
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 03.12.2025
Elisabeth Lempa Homework due on 10.12.2025 at 16:00

Possible solution for Exercise Sheet 8 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place during the second half of the lecture time slots. The homework, which is
optional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since that would defeat the purpose of the exercises.

Homework 8-2 Mathematical Prose Improve the presentation of the following ex-
cerpts. Follow the guidelines on mathematical prose and notation style from the lecture.

a) Consider the language L = {abc|a ∈ Σ} over the alphabet Σ = {b, c}.

POSSIBLE SOLUTION:

Consider the language L = {xbc | x ∈ Σ} over the alphabet Σ = {b, c}.

b) Consider an undirected graph G = (V, E). If ∀ elements x, y ∈ C, there is a z ∈ E
so that z1 = x and z2 = y =⇒ C is a clique.

POSSIBLE SOLUTION:

Let G = (V, E) be an undirected graph. A set C ⊆ V is called a clique if for
any two vertices v1, v2 ∈ C, we have {v1, v2} ∈ E.

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf


Homework 8-3 Mathematical Proof The following excerpt comes from introduc-
tory material on algebraic structures intended for bachelor computer science students.
Improve its presentation to make it easier to follow.

Lemma 3.1. In every group (G, ◦) it holds that: ∀a ∈ G. ∀b ∈ G. (a ◦ b)−1 =
b−1 ◦ a−1.

Proof. a, b ∈ G. Then

(b−1 ◦ a−1) ◦ (a ◦ b) = b−1 ◦ (a−1 ◦ a) ◦ b = b−1 ◦ e ◦ b = b−1 ◦ b = e,

because of the laws of associativity and the inverse and neutral element,
respectively. So b−1 ◦ a−1 is the left inverse of a ◦ b, therefore (a ◦ b)−1 =
b−1 ◦ a−1. □

POSSIBLE SOLUTION:

Lemma 3.1. In every group (G, ◦), we have (a ◦ b)−1 = b−1 ◦ a−1 for all elements
a, b ∈ G.

Proof. Let a, b ∈ G. We show that b−1 ◦ a−1 is the left inverse of a ◦ b:

(b−1 ◦ a−1) ◦ (a ◦ b) = b−1 ◦ (a−1 ◦ a) ◦ b (associativity)

= b−1 ◦ e ◦ b (inverse element)

= b−1 ◦ b (neutral element)
= e (inverse element)

We know from the group axioms that (a ◦ b)−1 is a left inverse of a ◦ b and have
proved that b−1 ◦ a−1 is also a left inverse of a ◦ b. Since the inverse element of
every group element is unique, we obtain (a ◦ b)−1 = b−1 ◦ a−1, as desired. □

Homework 8-4 Numbers Improve the formatting of numbers in the following para-
graphs using the rules from the lecture:

More generally, ./sort1 p q reads q × p input bits, applies this paper’s al-
gorithm, and prints a test program that includes the resulting code. The
program packs each matrix row into 4 unsigned long long variables, so it
is limited to p ∈ {0, 1, 2, . . . , 256}, but it allows any q ∈ {1, 2, 3, . . .} that fits
into memory. The test program prints the algebraic complexity of the code,
i.e., the number of xors. The test program also checks that the code com-
putes the desired outputs; if this check fails, the program prints 999999999.

Table 3.1 [not shown here] shows the average algebraic complexity, di-
vided by pq, of this code for 10000 random q × p matrices obtained from



/dev/urandom, the Linux cryptographic random number generator. Ta-
ble 3.2 shows the standard deviation of the algebraic complexity. For
example, for (p, q) = (64, 128), the two tables have entries 0,1922 and
0,0011 respectively; this algorithm evaluated 10000 random sixty-four-bit-
to-one-hundred-twenty-eight-bit linear maps using approximately 0, 1922 ·
128 · 64 ≈ 1, 575 xors on average, with standard deviation approximately
0, 0011 · 128 · 64 ≈ nine.

POSSIBLE SOLUTION:

More generally, ./sort1 p q reads q× p input bits, applies this paper’s algorithm,
and prints a test program that includes the resulting code. The program packs
each matrix row into four unsigned long long variables, so it is limited to p ∈
{0, 1, 2, . . . , 256}, but it allows any q ∈ {1, 2, 3, . . .} that fits into memory. The test
program prints the algebraic complexity of the code, i.e., the number of xors. The
test program also checks that the code computes the desired outputs; if this check
fails, the program prints 999999999.

Table 3.1 [not shown here] shows the average algebraic complexity, divided by
pq, of this code for 10 000 random q × p matrices obtained from /dev/urandom,
the Linux cryptographic random number generator. Table 3.2 shows the stan-
dard deviation of the algebraic complexity. For example, for (p, q) = (64, 128),
the two tables have entries 0.1922 and 0.0011 respectively; this algorithm eval-
uated 10 000 random 64-bit-to-128-bit linear maps using approximately 0.1922 ·
128 · 64 ≈ 1575 [or 1 575] xors on average, with standard deviation approximately
0.0011 · 128 · 64 ≈ 9.

(Adapted from Daniel J. Bernstein, “Optimizing Linear Maps Modulo 2,” SPEED-
CC 2009, 2009.)


	Homework 8-2 Mathematical Prose
	Homework 8-3 Mathematical Proof
	Homework 8-4 Numbers

