
Satisfiability Modulo Theories

Lecture 3: FOL Proof Systems

Lydia Kondylidou

WS 2025/26

1

Outline

◦ Semantic arguments for FOL

◦ PCNF and Clausal Form

◦ First-order Resolution

2

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by

replacing the truth assignment v with an interpretation I and

adding proof rules for quantifiers

adding proof rules for equality (for FOL with equality)

3

Semantic arguments for FOL: propositional rules

I |= ¬α
(a)

I 6|= α

I 6|= ¬α
(b)

I |= α

I |= α ∧ β
(c)

I |= α, I |= β

I 6|= α ∧ β
(d)

I 6|= α | I 6|= β

I |= α ∨ β
(e)

I |= α | I |= β

I 6|= α ∨ β
(f)

I 6|= α, I 6|= β

I |= α =⇒ β
(g)

I 6|= α | I |= β

I 6|= α =⇒ β
(h)

I |= α, I 6|= β

I |= α I 6|= α
(i)

I |= ⊥

I |= α ⇐⇒ β
(k)

I |= α, I |= β | I 6|= α, I 6|= β

I 6|= α ⇐⇒ β
(j)

I 6|= α, I |= β | I |= α, I 6|= β

4

Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, ε[v ← t]

denotes

the term/formula obtained from ε by replacing every free occurrence of v

in ε by t

5

Semantic arguments for FOL: quantifier rules

Examples:

x [x ← S (y)] = S (y) (x + y)[x ← y] = y + y

x [x ← S (x)] = S (x) (x
.
= y)[x ← 0] = 0

.
= y

x [x ← y] = y (x
.
= x)[x ← S (x)] = S (x)

.
= S (x)

(x
.
= y ∨ x < y)[x ← S (0)] = S (0)

.
= y ∨ S (0) < y

(x
.
= y ∨ ∀x . x < y)[x ← S (y)] = S (y)

.
= y ∨ ∀x . x < y

6

Semantic arguments for FOL: quantifier rules

Quantifier rules

I |= ∀v :σ.α
(m) for any term t of sort σ

I |= α[v ← t]

I 6|= ∃v :σ.α
(n) for any term t of sort σ
I 6|= α[v ← t]

I |= ∃v :σ.α
(o) for a fresh variable k of sort σ
I |= α[v ← k]

I 6|= ∀v :σ.α
(p) for a fresh variable k of sort σ
I 6|= α[v ← k]

7

Proof by deduction: Example 1

Prove that ∃x .P(x) =⇒ ∃y .P(y) is valid

1. I 6|= ∃x .P(x) =⇒

∃y .P(y)

2. I |= ∃x .P(x) by (h) on 1

3. I 6|= ∃y .P(y) by (h) on 1

4. I |= P(x0) by (o) on 2

5. I 6|= P(x0) by (n) on 3

6. I |= ⊥ by (i) on 4, 5

8

Proof by deduction: Example 2

Prove that ∀x . (P(x) =⇒ ∃y .P(y)) is valid

1. I 6|= ∀x . (P(x) =⇒

∃y .P(y))

2. I 6|= P(x0) =⇒ ∃y .P(y)

by (p) on 1

3. I |= P(x0) by (h) on 2

4. I 6|= ∃y .P(y) by (h) on 2

5. I 6|= P(x0) by (n) on 4

6. I |= ⊥ by (i) on 3, 5

9

Proof by deduction: Example 3

Consider signature Σ with ΣS = {A }, ΣF = {Q }, rank(Q) = 〈A,A,Bool〉, and

all vars of sort A

Prove that ∃x . ∀y .Q(x , y) =⇒ ∀y . ∃x .Q(x , y) is valid

1. I 6|= ∃x .∀y .Q(x , y) =⇒
∀y .∃x .Q(x , y)

2. I |= ∃x .∀y .Q(x , y) by (h) on 1

3. I 6|= ∀y .∃x .Q(x , y) by (h) on 1

4. I |= ∀y .Q(x0, y) by (o) on 2

5. I 6|= ∃x .Q(x , y0) by (p) on 3

6. I |= Q(x0, y0) by (m) on 4

7. I 6|= Q(x0, y0) by (n) on 5

8. I |= ⊥ by (i) on 6,7

10

Refutation Soundness and Completeness

Theorem 1 (Soundness):

For all Σ-formulas α, if there is a closed derivation tree with root I 6|= α

then α is valid

Theorem 2 (Completeness):

For all Σ-formulas α without equality, if α is valid, then there is a closed

derivation tree with root I 6|= α

11

Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not

terminate

Intuition: Consider the invalid formula ∀x . q(x , x)

1. I 6|= ∀x .q(x , x)

2. I 6|= q(x0, x0) by (m) on 1

3. I 6|= q(x1, x1) by (m) on 1

4. I 6|= q(x2, x2) by (m) on 1

5. . . .

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

FOL is only semi-decidable: you can always show validity but not invalidity

12

Prenex Normal Form (PNF)

For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas

A Σ-formula α is in prenex normal form (PNF) if it has the form

Q1x1. · · · Qnxn.β

where each Qi is a quantifier and β is a quantifier-free formula

Formula α above is in prenex conjunctive normal form (PCNF) if, in addition,

β is in conjunctive normal forma

Example: The formula below is in PCNF

∀y . ∃z . ((

C1
︷ ︸︸ ︷

p(f (y))
︸ ︷︷ ︸

A1

∨ q(z)
︸︷︷︸

A2

) ∧ (

C2
︷ ︸︸ ︷

¬ q(z)
︸︷︷︸

A2

∨ q(x)
︸︷︷︸

A3

))

aIf we treat every atomic formula of β as if it was a propositional variable

13

Clausal Form

A Σ-formula is in clausal form if

1. it is in PCNF

2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Exercise: Which of the following formulas are clausal form?

∀y . ∃z . (p(f (y)) ∧ ¬q(y , z)) ✗

∀y . ∀z . (p(f (y)) ∧ ¬q(x , z)) ✗

∀y . ∀z . (p(f (y)) ∧ ¬q(y , z)) ✓

14

Clausal Form: transformation

Theorem 3 (Skolem’s Theorem):

Any sentence can be transformed to an equi-satisfiable formula in clausal

form.

The high level transformation strategy is the following:

Sentence −→ PNF −→ PCNF −→ Clausal Form

Running example: (∀x .(p(x) =⇒ q(x))) =⇒ (∀x .p(x) =⇒

∀x .q(x))

15

I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF

in 4 steps.

Example Formula

(∀x . (p(x) =⇒ q(x))) =⇒ (∀x . p(x) =⇒ ∀x . q(x))

16

Step 1: Rename Bound Variables

Rename bounded variables apart so that:

1. Bounded variables are disjoint from free variables

2. Different quantifiers use different bound variables

(∀x . (p(x) =⇒ q(x))) =⇒ (∀y . p(y) =⇒ ∀z . q(z))

17

Step 2: Eliminate Implications

Eliminate all occurrences of =⇒ and ⇐⇒ using the rewrites:

• α1 ⇐⇒ α2 −→ (α1 =⇒ α2) ∧ (α2 =⇒ α1)

• α1 =⇒ α2 −→ ¬α1 ∨ α2

¬(∀x . (¬p(x) ∨ q(x))) ∨ (¬∀y . p(y) ∨ ∀z . q(z))

18

Step 3: Push Negations Inward

Use the rewrites:

• ¬(α ∧ β) −→ ¬α ∨ ¬β, ¬(α ∨ β) −→ ¬α ∧ ¬β

• ¬∀v .α −→ ∃v .¬α, ¬∃v .α −→ ∀v .¬α

• ¬¬α −→ α

∃x . (p(x) ∧ ¬q(x)) ∨ (∃y .¬p(y) ∨ ∀z . q(z))

19

Step 4: Move Quantifiers Outward

Move all quantifiers leftwards using the rewrites:

• α ⊲⊳ Qv .β −→ Qv .(α ⊲⊳ β) (ok if v not free in α)

• (Qv .α) ⊲⊳ β −→ Qv .(α ⊲⊳ β) (ok if v not free in β)

where Q ∈ {∀,∃} and ⊲⊳∈ {∧,∨}

∃x .∀z .∃y . ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

20

II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

∃x .∀z .∃y . ((p(x) ∧ ¬q(x)) ∨ (¬p(y) ∨ q(z)))

becomes

∃x .∀z .∃y . ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

This formula contains existentials and is therefore not yet in clausal form

21

III: Transforming into Clausal Form (Skolemization)

∃x . ∀z . ∃y . ((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

For every existential quantifier ∃v in the PCNF, let u1, . . . , un be the universally

quantified variables preceding ∃v ,

1. introduce a fresh function symbol fv with arity n and 〈sort(u1), . . . sort(un), sort(v)〉

2. delete ∃v and replace every occurrence of v by fv (u1, . . . , un)

For the formula above, introduce nullary function (i.e., a constant) symbol fx and

unary function symbol fy for ∃x and ∃y , respectively

∀z . ((p(fx) ∨ ¬p(fy (z)) ∨ q(z)) ∧ (¬q(fx) ∨ ¬p(fy (z)) ∨ q(z)))

The functions fv are called Skolem functions and the process of replacing

existential quantifiers by functions is called Skolemization

Note: Technically, the resulting formula is no longer a Σ-formula, but a ΣE -formula, where ΣS
E = ΣS

and ΣF
E = ΣF ∪

⋃
v{ fv }

22

Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form

unambiguously as a set of clauses

Example:

∀z . ((p(f (z)) ∨ ¬p(g(z)) ∨ q(z)) ∧ (¬q(f (z)) ∨ ¬p(g(z)) ∨ q(z)))

can be written as

∆ := { {p(f (z)),¬p(g(z)), q(z)}, {¬q(f (z)),¬p(g(z)), q(z)} }

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal

form

23

A resolution-based proof system for PL

Recall: The satisfiability proof system consisting of the rules below is sound,

complete and terminating for clause sets in PL

Resolve
C1,C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ {C }

Clash
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ {C } Φ := Φ ∪ {C }

Unsat
{} ∈ ∆

unsat

Sat
No other rules apply

sat

Can we extend this proof system to FOL?

24

A resolution-based proof system for FOL?

Resolve
C1,C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ {C }

Clash
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ {C } Φ := Φ ∪ {C }
Unsat

{} ∈ ∆

unsat

Sat
No other rules apply

sat

Consider the FOL clause set below where x , z are variables and a is a constant symbol

∆ := { {¬P(z),Q(z)}, {P(a)}, {¬Q(x)} }

Note that ∆ is equivalent to ∀z. (P(z) =⇒ Q(z)) ∧ P(a) ∧ ∀x .¬Q(x), which is

unsatisfiable

However, no rules above apply to ∆. We need another rule to deal with variables

25

A resolution-based proof system for FOL

Resolve
C1,C2 ∈ ∆ p ∈ C1 ¬p ∈ C2 C = (C1 \ { p }) ∪ (C2 \ {¬p }) C /∈ ∆ ∪ Φ

∆ := ∆ ∪ {C }

Clash
C ∈ ∆ p,¬p ∈ C

∆ := ∆ \ {C } Φ := Φ ∪ {C }
Inst

C ∈ ∆ v ∈ FV(C) sort(t) = sort(v)

∆ := ∆ ∪ {C [v ← t]}

Unsat
{} ∈ ∆

unsat

Sat
No other rules apply

sat

26

A resolution-based proof system for FOL

Example: C1 : {¬P(z),Q(z)} C2 : {P(a)} C3 : {¬Q(x)}

Φ ∆

{ } {C1,C2,C3 }

{ } {C1,C2,C3,C4:{¬P(a),Q(a)} } by Inst on C1 with z ← a

{ } {C1,C2,C3,C4,C5:{Q(a)} } by Resolve on C2,C4

{ } {C1,C2,C3,C4,C5,C6:{¬Q(a)} } by Inst on C3 with x ← a

{ } {C1,C2,C3,C4,C5,C6,C7:{} } by Resolve on C5,C6

unsat by Unsat on C7

27

A resolution-based proof system for FOL

This system is refutation-sound and complete for FOL clause sets without

equality:

If a clause set ∆0 is unsatisfiable, there is a derivation of unsat from ∆0

The system is also solution-sound:

There is a derivation of sat from ∆0 only if ∆0 is satisfiable

The system is not, and cannot be, terminating:

if ∆0 is satisfiable, it is possible for Sat to never apply

Note: This proof system is challenging to implement efficiently because Inst is

not constrained enough

28

A resolution-based proof system for FOL

Automated theorem provers for FOL use instead a more sophisticated Resolve

rule

where two literals in different clauses are instantiated directly, and only as needed,

to make them complementary (see ML Chap. 10)

Example: {P(x , y),Q(a, f (y))}, {¬Q(z, f (b)),R(g(z))} resolve to {P(x , b),R(g(a))}

Problem: How do we prove the unsatisfiability of these clause sets?

{ {x
.
= y}, {¬(y

.
= x)} } { {x

.
= y}, {y

.
= z}, {¬(x

.
= z)} } { {x

.
= y}, {¬(f (x)

.
= f (y))} }

We need specialized rules for equality reasoning!

29

A resolution-based proof system for FOL

Another Problem: How to we prove the unsatisfiability of these clause sets?

{ {x < x} }

{ {x < y}, {y < z}, {¬(x < z)} }

{ {¬(x + y
.
= y + x)} }

{ {¬(x + 0
.
= x)} }

The thing is: each of these clause set is actually satisfiable in FOL!

However, they are unsatisfiable in the theory of arithmetic

We need proof systems for satisfiability modulo theories

30

First-order resolution

l ∈ C1 ¬l ∈ C2 C1,C2 ∈ ∆
(prop. resolution)

∆ ∪ {(C1 − { l }) ∪ (C2 − {¬l })}

where l is a literal (i.e., an atomic formula or its negation).

Now consider ∆ := { {¬P z ,Q z}, {P a}, {¬Q a} }, where z is a universally

quantified variable, and a is a constant.

Is P z equal to P a? No, but they are equal if z = a

We can instantiate the literals to make them equal and then perform resolution

31

First-order resolution: Unification

A substitution θ is a map from variables to well-sorted terms (of matching sorts)

Note: we assume the terms do not contain any variables

We write tθ for the result we get by replacing variables in t according to θ

Example: Let θ := {z 7→ a} , then (p(g(z , z)))θ = p(g(a, a))

We use {l1, . . . , ln}θ to represent {l1θ, . . . , lnθ}

A substitution θ is a unifier of two terms s and t if tθ = sθ

Can there be more than one unifier of two terms? Yes. Consider p(x) and p(f (y))

we can have x = f (a), y = a, x = f (f (a)), y = f (a) etc.

Can there be no unifier of two terms? Yes. Consider p(x) and q(y)

32

First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈ ∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − { l1 }) ∪ (C2 − {¬l2 })}θ

Example: {¬P z ,Q z}, {P a}, {¬Q a}

33

First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈ ∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − { l1 }) ∪ (C2 − {¬l2 })}θ

Example

{¬P z ,Q z}, {P a}, {¬Q a}
(θ := { z 7→ a } unifies P z and P a)

{¬P z ,Q z}, {P a}, {¬Q a}, {Q a }

34

First-order resolution

Now we can write first-order resolution as

l1 ∈ C1 ¬l2 ∈ C2 C1,C2 ∈ ∆ θ is a unifier of l1, l2
(First-order resolution)

∆ ∪ {(C1 − { l1 }) ∪ (C2 − {¬l2 })}θ

Example

{¬P z ,Q z}, {P a}, {¬Q a}
(θ := { z 7→ a } unifies P z and {P a})

{¬P z ,Q z}, {P a}, {¬Q a}, {Q a }
(Resolve {¬Q a}, {Q a})

{¬P z ,Q z}, {P a}, {¬Q a}, {Q a}, { }

Therefore, α := ∀z .((¬P z ∨ Q z) ∧ P a ∧ ¬Q a) is unsatisfiable.

What do we know about ¬α?

¬α is valid.

35

First-order resolution

This suggests a strategy to prove the validity of a Σ-formula α:

1. Negate the formula;

2. Transform into Clausal Form;

3. Apply first-order resolution until an empty clause is derived (might not

terminate!)

36

