

Prof. Dr. Jasmin Blanchette
Dr. Martin Desharnais-Schäfer
Dr. Michael Kirsten
Elisabeth Lempa

Ludwig-Maximilians-Universität München
Institut für Informatik
Discussion on 03.12.2025
Homework due on 10.12.2025 at 16:00

Possible solution for Exercise Sheet 8 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises take place during the second half of the lecture time slots. The homework, which is optional and ungraded, can be submitted via the “Homework” section in Moodle. The homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-GPT may be used, as long as you acknowledge how you use them as specified by the Institute’s policy on plagiarism.¹ However, you may not use such tools to generate peer reviews for you. In addition, we strongly recommend that you do not use them to generate entire solutions, since that would defeat the purpose of the exercises.

Homework 8-2 Mathematical Prose Improve the presentation of the following excerpts. Follow the guidelines on mathematical prose and notation style from the lecture.

a) Consider the language $L = \{abc \mid a \in \Sigma\}$ over the alphabet $\Sigma = \{b, c\}$.

POSSIBLE SOLUTION:

Consider the language $L = \{xbc \mid x \in \Sigma\}$ over the alphabet $\Sigma = \{b, c\}$.

b) Consider an undirected graph $G = (V, E)$. If \forall elements $x, y \in C$, there is a $z \in E$ so that $z_1 = x$ and $z_2 = y \implies C$ is a clique.

POSSIBLE SOLUTION:

Let $G = (V, E)$ be an undirected graph. A set $C \subseteq V$ is called a *clique* if for any two vertices $v_1, v_2 \in C$, we have $\{v_1, v_2\} \in E$.

¹https://www.medien_ifi.lmu.de/lehre/Plagiate-IfI.pdf

Homework 8-3 Mathematical Proof The following excerpt comes from introductory material on algebraic structures intended for bachelor computer science students. Improve its presentation to make it easier to follow.

Lemma 3.1. *In every group (G, \circ) it holds that: $\forall a \in G. \forall b \in G. (a \circ b)^{-1} = b^{-1} \circ a^{-1}$.*

Proof. $a, b \in G$. Then

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ e \circ b = b^{-1} \circ b = e,$$

because of the laws of associativity and the inverse and neutral element, respectively. So $b^{-1} \circ a^{-1}$ is the left inverse of $a \circ b$, therefore $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$. \square

POSSIBLE SOLUTION:

Lemma 3.1. *In every group (G, \circ) , we have $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$ for all elements $a, b \in G$.*

Proof. Let $a, b \in G$. We show that $b^{-1} \circ a^{-1}$ is the left inverse of $a \circ b$:

$$\begin{aligned} (b^{-1} \circ a^{-1}) \circ (a \circ b) &= b^{-1} \circ (a^{-1} \circ a) \circ b && \text{(associativity)} \\ &= b^{-1} \circ e \circ b && \text{(inverse element)} \\ &= b^{-1} \circ b && \text{(neutral element)} \\ &= e && \text{(inverse element)} \end{aligned}$$

We know from the group axioms that $(a \circ b)^{-1}$ is a left inverse of $a \circ b$ and have proved that $b^{-1} \circ a^{-1}$ is also a left inverse of $a \circ b$. Since the inverse element of every group element is unique, we obtain $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$, as desired. \square

Homework 8-4 Numbers Improve the formatting of numbers in the following paragraphs using the rules from the lecture:

More generally, `./sort1 p q` reads $q \times p$ input bits, applies this paper's algorithm, and prints a test program that includes the resulting code. The program packs each matrix row into 4 `unsigned long` variables, so it is limited to $p \in \{0, 1, 2, \dots, 256\}$, but it allows any $q \in \{1, 2, 3, \dots\}$ that fits into memory. The test program prints the algebraic complexity of the code, i.e., the number of xors. The test program also checks that the code computes the desired outputs; if this check fails, the program prints 999999999.

Table 3.1 [not shown here] shows the average algebraic complexity, divided by pq , of this code for 10000 random $q \times p$ matrices obtained from

`/dev/urandom`, the Linux cryptographic random number generator. Table 3.2 shows the standard deviation of the algebraic complexity. For example, for $(p, q) = (64, 128)$, the two tables have entries 0,1922 and 0,0011 respectively; this algorithm evaluated 10000 random sixty-four-bit-to-one-hundred-twenty-eight-bit linear maps using approximately $0,1922 \cdot 128 \cdot 64 \approx 1,575$ xors on average, with standard deviation approximately $0,0011 \cdot 128 \cdot 64 \approx 9$.

POSSIBLE SOLUTION:

More generally, `./sort1 p q` reads $q \times p$ input bits, applies this paper's algorithm, and prints a test program that includes the resulting code. The program packs each matrix row into four `unsigned long long` variables, so it is limited to $p \in \{0, 1, 2, \dots, 256\}$, but it allows any $q \in \{1, 2, 3, \dots\}$ that fits into memory. The test program prints the algebraic complexity of the code, i.e., the number of xors. The test program also checks that the code computes the desired outputs; if this check fails, the program prints 999999999.

Table 3.1 [not shown here] shows the average algebraic complexity, divided by pq , of this code for 10 000 random $q \times p$ matrices obtained from `/dev/urandom`, the Linux cryptographic random number generator. Table 3.2 shows the standard deviation of the algebraic complexity. For example, for $(p, q) = (64, 128)$, the two tables have entries 0.1922 and 0.0011 respectively; this algorithm evaluated 10 000 random 64-bit-to-128-bit linear maps using approximately $0.1922 \cdot 128 \cdot 64 \approx 1575$ [or 1575] xors on average, with standard deviation approximately $0.0011 \cdot 128 \cdot 64 \approx 9$.

(Adapted from Daniel J. Bernstein, "Optimizing Linear Maps Modulo 2," *SPEED-CC 2009*, 2009.)