3 Mathematical Proof = The following excerpt comes from introduc-
tory material on algebraic structures intended for bachelor students of computer sci-
ence. Improve its presentation to make it easier to follow.

Lemma 3.1. In every group (G, o) it holds that: Ya € G.Vb € G.(aob)™! =
b~loag 1.

Proof. a,b € G. Then
(bloaHo(aob)=b"lo(atoa)ob=bloeob=b"lob=e,

because of the laws of associativity and the inverse and neutral element,
respectively. So b~! o a~! is the left inverse of a o b, therefore (a0 b)~! =
bloa !, O

Homework 8-4 Numbers Improve the formatting of numbers in the following para-
graphs using the rules from the lecture:

More generally, ./sortl p q reads g X p input bits, applies this paper’s al-
gorithm, and prints a test program that includes the resulting code. The
program packs each matrix row into 4 unsigned long long variables, so it
is limited to p € {0,1,2,...,256}, but it allows any g € {1,2,3,...} that fits
into memory. The test program prints the algebraic complexity of the code,
i.e., the number of xors. The test program also checks that the code com-
putes the desired outputs; if this check fails, the program prints 999999999.

Table 3.1 [not shown here] shows the average algebraic complexity, di-
vided by pg, of this code for 10000 random g x p matrices obtained from
/dev/urandom, the Linux cryptographic random number generator. Ta-
ble 3.2 shows the standard deviation of the algebraic complexity. For
example, for (p,q) = (64,128), the two tables have entries 0,1922 and
0,0011 respectively; this algorithm evaluated 10000 random sixty-four-bit-
to-one-hundred-twenty-eight-bit linear maps using approximately 0,1922 -
128 - 64 ~ 1,575 xors on average, with standard deviation approximately
0,0011 - 128 - 64 ~ nine.

	In-class exercise 8-1 Telephone Game
	Homework 8-2 Mathematical Prose
	Homework 8-3 Mathematical Proof
	Homework 8-4 Numbers

