Satisfiability Modulo Theories

Lecture 4: First-order Theories

Lydia Kondylidou

WS 2025/26

Outline

- o First-order Theories
- o Satisfiability Modulo Theories
- o Examples of First-order Theories

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of number theory:

$$\Sigma^{\mathcal{S}} = \{\mathsf{Nat}\} \qquad \Sigma^{\mathcal{F}} = \{\mathsf{0}, \mathsf{1}, +, <\}$$

$$\mathsf{rank}(\mathsf{0}) = \langle \mathsf{Nat}\rangle \qquad \mathsf{rank}(\mathsf{1}) = \langle \mathsf{Nat}\rangle$$

$$\mathsf{rank}(+) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Nat}\rangle \qquad \mathsf{rank}(<) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Bool}\rangle$$

Consider the Σ -sentence

$$\forall x \in \mathbb{N}. \ \neg(x < x)$$

$$\neg \exists x \in \mathbb{N}. \ x < 0$$

$$\forall x, y, z \in \mathbb{N}. \ (x < y \land y < z \implies x < z)$$

Is the formula valid?

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of number theory:

$$\Sigma^{\mathcal{S}} = \{\mathsf{Nat}\} \qquad \Sigma^{\mathcal{F}} = \{\mathsf{0}, \mathsf{1}, +, <\}$$

$$\mathsf{rank}(\mathsf{0}) = \langle \mathsf{Nat}\rangle \qquad \mathsf{rank}(\mathsf{1}) = \langle \mathsf{Nat}\rangle$$

$$\mathsf{rank}(+) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Nat}\rangle \qquad \mathsf{rank}(<) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Bool}\rangle$$

Consider the Σ -sentence

$$\forall x \in \mathbb{N}. \ \neg (x < x)$$

$$\neg \exists x \in \mathbb{N}. \ x < 0$$

$$\forall x, y, z \in \mathbb{N}. \ (x < y \land y < z \implies x < z)$$

Is the formula valid? No, e.g., if we interpret < as equals or as divides

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of number theory:

$$\Sigma^{\mathcal{S}} = \{\mathsf{Nat}\} \qquad \Sigma^{\mathcal{F}} = \{\mathsf{0}, \mathsf{1}, +, <\}$$

$$\mathsf{rank}(\mathsf{0}) = \langle \mathsf{Nat}\rangle \qquad \mathsf{rank}(\mathsf{1}) = \langle \mathsf{Nat}\rangle$$

$$\mathsf{rank}(+) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Nat}\rangle \qquad \mathsf{rank}(<) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Bool}\rangle$$

Consider the Σ -sentence

$$\forall x \in \mathbb{N}. \ \neg(x < x)$$

$$\neg \exists x \in \mathbb{N}. \ x < 0$$

$$\forall x, y, z \in \mathbb{N}. \ (x < y \land y < z \implies x < z)$$

Is the formula valid? No, e.g., if we interpret Nat as the set of all integers

Consider the signature $\Sigma = \langle \Sigma^S, \Sigma^F \rangle$ for a fragment of number theory:

$$\Sigma^{\mathcal{S}} = \{\mathsf{Nat}\} \qquad \Sigma^{\mathcal{F}} = \{\mathsf{0}, \mathsf{1}, +, <\}$$

$$\mathsf{rank}(\mathsf{0}) = \langle \mathsf{Nat}\rangle \qquad \mathsf{rank}(\mathsf{1}) = \langle \mathsf{Nat}\rangle$$

$$\mathsf{rank}(+) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Nat}\rangle \qquad \mathsf{rank}(<) = \langle \mathsf{Nat}, \mathsf{Nat}, \mathsf{Bool}\rangle$$

Consider the Σ -sentence

$$\forall x \in \mathbb{N}. \ \neg (x < x)$$

$$\neg \exists x \in \mathbb{N}. \ x < 0$$

$$\forall x, y, z \in \mathbb{N}. \ (x < y \land y < z \implies x < z)$$

Is the formula valid? No, e.g., if we interpret < as the successor relation

Recall that valid means true for all possible interpretations

In practice, we often do **not** care about satisfiability or validity **in general** but rather with respect to a **limited class** of interpretations

A practical reason:

When reasoning in a particular application domain, we typically have **specific** data types/structures in mind (e.g., integers, strings, lists, arrays, finite sets, . . .)

More generally, we are typically **not** interested in **arbitrary** interpretations, but in **specific** in ones

Theories formalize this domain-specific reasoning: we talk about satisfiability or validity in a theory or modulo a theory

A computational reason:

While validity in FOL is undecidable, validity in **particular theories** can be **decidable**

It is useful for AR purposes to identify decidable fragments of FOL and develop efficient decision procedures for them

First-order theories

We will assume from now on an infinite set X of variables

A theory \mathcal{T} is a pair $\langle \Sigma, M \rangle$, where:

$$\Sigma = \langle \Sigma^{S}, \Sigma^{F} \rangle$$
 is a signature

M is a class^a of Σ -interpretations over X that is **closed under variable** re-assignment

M is closed under variable re-assignment if every Σ -interpretation that differs from one in M only in the way it interprets the variables of X is also in M

A theory limits the interpretations of Σ -formulas to those from M

^aIn set theory, a class is a more general notion of set.

First-order theories

Example 1: the theory of Real Arithmetic $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$

$$\Sigma_{\mathsf{RA}}^{\mathcal{S}} = \{ \, \mathsf{Real} \, \} \qquad \Sigma_{\mathsf{RA}}^{\mathcal{F}} = \{ \, +, -, *, \leq \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

All $\mathcal{I} \in M_{\mathsf{RA}}$ interpret Real as the set \mathbb{R} of real numbers, and the function symbols in the usual way

Example 2: the theory of Ternary Strings $\mathcal{T}_{TS} = \langle \Sigma_{TS}, M_{TS} \rangle$

$$\Sigma_{\mathsf{TS}}^{\mathcal{S}} = \{ \, \mathsf{String} \, \} \qquad \Sigma_{\mathsf{TS}}^{\mathcal{F}} = \{ \, \cdot, < \} \cup \{ \, \mathsf{a,b,c} \, \}$$

All $\mathcal{I} \in M_{TS}$ interpret String as the set $\{a,b,c\}^*$ of all strings over the characters a,b,c, and \cdot as string concatenation (e.g., $(a \cdot b)^{\mathcal{I}} = ab$) and < as alphabetical order

\mathcal{T} -interpretations

Let Σ and Ω be two signatures over a set X of variables where $\Omega \supseteq \Sigma$ (i.e., $\Omega^S \supseteq \Sigma^S$ and $\Omega^F \supseteq \Sigma^F$)

Let \mathcal{I} be an Ω -interpretation over X

The reduct \mathcal{I}^{Σ} of \mathcal{I} to Σ is a Σ -interpretation over X obtained from \mathcal{I} by restricting it to interpret only the symbols in Σ and X

Given a theory $\mathcal{T} := \langle \Sigma, M \rangle$,

a \mathcal{T} -interpretation is any Ω -interpretation \mathcal{I} for some $\Omega \supseteq \Sigma$ such that $\mathcal{I}^{\Sigma} \in M$

Note: This definition allows us to consider the satisfiability in a theory $\mathcal{T} := (\Sigma, M)$ of formulas that contain sorts or function symbols not in Σ . These symbols are usually called *uninterpreted* (in \mathcal{T})

$\mathcal T$ -interpretations

Example: Consider again $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$ where

$$\Sigma_{\mathsf{RA}}^{\mathcal{S}} = \{ \, \mathsf{Real} \, \} \qquad \Sigma_{\mathsf{RA}}^{\mathcal{F}} = \{ \, +, -, *, \leq \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

All $\mathcal{I} \in M_{\mathsf{RA}}$ interpret Real as \mathbb{R} and the function symbols as usual

- 1. Real $^{\mathcal{I}_1}$ is the rational numbers, symbols in $\Sigma^{\mathcal{F}}_{\mathsf{RA}}$ interpreted as usual
- 2. Real^{\mathcal{I}_2} = \mathbb{R} , symbols in $\Sigma_{\mathsf{RA}}^{\mathsf{F}}$ interpreted as usual, and String^{\mathcal{I}_2} = $\{$ 0.5, 1.3 $\}$
- 3. Real $^{\mathcal{I}_3}=\mathbb{R}$, symbols in $\Sigma_{\mathsf{RA}}^{\mathit{F}}$ interpreted as usual, and $\mathsf{log}^{\mathcal{I}_3}$ is the successor function

${\mathcal T}$ -interpretations

Example: Consider again $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$ where

$$\Sigma_{\mathsf{RA}}^{\mathcal{S}} = \{ \, \mathsf{Real} \, \} \qquad \Sigma_{\mathsf{RA}}^{\mathcal{F}} = \{ \, +, -, *, \leq \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

All $\mathcal{I} \in M_{\mathsf{RA}}$ interpret Real as \mathbb{R} and the function symbols as usual

- 1. Real^{\mathcal{I}_1} is the rational numbers, symbols in Σ_{RA}^F interpreted as usual
- 2. Real^{\mathcal{I}_2} = \mathbb{R} , symbols in $\Sigma_{\mathsf{RA}}^{\mathsf{F}}$ interpreted as usual, and String^{\mathcal{I}_2} = $\{$ 0.5, 1.3 $\}$
- 3. Real $^{\mathcal{I}_3}=\mathbb{R}$, symbols in $\Sigma_{\mathsf{RA}}^{\mathit{F}}$ interpreted as usual, and $\mathsf{log}^{\mathcal{I}_3}$ is the successor function

\mathcal{T} -interpretations

Example: Consider again $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$ where

$$\Sigma_{\mathsf{RA}}^{\mathcal{S}} = \{ \, \mathsf{Real} \, \} \qquad \Sigma_{\mathsf{RA}}^{\mathcal{F}} = \{ \, +, -, *, \leq \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

All $\mathcal{I} \in M_{\mathsf{RA}}$ interpret Real as $\mathbb R$ and the function symbols as usual

- 1. Real \mathcal{I}_1 is the rational numbers, symbols in Σ_{RA}^F interpreted as usual
- 2. Real^{\mathcal{I}_2} = \mathbb{R} , symbols in $\Sigma_{\mathsf{RA}}^{\mathsf{F}}$ interpreted as usual, and String^{\mathcal{I}_2} = $\{$ 0.5, 1.3 $\}$
- 3. Real^{\mathcal{I}_3} = \mathbb{R} , symbols in $\Sigma_{\mathsf{RA}}^{\mathsf{F}}$ interpreted as usual, and $\mathsf{log}^{\mathcal{I}_3}$ is the successor function

${\mathcal T}$ -interpretations

Example: Consider again $\mathcal{T}_{RA} = \langle \Sigma_{RA}, M_{RA} \rangle$ where

$$\Sigma_{\mathsf{RA}}^{\mathcal{S}} = \{ \, \mathsf{Real} \, \} \qquad \Sigma_{\mathsf{RA}}^{\mathcal{F}} = \{ \, +, -, *, \leq \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

All $\mathcal{I} \in M_{\mathsf{RA}}$ interpret Real as \mathbb{R} and the function symbols as usual

- 1. Real^{\mathcal{I}_1} is the rational numbers, symbols in Σ_{RA}^F interpreted as usual
- 2. Real $^{\mathcal{I}_2}=\mathbb{R}$, symbols in $\Sigma_{\mathsf{RA}}^{\mathit{F}}$ interpreted as usual, and $\mathsf{String}^{\mathcal{I}_2}=\{\,0.5,1.3\,\}$
- 3. Real^{\mathcal{I}_3} = \mathbb{R} , symbols in Σ_{RA}^F interpreted as usual, and $\mathsf{log}^{\mathcal{I}_3}$ is the successor function

\mathcal{T} -satisfiability, \mathcal{T} -validity

Let
$$\mathcal{T} := \langle \Sigma, M \rangle$$
 be a theory

A formula α is satisfiable in \mathcal{T} , or \mathcal{T} -satisfiable, if it is satisfied by some \mathcal{T} -interpretation \mathcal{I}

A set Γ of formulas \mathcal{T} -entails a formula α , written $\Gamma \models_{\mathcal{T}} \alpha$, if every \mathcal{T} -interpretation that satisfies all formulas in Γ satisfies α as well

An formula α is valid in \mathcal{T} , or \mathcal{T} -valid, written $\models_{\mathcal{T}} \alpha$, if it is satisfied by **all** \mathcal{T} -interpretations

Note: α is valid in \mathcal{T} iff $\{\} \models_{\mathcal{T}} \alpha$

$\mathcal T$ -satisfiability, $\mathcal T$ -validity

Exercise: Which of the following Σ_{RA} -formulas is satisfiable or valid in \mathcal{T}_{RA} ?

1.
$$(x_0 + x_1 \le 0.5) \land (x_0 - x_1 \le 2)$$

2.
$$\forall x_0.((x_0 + x_1 \le 1.7) \implies (x_1 \le 1.7 - x_0))$$

3.
$$\forall x_0. \forall x_1. (x_0 + x_1 \leq 1)$$

Note: For every signature Σ , entailment and validity in FOL can be reframed as entailment and validity in the theory $\mathcal{T}_{FOL} = \langle \Sigma, M_{FOL} \rangle$ where M_{FOL} is the class of **all** Σ -interpretations

\mathcal{T} -satisfiability, \mathcal{T} -validity

Exercise: Which of the following Σ_{RA} -formulas is satisfiable or valid in \mathcal{T}_{RA} ?

1.
$$(x_0 + x_1 \le 0.5) \land (x_0 - x_1 \le 2)$$

satisfiable, not valid

2.
$$\forall x_0.((x_0 + x_1 \le 1.7) \implies (x_1 \le 1.7 - x_0))$$

3.
$$\forall x_0. \forall x_1. (x_0 + x_1 \leq 1)$$

\mathcal{T} -satisfiability, \mathcal{T} -validity

Exercise: Which of the following Σ_{RA} -formulas is satisfiable or valid in \mathcal{T}_{RA} ?

1.
$$(x_0 + x_1 \le 0.5) \land (x_0 - x_1 \le 2)$$

2.
$$\forall x_0.((x_0 + x_1 \le 1.7) \implies (x_1 \le 1.7 - x_0))$$

3.
$$\forall x_0. \forall x_1. (x_0 + x_1 \leq 1)$$

satisfiable, not valid

satisfiable, valid

$\mathcal T$ -satisfiability, $\mathcal T$ -validity

Exercise: Which of the following Σ_{RA} -formulas is satisfiable or valid in \mathcal{T}_{RA} ?

1.
$$(x_0 + x_1 \le 0.5) \land (x_0 - x_1 \le 2)$$
 satisfiable, **not valid**

2.
$$\forall x_0.((x_0 + x_1 \le 1.7) \implies (x_1 \le 1.7 - x_0))$$
 satisfiable, valid

3.
$$\forall x_0. \forall x_1. (x_0 + x_1 \leq 1)$$
 not satisfiable, not valid

Note: For every signature Σ , entailment and validity in FOL can be reframed as entailment and validity in the theory $\mathcal{T}_{FOL} = \langle \Sigma, M_{FOL} \rangle$ where M_{FOL} is the class of **all** Σ -interpretations

A theory \mathcal{T} is defined by a signature Σ and a set \mathcal{A} of Σ -sentences, or axioms

In particular, an Ω -formula α is *valid* in this kind of theory if every Ω -interpretation $\mathcal I$ that satisfies $\mathcal A$ also satisfies α

We refer to such theories as (first-order) axiomatic theories These notions of

theory and validity are a **special case** of those in the previous slides Given a theory \mathcal{T} defined by Σ and \mathcal{A} , we define a theory $\mathcal{T}' := \langle \mathcal{T}, M \rangle$ where M is the class of all Σ -interpretations that satisfy \mathcal{A}

It is not hard to show that a formula α is valid in \mathcal{T} iff it is valid in \mathcal{T}'

In fact, they are strictly less general since **not all theories are first-order** axiomatizable

Example

Consider the theory \mathcal{T}_{Nat} of the natural numbers, with signature Σ where $\Sigma^S = \{ \text{Nat} \}$, $\Sigma^F = \{ 0, S, +, < \}$, and $M = \{ \mathcal{I} \}$ where $\text{Nat}^{\mathcal{I}} = \mathbb{N}$ and Σ^F is interpreted as usual

Example

as usual

Consider the theory \mathcal{T}_{Nat} of the natural numbers, with signature Σ where $\Sigma^S = \{ \text{ Nat } \}$, $\Sigma^F = \{ \text{ 0, S, +, <} \}$, and $M = \{ \mathcal{I} \}$ where $\text{Nat}^{\mathcal{I}} = \mathbb{N}$ and Σ^F is interpreted

Any set of axioms for this theory is satisfied by *non-standard models*, e.g., interpretations \mathcal{I} where

 $\mathsf{Nat}^\mathcal{I}$ includes other chains of elements besides the natural numbers

Example

Consider the theory \mathcal{T}_{Nat} of the natural numbers, with signature Σ where $\Sigma^S = \{ \text{Nat} \},$

 $\Sigma^F = \{0, S, +, <\}$, and $M = \{\mathcal{I}\}$ where $\mathsf{Nat}^{\mathcal{I}} = \mathbb{N}$ and Σ^F is interpreted as usual

Any set of axioms for this theory is satisfied by *non-standard models*, e.g., interpretations \mathcal{I} where

 $\mathsf{Nat}^\mathcal{I}$ includes other chains of elements besides the natural numbers

These models **falsify** formulas that are **valid** in \mathcal{T}_{Nat} (e.g., $\neg \exists x. x < 0$ or $\forall x. (x \doteq 0 \lor \exists y. x \doteq S(y))$)

Completeness of theories

A Σ -theory $\mathcal T$ is *complete* if for every Σ -sentence α , either α or $\neg \alpha$ is valid in $\mathcal T$

Note: In a complete Σ -theory, every Σ -sentence is either **valid** or **unsatisfiable**

Completeness of theories

Example 1:

Any theory $\mathcal{T} = \langle \Sigma, M \rangle$ where all the interpretations in M only differ in how they interpret the variables (e.g., \mathcal{T}_{RA}) is **complete**

Example 2:

The axiomatic (mono-sorted) theory of *monoids* with $\Sigma^F = \{\cdot, \epsilon\}$ and axioms

$$\forall x. \forall y. \forall z. (x \cdot y) \cdot z \doteq x \cdot (y \cdot z) \qquad \forall x. x \cdot \epsilon \doteq x \qquad \forall x. \epsilon \cdot x \doteq x$$

is **incomplete**. For instance, the sentence $\forall x. \forall y. x \cdot y \doteq y \cdot x$ is true in some monoids (e.g., the integers with addition) but **false** in others (e.g., the strings with concatenation)

Completeness of theories

Example 3: The axiomatic (mono-sorted) theory of *dense linear orders* without endpoints with $\Sigma^F = \{ \prec \}$ and axioms

$$\forall x. \forall y. (x \prec y \implies \exists z. (x \prec z \land z \prec y)) \qquad \text{(dense)}$$

$$\forall x. \forall y. (x \prec y \lor x \doteq y \lor y \prec x) \qquad \text{(linear)}$$

$$\forall x. \neg (x \prec x) \qquad \forall x. \forall y. \forall z. (x \prec y \land y \prec z \implies x \prec z) \qquad \text{(orders)}$$

$$\forall x. \exists y. y \prec x \qquad \forall x. \exists y. x \prec y \qquad \text{(without endpoints)}$$

is **complete**

Decidability

Recall: We say that a set A is *decidable* if there exists a **terminating** procedure

that, for every input element a, returns **yes** if $a \in A$ and **no** otherwise

A theory $\mathcal{T}:=\langle \Sigma, M \rangle$ is *decidable* if the set of all Σ -formulas **valid in** \mathcal{T} is decidable

A fragment of $\mathcal T$ is a syntactically-restricted subset of the Σ -formulas valid in $\mathcal T$

Decidability

Recall: We say that a set A is *decidable* if there exists a **terminating** procedure

that, for every input element a, returns **yes** if $a \in A$ and **no** otherwise

A theory $\mathcal{T}:=\langle \Sigma, M \rangle$ is *decidable* if the set of all Σ -formulas **valid in** \mathcal{T} is decidable

A fragment of $\mathcal T$ is a syntactically-restricted subset of the Σ -formulas valid in $\mathcal T$

Example 1: The *quantifier-free* fragment of \mathcal{T} is the set of all quantifier-free formulas valid in \mathcal{T}

Example 2: The *linear* fragment of \mathcal{T}_{RA} is the set of all Σ_{RA} - valid in \mathcal{T} that do not contain multiplication (*)

Axiomatizability

A theory $\mathcal{T} = \langle \Sigma, M \rangle$ is recursively axiomatizable if M is the class of all interpretations satisfying a **decidable set** of (first-order) axioms \mathcal{A}

Lemma 1:

Every recursively axiomatizable theory \mathcal{T} admits a procedure $E_{\mathcal{T}}$ that **enumerates** all formulas valid in \mathcal{T}

Theorem 1:

For every **complete** and **recursively axiomatizable** theory $\mathcal T$, validity in $\mathcal T$ is decidable

Proof:

Given a formula α , we use $E_{\mathcal{T}}$ to enumerate all valid formulas. Since \mathcal{T} is complete, either α or $\neg \alpha$ will eventually be produced by $E_{\mathcal{T}}$.

Common theories in Satisfiability Modulo Theories

As a branch of Automated Reasoning, SMT has traditionally **focused** on theories with **decidable quantifier-free fragment**

SMT is it concerned with the **(un)satisfiability** of formulas in a theory \mathcal{T} , but recall that a formula α is \mathcal{T} -valid iff $\neg \alpha$ is \mathcal{T} -unsatisfiable

In the rest of the course, we will study

a few of those theories and their decision procedures

proof systems to reason modulo theories automatically

From quantifier-free formulas to conjunctions of literals

As in PL, thanks to DNF transformations,

the satisfiability of quantifier-free formulas in a theory $\mathcal T$ is decidable **iff** the satisfiability in $\mathcal T$ of **conjunctions of literals** is decidable

In fact, we will study a general **extension** of CDCL to **SMT** that uses decision procedures for conjunctions of literals

So, we will mostly focus on conjunctions of literals

Theory of Uninterpreted Functions: \mathcal{T}_{EUF}

Given a signature Σ , the most general theory consists of the class of **all** Σ -interpretations

This is really a family of theories parameterized by the signature Σ

It is known as the theory of *Equality with Uninterpreted Functions* (EUF), or the *empty theory* since it is axiomatized by the empty set of formulas

Validity, and so satisfiability, in \mathcal{T}_{EUF} is only **semi-decidable** (as it is just validity in FOL)

However, the satisfiability of conjunctions of \mathcal{T}_{EUF} -literals is **decidable**, in polynomial time, with a **congruence closure** algorithm

Theory of Uninterpreted Functions: \mathcal{T}_{EUF}

Example:
$$a \doteq b \land f(a) \doteq b \land \neg(g(a) \doteq g(f(a)))$$

Is this formula satisfiable in \mathcal{T}_{EUF} ?

Theory of Real Arithmetic: \mathcal{T}_{RA}

$$\Sigma^S = \{ \, \mathsf{Real} \, \}$$

$$\Sigma^F = \{ \, +, -, *, \leq \, \} \cup \{ \, q \mid q \, \, \mathsf{is a decimal numeral} \, \}$$

M is the class of interpretations that interpret Real as the set of real numbers, and the function symbols in the usual way

Satisfiability in the full \mathcal{T}_{RA} is **decidable** (but in worst-case doubly-exponential time)

Restricted fragments can be decided more efficiently

Theory of Real Arithmetic: \mathcal{T}_{RA}

Example: quantifier-free **linear real arithmetic** (QF_LRA): * can only appear if at least one pf its two arguments is a decimal numeral

The satisfiability of conjunctions of literals in QF_LRA is decidable in polynomial time

Theory of Integer Arithmetic: \mathcal{T}_{IA}

$$\Sigma^{\mathcal{S}} = \{ \text{ Int } \}$$

$$\Sigma^{\mathcal{F}} = \{ +, -, *, \leq \} \cup \{ n \mid \text{ n is a numeral } \}$$

M is the class of interpretations that interpret Int as the set of integers numbers, and the function symbols in the usual way

Satisfiability in \mathcal{T}_{IA} is **not even semi-**decidable!

Satisfiability of quantifier-free Σ -formulas in $\mathcal{T}_{\mathsf{IA}}$ is **undecidable** as well

Linear integer arithmetic (LIA) (aka., *Presburger arithmetic*) is decidable, but not efficiently (worst case triply-exponential)

Theory of Arrays with Extensionality: \mathcal{T}_A

```
\Sigma^S = \{A, I, E\} (for arrays, indices, elements) \Sigma^F = \{\text{read, write}\}, where \text{rank}(\text{read}) = \langle A, I, E \rangle and \text{rank}(\text{write}) = \langle A, I, E, A \rangle
```

Useful for modeling RAM or array data structures

Let a, a' be variables of sort A, and i and v variables of sort I and E, respectively

read(a, i) denotes the value stored in array a at position i write(a, i, v) denotes the array that stores value v at position i and is otherwise identical to a

Theory of Arrays with Extensionality: \mathcal{T}_A

Example 1: read(write(a, i, v), i) $\doteq_E v$

Intuitively, is the above formula valid/satisfiable/unsatisfiable in \mathcal{T}_A ?

Example 2: $\forall i$. read $(a, i) \doteq_E \text{read}(a', i) \implies a \doteq_A a'$

Intuitively, is the above formula valid/satisfiable/unsatisfiable in \mathcal{T}_A ?

Theory of Arrays with Extensionality: \mathcal{T}_A

 \mathcal{T}_A is finitely axiomatizable

M is the class of interpretations that satisfy the following axioms:

- 1. $\forall a. \forall i. \forall v. \text{ read}(\text{write}(a, i, v), i) \doteq v$
- 2. $\forall a. \forall i. \forall i'. \forall v. (\neg(i \doteq i') \implies \text{read}(\text{write}(a, i, v), i') \doteq \text{read}(a, i'))$
- 3. $\forall a. \forall a'. (\forall i. \text{read}(a, i) \doteq \text{read}(a', i) \implies a \doteq a')$

Note: Axiom 3 can be omitted to obtain a theory of arrays **without extensionality**

Satisfiability in \mathcal{T}_A is **undecidable**

But there are several decidable fragments, as we will see