
Prof. Dr. Jasmin Blanchette Ludwig-Maximilians-Universität München
Dr. Martin Desharnais-Schäfer Institut für Informatik
Dr. Michael Kirsten Discussion on 12.11.2025
Elisabeth Lempa Homework due on 19.11.2025 at 16:00

Exercise Sheet 5 in
Scientific and Technical English for Computer Scientists

The exercise sheets consist of in-class exercises and homework. The in-class exercises
take place in the second half of the lecture time slots. The homework, which is op-
tional and ungraded, can be submitted via the “Homework” section in Moodle. The
homework is subject to peer review.

Unless indicated otherwise, generative artificial intelligence assistants such as Chat-
GPT may be used, as long as you acknowledge how you use them as specified by the
Institute’s policy on plagiarism.1 However, you may not use such tools to generate
peer reviews for you. In addition, we strongly recommend that you do not use them to
generate entire solutions, since this would defeat the purpose of the exercises.

In-class exercise 5-1 Roles of Words Read the following abstract2 and identify the
subjects, verbs, direct objects, indirect objects, complement, and adverbs.

An LL(1) parser is a recursive descent algorithm that uses a single token
of lookahead to build a grammatical derivation for an input sequence. We
present an LL(1) parser generator that, when applied to grammar G, pro-
duces an LL(1) parser for G if such a parser exists. We use the Coq Proof
Assistant to verify that the generator and the parsers that it produces are
sound and complete, and that they terminate on all inputs without using
fuel parameters. As a case study, we extract the tool’s source code and use
it to generate a JSON parser. The generated parser runs in linear time; it is
two to four times slower than an unverified parser for the same grammar.

Homework 5-2 Do Not Repeat Yourself The authors of the abstract presented in
exercise 5-1 have a predilection for the word grammar. The following extract is from
their paper’s introduction. For each occurrence of the word grammar below, indicate
whether it could advantageously be eliminated, either by replacing it with a synonym
or by rewriting the sentence.

1https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf
2Sam Lasser, Chris Casinghino, Kathleen Fisher, and Cody Roux, “A Verified LL(1) Parser Generator,”

ITP 2019, volume 141 of LIPIcs, pp. 24:1–24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

https://www.medien.ifi.lmu.de/lehre/Plagiate-IfI.pdf


The tool has two main components. The first is a parse table generator that,
when applied to a context-free grammar, produces an LL(1) parse table—an
encoding of the grammar’s lookahead properties—if such a table exists for
the grammar. The second component is an LL(1) algorithm implementation
that is parameterized by a parse table. By converting a grammar to a table
and then partially applying the parser to the table, the user obtains a parser
that is specialized to the original grammar.

Homework 5-3 From Passive to Active You might remember the following ab-
stract3 from Exercise Sheet 1. Identify the sentences written in the passive voice, and
recast them into the active voice. For bonus points, identify the occurrences of which
that could have been that.

An algorithm is described which is capable of solving certain word prob-
lems: i.e. of deciding whether or not two words composed of variables and
operators can be proved equal as a consequence of a given set of identi-
ties satisfied by the operators. Although the general word problem is well
known to be unsolvable, this algorithm provides results in many interesting
cases. For example in elementary group theory if we are given the binary
operator ·, the unary operator −, and the nullary operator e, the algorithm is
capable of deducing from the three identities a · (b · c) = (a · b) · c, a · a− = e,
a · e = a, the laws a− · a = e, e · a = a, a−− = a, etc.; and furthermore it can
show that a · b = b · a− is not a consequence of the given axioms.

The method is based on a well-ordering of the set of all words, such that
each identity can be construed as a “reduction”, in the sense that the right-
hand side of the identity represents a word smaller in the ordering than the
left-hand side. A set of reduction identities is said to be “complete” when
two words are equal as a consequence of the identities if and only if they
reduce to the same word by a series of reductions. The method used in this
algorithm is essentially to test whether a given set of identities is complete;
if it is not complete the algorithm in many cases finds a new consequence
of the identities which can be added to the list. The process is repeated
until either a complete set is achieved or until an anomalous situation occurs
which cannot at present be handled.

Results of several computational experiments using the algorithm are given.

3Donald E. Knuth and Peter B. Bendix, “Simple Word Problems in Universal Algebras,” Computational
Problems in Abstract Algebra, pp. 263–297, Pergamon Press, 1970.


	In-class exercise 5-1 Roles of Words
	Homework 5-2 Do Not Repeat Yourself
	Homework 5-3 From Passive to Active

