Satisfiability Modulo Theories Lecture 3: FOL Proof Systems

Lydia Kondylidou

WS 2025/26

Outline

- \circ Semantic arguments for FOL
- o PCNF and Clausal Form
- o First-order Resolution

Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the **semantic arguments system** by replacing the truth assignment v with an interpretation $\mathcal I$ and adding proof rules for quantifiers

adding proof rules for equality (for FOL with equality)

Semantic arguments for FOL: propositional rules

(a)
$$\frac{\mathcal{I} \models \neg \alpha}{\mathcal{I} \not\models \alpha}$$
(b)
$$\frac{\mathcal{I} \not\models \neg \alpha}{\mathcal{I} \models \alpha}$$
(c)
$$\frac{\mathcal{I} \models \alpha \land \beta}{\mathcal{I} \models \alpha, \mathcal{I} \models \beta}$$
(d)
$$\frac{\mathcal{I} \not\models \alpha \land \beta}{\mathcal{I} \not\models \alpha \mid \mathcal{I} \not\models \beta}$$
(e)
$$\frac{\mathcal{I} \models \alpha \lor \beta}{\mathcal{I} \models \alpha \mid \mathcal{I} \models \beta}$$
(f)
$$\frac{\mathcal{I} \not\models \alpha \lor \beta}{\mathcal{I} \not\models \alpha, \mathcal{I} \not\models \beta}$$
(g)
$$\frac{\mathcal{I} \models \alpha \implies \beta}{\mathcal{I} \not\models \alpha \mid \mathcal{I} \models \beta}$$
(h)
$$\frac{\mathcal{I} \not\models \alpha \implies \beta}{\mathcal{I} \models \alpha, \mathcal{I} \not\models \beta}$$
(i)
$$\frac{\mathcal{I} \models \alpha \not\models \alpha}{\mathcal{I} \not\models \alpha}$$
(k)
$$\frac{\mathcal{I} \models \alpha \iff \beta}{\mathcal{I} \models \alpha, \mathcal{I} \not\models \beta}$$
(j)
$$\frac{\mathcal{I} \not\models \alpha \iff \beta}{\mathcal{I} \not\models \alpha, \mathcal{I} \not\models \beta}$$
(j)
$$\frac{\mathcal{I} \not\models \alpha, \mathcal{I} \not\models \beta \mid \mathcal{I} \not\models \alpha, \mathcal{I} \not\models \beta}{\mathcal{I} \not\models \alpha, \mathcal{I} \not\models \beta}$$

Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ε is a term/formula, and t is a term, $\varepsilon[v \leftarrow t]$ denotes the term/formula obtained from ε by replacing every free occurrence of v in ε by t

Semantic arguments for FOL: quantifier rules

Examples:

$$x[x \leftarrow S (\mathbf{y})] = S (\mathbf{y}) \qquad (x+y)[x \leftarrow \mathbf{y}] = \mathbf{y} + y$$

$$x[x \leftarrow S (\mathbf{x})] = S (\mathbf{x}) \qquad (x \doteq y)[x \leftarrow \mathbf{0}] = \mathbf{0} \doteq y$$

$$x[x \leftarrow \mathbf{y}] = \mathbf{y} \qquad (x \doteq x)[x \leftarrow S (\mathbf{x})] = S (\mathbf{x}) \doteq S (\mathbf{x})$$

$$(x \doteq y \lor x < y)[x \leftarrow S (\mathbf{0})] = S (\mathbf{0}) \doteq y \lor S (\mathbf{0}) < y$$

$$(x \doteq y \lor \forall x. x < y)[x \leftarrow S (\mathbf{y})] = S (\mathbf{y}) \doteq y \lor \forall x. x < y$$

Semantic arguments for FOL: quantifier rules

Quantifier rules

(m)
$$\frac{\mathcal{I} \models \forall v : \sigma. \alpha}{\mathcal{I} \models \alpha [v \leftarrow t]}$$
 for any term t of sort σ

(n)
$$\frac{\mathcal{I} \not\models \exists v : \sigma. \alpha}{\mathcal{I} \not\models \alpha [v \leftarrow t]}$$
 for any term t of sort σ

(o)
$$\frac{\mathcal{I} \models \exists v : \sigma. \alpha}{\mathcal{I} \models \alpha[v \leftarrow k]}$$
 for a **fresh** variable k of sort σ

(p)
$$\frac{\mathcal{I} \not\models \forall v : \sigma. \alpha}{\mathcal{I} \not\models \alpha[v \leftarrow k]}$$
 for a **fresh** variable k of sort σ

Proof by deduction: Example 1

Prove that $\exists x. P(x) \implies \exists y. P(y)$ is valid

- 1. $\mathcal{I} \not\models \exists x. P(x) \Longrightarrow \exists y. P(y)$
- 2. $\mathcal{I} \models \exists x. P(x)$ by (h) on 1
- 3. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 1
- 4. $\mathcal{I} \models P(x_0)$ by (o) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 3
- 6. $\mathcal{I} \models \bot$ by (i) on 4, 5

Proof by deduction: Example 2

Prove that $\forall x. (P(x) \implies \exists y. P(y))$ is valid

- 1. $\mathcal{I} \not\models \forall x. (P(x) \implies \exists y. P(y))$
- 2. $\mathcal{I} \not\models P(x_0) \implies \exists y. P(y)$ by (p) on 1
- 3. $\mathcal{I} \models P(x_0)$ by (h) on 2
- 4. $\mathcal{I} \not\models \exists y. P(y)$ by (h) on 2
- 5. $\mathcal{I} \not\models P(x_0)$ by (n) on 4
- 6. $\mathcal{I} \models \bot$ by (i) on 3, 5

Proof by deduction: Example 3

Consider signature Σ with $\Sigma^S = \{A\}$, $\Sigma^F = \{Q\}$, rank $(Q) = \langle A, A, Bool \rangle$, and all vars of sort A

Prove that $\exists x. \forall y. Q(x, y) \implies \forall y. \exists x. Q(x, y)$ is valid

- 1. $\mathcal{I} \not\models \exists x. \forall y. Q(x, y) \Longrightarrow \forall y. \exists x. Q(x, y)$
- 2. $\mathcal{I} \models \exists x. \forall y. Q(x, y)$ by (h) on 1
- 3. $\mathcal{I} \not\models \forall y. \exists x. Q(x, y)$ by (h) on 1
- 4. $\mathcal{I} \models \forall y. Q(x_0, y)$ by (o) on 2
- 5. $\mathcal{I} \not\models \exists x. Q(x, y_0)$ by (p) on 3
- 6. $\mathcal{I} \models Q(x_0, y_0)$ by (m) on 4
- 7. $\mathcal{I} \not\models Q(x_0, y_0)$ by (n) on 5
- 8. $\mathcal{I} \models \bot$ by (i) on 6,7

Refutation Soundness and Completeness

Theorem 1 (Soundness):

For all Σ -formulas α , if there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$ then α is valid

Theorem 2 (Completeness):

For all Σ -formulas α without equality, if α is valid, then there is a closed derivation tree with root $\mathcal{I} \not\models \alpha$

Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not terminate

Intuition: Consider the invalid formula $\forall x. q(x, x)$

- 1. $\mathcal{I} \not\models \forall x.q(x,x)$
- 2. $\mathcal{I} \not\models q(x_0, x_0)$ by (m) on 1
- 3. $\mathcal{I} \not\models q(x_1, x_1)$ by (m) on 1
- 4. $\mathcal{I} \not\models q(x_2, x_2)$ by (m) on 1
- 5. . . .

There is **no strategy** that guarantees termination in **all cases** of invalid formulas This shortcoming is **not specific** to this proof system

FOL is only semi-decidable: you can always show validity but not invalidity

Prenex Normal Form (PNF)

For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas A Σ -formula α is in *prenex normal form* (PNF) if it has the form

$$Q_1x_1. \cdots Q_nx_n.\beta$$

where each Q_i is a quantifier and β is a quantifier-free formula

Formula α above is in *prenex conjunctive normal form* (PCNF) if, **in addition**, β is in **conjunctive normal form**^a

Example: The formula below is in PCNF

$$\forall y. \exists z. ((\underbrace{p(f(y))}_{A_1} \lor \underbrace{q(z)}_{A_2}) \land (\neg \underbrace{q(z)}_{A_2} \lor \underbrace{q(x)}_{A_3}))$$

^aIf we treat every atomic formula of β as if it was a propositional variable

Clausal Form

A Σ -formula is in *clausal form* if

- 1. it is in **PCNF**
- 2. it is **closed** (i.e., it has no free variables)
- 3. all of its quantifiers are universal

Exercise: Which of the following formulas are clausal form?

$$\forall y. \exists z. (p(f(y)) \land \neg q(y, z))$$
 X

$$\forall y. \forall z. (p(f(y)) \land \neg q(x, z))$$

$$\forall y. \forall z. (p(f(y)) \land \neg q(y, z))$$

Clausal Form: transformation

Theorem 3 (Skolem's Theorem):

Any *sentence* can be transformed to an **equi-satisfiable** formula in **clausal form**.

The high level transformation strategy is the following:

Sentence
$$\longrightarrow$$
 PNF \longrightarrow PCNF \longrightarrow Clausal Form

Running example:
$$(\forall x.(p(x) \implies q(x))) \implies (\forall x.p(x) \implies \forall x.q(x))$$

I: Transforming into PNF

Any sentence can be transformed into a *logically equivalent* formula in PNF in 4 steps.

Example Formula

$$(\forall x. (p(x) \implies q(x))) \implies (\forall x. p(x) \implies \forall x. q(x))$$

Step 1: Rename Bound Variables

Rename bounded variables apart so that:

- 1. Bounded variables are disjoint from free variables
- 2. Different quantifiers use different bound variables

$$(\forall x. (p(x) \implies q(x))) \implies (\forall y. p(y) \implies \forall z. q(z))$$

Step 2: Eliminate Implications

Eliminate all occurrences of \implies and \iff using the rewrites:

•
$$\alpha_1 \iff \alpha_2 \longrightarrow (\alpha_1 \implies \alpha_2) \land (\alpha_2 \implies \alpha_1)$$

$$\bullet \ \alpha_1 \implies \alpha_2 \longrightarrow \neg \alpha_1 \lor \alpha_2$$

$$\neg(\forall x. (\neg p(x) \lor q(x))) \lor (\neg \forall y. p(y) \lor \forall z. q(z))$$

Step 3: Push Negations Inward

Use the rewrites:

$$\bullet \neg (\alpha \land \beta) \longrightarrow \neg \alpha \lor \neg \beta, \quad \neg (\alpha \lor \beta) \longrightarrow \neg \alpha \land \neg \beta$$

$$\bullet \neg \forall \mathbf{v}. \alpha \longrightarrow \exists \mathbf{v}. \neg \alpha, \quad \neg \exists \mathbf{v}. \alpha \longrightarrow \forall \mathbf{v}. \neg \alpha$$

$$\bullet \neg \neg \alpha \longrightarrow \alpha$$

$$\exists x. (p(x) \land \neg q(x)) \lor (\exists y. \neg p(y) \lor \forall z. q(z))$$

Step 4: Move Quantifiers Outward

Move all quantifiers leftwards using the rewrites:

- $\alpha \bowtie Qv.\beta \longrightarrow Qv.(\alpha \bowtie \beta)$ (ok if v not free in α)
- $(Qv.\alpha) \bowtie \beta \longrightarrow Qv.(\alpha \bowtie \beta)$ (ok if v not free in β)

where $Q \in \{ \forall, \exists \}$ and $\bowtie \in \{ \land, \lor \}$

$$\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$$

II: Transforming into PCNF

Transforming a PNF to a **logically equivalent** PCNF is straightforward We apply the **distributive laws** from propositional logic

$$\exists x. \forall z. \exists y. ((p(x) \land \neg q(x)) \lor (\neg p(y) \lor q(z)))$$

becomes

$$\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$$

This formula contains existentials and is therefore not yet in clausal form

III: Transforming into Clausal Form (Skolemization)

$$\exists x. \forall z. \exists y. ((p(x) \lor \neg p(y) \lor q(z)) \land (\neg q(x) \lor \neg p(y) \lor q(z)))$$

For every **existential quantifier** $\exists v$ in the PCNF, let u_1, \ldots, u_n be the **universally quantified** variables **preceding** $\exists v$,

- 1. introduce a **fresh** function symbol f_v with arity n and $\langle \text{sort}(u_1), \dots \text{sort}(u_n), \text{sort}(v) \rangle$
- 2. delete $\exists v$ and replace every occurrence of v by $f_v(u_1, \ldots, u_n)$

For the formula above, introduce **nullary** function (i.e., a constant) symbol f_x and **unary** function symbol f_y for $\exists x$ and $\exists y$, respectively

$$\forall z. ((p(f_x) \vee \neg p(f_y(z)) \vee q(z)) \wedge (\neg q(f_x) \vee \neg p(f_y(z)) \vee q(z)))$$

The functions f_v are called *Skolem functions* and the process of replacing existential quantifiers by functions is called *Skolemization*

Note: Technically, the resulting formula is no longer a Σ -formula, but a Σ_E -formula, where $\Sigma_E^S = \Sigma^S$ and $\Sigma_E^F = \Sigma^F \cup \bigcup_v \{ f_v \}$

Clausal forms as clause sets

As with propositional logic, we can write a formula in **clausal form unambiguously** as a set of clauses

Example:

$$\forall z. ((p(f(z)) \vee \neg p(g(z)) \vee q(z)) \wedge (\neg q(f(z)) \vee \neg p(g(z)) \vee q(z)))$$

can be written as

$$\Delta := \{ \{ p(f(z)), \neg p(g(z)), q(z) \}, \{ \neg q(f(z)), \neg p(g(z)), q(z) \} \}$$

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal form

Recall: The satisfiability proof system consisting of the rules below is **sound**, **complete** and **terminating** for clause sets in PL

Resolve
$$\frac{C_1,\,C_2\in\Delta\quad p\in C_1\quad \neg p\in C_2\quad C=(C_1\setminus\{\,p\,\})\cup(C_2\setminus\{\,\neg p\,\})\quad C\notin\Delta\cup\Phi}{\Delta:=\Delta\cup\{\,C\,\}}$$

Clash
$$C \in \Delta$$
 $p, \neg p \in C$ $\Delta := \Delta \setminus \{C\}$ $\Phi := \Phi \cup \{C\}$

Unsat
$$\frac{\{\} \in \Delta}{\text{UNSAT}}$$
 Sat $\frac{\text{No other rules apply}}{\text{SAT}}$

Can we **extend** this proof system **to FOL**?

Resolve
$$\frac{\textit{C}_1,\textit{C}_2 \in \Delta \quad \textit{p} \in \textit{C}_1 \quad \neg \textit{p} \in \textit{C}_2 \quad \textit{C} = (\textit{C}_1 \setminus \{\textit{p}\}) \cup (\textit{C}_2 \setminus \{\neg\textit{p}\}) \quad \textit{C} \notin \Delta \cup \Phi}{\Delta := \Delta \cup \{\textit{C}\}}$$

Clash
$$C \in \Delta$$
 $p, \neg p \in C$ $\Delta := \Delta \setminus \{C\}$ $\Phi := \Phi \cup \{C\}$ Unsat $\{\} \in \Delta$ Unsat

Consider the FOL clause set below where x, z are variables and a is a constant symbol

$$\Delta := \{ \{ \neg P(z), Q(z) \}, \{ P(a) \}, \{ \neg Q(x) \} \}$$

Note that Δ is equivalent to $\forall z. (P(z) \implies Q(z)) \land P(a) \land \forall x. \neg Q(x)$, which is unsatisfiable

However, no rules above apply to Δ . We need another rule to deal with variables

Resolve
$$\frac{C_1, C_2 \in \Delta \quad p \in C_1 \quad \neg p \in C_2 \quad C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\}) \quad C \notin \Delta \cup \Phi }{\Delta := \Delta \cup \{C\}}$$

$$\frac{C \in \Delta \quad p, \neg p \in C}{\Delta := \Delta \setminus \{C\} \quad \Phi := \Phi \cup \{C\}} \quad \text{Inst} \quad \frac{C \in \Delta \quad v \in \mathcal{FV}(C) \quad \text{sort}(t) = \text{sort}(v)}{\Delta := \Delta \cup \{C[v \leftarrow t]\}}$$

$$\text{Unsat} \quad \frac{\{\} \in \Delta}{\text{UNSAT}} \quad \text{Sat} \quad \frac{\text{No other rules apply}}{\text{SAT}}$$

Example: $C_1 : \{ \neg P(z), Q(z) \}$ $C_2 : \{ P(a) \}$ $C_3 : \{ \neg Q(x) \}$

Φ	Δ	
{ }	$\{ C_1, C_2, C_3 \}$	
{ }	$\{ C_1, C_2, C_3, C_4: \{\neg P(a), Q(a)\} \}$	by Inst on C_1 with $z \leftarrow a$
{ }	$\{ C_1, C_2, C_3, C_4, C_5: \{Q(a)\} \}$	by Resolve on C_2 , C_4
{ }	$\{ C_1, C_2, C_3, C_4, C_5, C_6: \{\neg Q(a)\} \}$	by Inst on C_3 with $x \leftarrow a$
{ }	$\{ C_1, C_2, C_3, C_4, C_5, C_6, C_7: \{ \} \}$	by Resolve on C_5 , C_6
	UNSAT	by Unsat on C_7

This system is **refutation-sound and complete** for FOL clause sets **without equality**:

If a clause set Δ_0 is unsatisfiable, there is a derivation of UNSAT from Δ_0

The system is also **solution-sound**:

There is a derivation of SAT from Δ_0 only if Δ_0 is satisfiable

The system is **not**, and cannot be, **terminating**:

if Δ_0 is satisfiable, it is possible for **Sat** to never apply

Note: This proof system is challenging to implement efficiently because **Inst** is not constrained enough

Automated theorem provers for FOL use instead a more sophisticated **Resolve** rule

where two literals in different clauses are instantiated directly, and only as needed, to make them complementary (see ML Chap. 10)

Example: $\{P(x, y), Q(\mathbf{a}, f(y))\}, \{\neg Q(\mathbf{z}, f(b)), R(g(\mathbf{z}))\}\$ resolve to $\{P(x, b), R(g(\mathbf{a}))\}$

Problem: How do we prove the unsatisfiability of these clause sets?

$$\{ \{x \doteq y\}, \{\neg(y \doteq x)\} \} \quad \{ \{x \doteq y\}, \{y \doteq z\}, \{\neg(x \doteq z)\} \} \quad \{ \{x \doteq y\}, \{\neg(f(x) \doteq f(y))\} \}$$

We need specialized rules for equality reasoning!

Another Problem: How to we prove the unsatisfiability of these clause sets?

$$\{ \{x < x\} \}$$

$$\{ \{x < y\}, \{y < z\}, \{\neg(x < z)\} \}$$

$$\{ \{\neg(x + y \doteq y + x)\} \}$$

$$\{ \{\neg(x + 0 \doteq x)\} \}$$

The thing is: each of these clause set is actually satisfiable in FOL!

However, they are unsatisfiable in the theory of arithmetic

We need proof systems for satisfiability modulo theories

$$\frac{I \in C_1 \quad \neg I \in C_2 \quad C_1, C_2 \in \Delta}{\Delta \cup \{(C_1 - \{I\}) \cup (C_2 - \{\neg I\})\}}$$
 (prop. resolution)

where I is a literal (i.e., an atomic formula or its negation).

Now consider $\Delta := \{ \{ \neg Pz, Qz \}, \{ Pa \}, \{ \neg Qa \} \}$, where z is a *universally* quantified variable, and a is a constant.

Is P z equal to P a? No, but they are equal if z = a

We can instantiate the literals to make them equal and then perform resolution

First-order resolution: Unification

A substitution θ is a map from *variables* to *well-sorted terms* (of matching sorts)

Note: we assume the *terms* do not contain any variables

We write $t\theta$ for the result we get by replacing variables in t according to θ

Example: Let $\theta:=\{z\mapsto a\}$, then $(p(g(z,z)))\theta=p(g(a,a))$

We use $\{I_1, \ldots, I_n\}\theta$ to represent $\{I_1\theta, \ldots, I_n\theta\}$

A substitution θ is a *unifier* of two terms s and t if $t\theta = s\theta$

Can there be more than one unifier of two terms? Yes. Consider p(x) and p(f(y)) we can have x = f(a), y = a, x = f(f(a)), y = f(a) etc.

Can there be no unifier of two terms? Yes. Consider p(x) and q(y)

Now we can write first-order resolution as

$$\frac{l_1 \in C_1 \quad \neg l_2 \in C_2 \quad C_1, C_2 \in \Delta \quad \theta \text{ is a unifier of } l_1, l_2}{\Delta \cup \{(C_1 - \{l_1\}) \cup (C_2 - \{\neg l_2\})\}\theta}$$
 (First-order resolution)

Example: $\{\neg P z, Q z\}, \{P a\}, \{\neg Q a\}$

Now we can write first-order resolution as

$$\frac{l_1 \in C_1 \quad \neg l_2 \in C_2 \quad C_1, C_2 \in \Delta \quad \theta \text{ is a unifier of } l_1, l_2}{\Delta \cup \{(C_1 - \{l_1\}) \cup (C_2 - \{\neg l_2\})\}\theta}$$
 (First-order resolution)

Example

$$\frac{\{\neg P \, z, \, Q \, z\}, \{P \, a\}, \{\neg Q \, a\}}{\{\neg P \, z, \, Q \, z\}, \{P \, a\}, \{\neg Q \, a\}, \{Q \, a\}} (\theta := \{z \mapsto a\} \text{ unifies } P \, z \text{ and } P \, a)$$

Now we can write first-order resolution as

$$\frac{l_1 \in C_1 \quad \neg l_2 \in C_2 \quad C_1, C_2 \in \Delta \quad \theta \text{ is a unifier of } l_1, l_2}{\Delta \cup \{(C_1 - \{l_1\}) \cup (C_2 - \{\neg l_2\})\}\theta}$$
 (First-order resolution)

Example

$$\frac{\{\neg P \, z, \, Q \, z\}, \{P \, a\}, \{\neg Q \, a\}}{\{\neg P \, z, \, Q \, z\}, \{P \, a\}, \{\neg Q \, a\}, \{\, Q \, a\}} (\theta := \{ \, z \mapsto a \, \} \text{ unifies } P \, z \text{ and } \{P \, a\})}{\{\neg P \, z, \, Q \, z\}, \{P \, a\}, \{\neg Q \, a\}, \{Q \, a\}, \{\}} (\text{Resolve } \{\neg Q \, a\}, \{Q \, a\})$$

Therefore, $\alpha := \forall z. ((\neg P z \lor Q z) \land P a \land \neg Q a)$ is unsatisfiable.

What do we know about $\neg \alpha$?

 $\neg \alpha$ is valid.

This suggests a strategy to *prove* the validity of a Σ -formula α :

- 1. Negate the formula;
- 2. Transform into Clausal Form;
- 3. Apply first-order resolution until an empty clause is derived (might not terminate!)