Satisfiability Modulo Theories
Lecture 3: FOL Proof Systems

Lydia Kondylidou

WS 2025/26



Outline

o Semantic arguments for FOL
o PCNF and Clausal Form

o First-order Resolution



Proofs in first-order logic

Proof systems for FOL are usually extensions of those for PL

For example, we can extend the semantic arguments system by
replacing the truth assignment v with an interpretation Z and
adding proof rules for quantifiers

adding proof rules for equality (for FOL with equality)



Semantic arguments for FOL: propositional rules

T E ~«
@) T W « ITEa = p
by Lo ® T alzEs
T =« (h) ITHFEa = B
IEanp IEaIEB
) IEFoIESP I Ea THa
(d) —FoND ML
ITFal|ZTFER () IFa <=
IEavVvp IFaIEB|IITFITER
(© IEFal|lIESPB _ THa << B
I#EaVvp 2 IFaIEB|IZTETER

(f)

W oallBEpB




Semantic arguments for FOL: quantifier rules

Notation: if v is a variable, ¢ is a term/formula, and t is a term,

denotes
the term/formula obtained from & by replacing every free occurrence of v

in ¢ by t



Semantic arguments for FOL: quantifier rules

Examples:

X

X

x < S (y)]

X =5 (x).

x[x <y

(x=y

V

S (y) (x+y)ix<yl = y+vy
S (x) (x=y)lx+0 = 0=y
y (x=x)[x<S(x)] = S(x)=5(x)

x <y)x <+ S (0)]

(x=y V Vx.x < y)[x < S (y)]

S(0)=y v 5(0)<y

S(y)=y V Vx.x<y



Semantic arguments for FOL: quantifier rules

Quantifier rules

T EVvo. a
T = alv +t]

T W~ dvio. «
M) T o < 1

(0) L7 0 ¢ bresh variable k of
(@)
T ’: O([V — k] or a rresn variabpnie Oof sort o

T EVvio. a

(p) T W alv < ] for a fresh variable k of sort o

(m)

for any term t of sort o

for any term t of sort o




Proof by deduction: Example 1

Prove that dx. P(x) = dy.P(y) is valid

1. Z ¥ 3dx. P(x) —
3y P(y)

. Z E=3dx.P(x) by (h)onl
~ Jdy. P(y) by (h) on1l
— P(x0) by (o) on 2
£~ P(x0) by (n) on 3
— | by (i)on 4,5

oG AW N
NN NN




Proof by deduction: Example 2

Prove that Vx.(P(x) = dy.P(y)) is valid

1. T K~ Vx.(P(x) —
Jy. P(y))

2. T = P(x) = dy.P(y)
by (p) on 1

= P(xo) by (h) on 2

~ dy.P(y) by (h) on 2

£~ P(x0) by (n) on 4

= | by (i)on3,5

S 0 kRw
NN NN




Proof by deduction: Example 3

Consider signature ¥ with ¥> = {A}, ¥ ={Q}, rank(Q)
all vars of sort A

(A, A, Bool), and

Prove that dx.Vy. Q(x,y) = Vy.dx. Q(x,y) is valid

1. T K~ IxVy.Q(x,y) —
Vy.3x.Q(x, y)

7 = 3IxVy.Q(x,y) by (h)on1l
T ¥~ Vy.3x.Q(x,y) by (h) on1
Z =Vy.Q(xo0,y) by (o) on?2

T B~ Ix.Q(x,y) by (p) on3

7 = Q(x0,y0) by (m)on 4

7 = Q(x0, y0) by (n) on5

Z k=L by (i)on6,7

© NS OoRE WD



Refutation Soundness and Completeness

Theorem 1 (Soundness):
For all X-formulas «, if there is a closed derivation tree with root Z = «

then « is valid

Theorem 2 (Completeness):
For all 2 -formulas o without equality, if « is valid, then there is a closed

derivation tree with root 7 (= «

11



Termination?

Does the semantic argument method describe a decision procedure then?

No, for an invalid formula, the semantic argument proof system might not

terminate

Intuition: Consider the invalid formula Vx. g(x, x)

1.
2.

N NN

3
4.
5

Z

£ Vx.q(x, x)
£ q(xo0, X0) by (m) on 1
~ q(x1,x1) by (m)on 1

7 q(x2, x2) by (m) on 1

There is no strategy that guarantees termination in all cases of invalid formulas

This shortcoming is not specific to this proof system

FOL is only semi-decidable: you can always show validity but not invalidity

12



Prenex Normal Form (PNF)

For AR purposes, it is useful in FOL too impose syntactic restrictions on formulas
A Y-formula « is in prenex normal form (PNF) if it has the form

lel- T Qan- B
where each Q; is a quantifier and 3 is a quantifier-free formula

Formula a above is in prenex conjunctive normal form (PCNF) if, in addition,
B is in conjunctive normal form®

Example: The formula below is in PCNF

vy, 3z. (P(F () v a@) A (5 @A a0)))

2lf we treat every atomic formula of 3 as if it was a propositional variable

13



Clausal Form

A Y -formula is in clausal form if

1. itisin PCNF
2. it is closed (i.e., it has no free variables)

3. all of its quantifiers are universal

Exercise: Which of the following formulas are clausal form?

Vy.3z. (p(f(y)) A—qly,z)) X
Vy.Vz.(p(f(y)) A —aq(x, z)) X
Vy.Vz. (p(f(y)) A —=q(y, z))

14



Clausal Form: transformation

Theorem 3 (Skolem’s Theorem):

Any sentence can be transformed to an equi-satisfiable formula in clausal

form.

The high level transformation strategy is the following:

Sentence — PNF — PCNF — C(lausal Form

Running example: (Vx.(p(x) = gq(x))) = (Vx.p(x) =
Vx.q(x))

15



I: Transforming into PNF

Any sentence can be transformed into a logically equivalent formula in PNF
In 4 steps.

Example Formula

(Vx.(p(x) = q(x))) = (Vx.p(x) = Vx.q(x))

16



Step 1: Rename Bound Variables

Rename bounded variables apart so that:
1. Bounded variables are disjoint from free variables

2. Different quantifiers use different bound variables

(Vx. (p(x) = q(x))) = (Vy.ply) = Vz.q(2))

17



Step 2: Eliminate Implications

Eliminate all occurrences of = and <= using the rewrites:
o (V] <— ()42%(&1 — CVQ)/\(OQ — 041)

® ] —> Qi — 1 V Q9

~(Vx. (=p(x) V q(x))) V (=Vy. p(y) V Vz. q(2))

18



Step 3: Push Negations Inward

Use the rewrites:
e ~(aNpB)— ~aV-8 —(aVp)— ah-p
o Vv.ao — dv.—«, —dv.a — Vv.«

® 1 () —> (Y

Ix. (p(x) A —q(x)) vV (Jy. =p(y) V Vz. q(2))

19



Step 4: Move Quantifiers Outward

Move all quantifiers leftwards using the rewrites:
o < Qu.f — Qv.(axB) (okif v not free in «)
o (Qv.a)xff— Qv.(axxfB) (ok if v not free in ()
where Q € {V,3} and € {A, V}

Ix.Vz. Ay. ((p(x) A =q(x)) V (=p(y) V q(2)))

20



II: Transforming into PCNF

Transforming a PNF to a logically equivalent PCNF is straightforward

We apply the distributive laws from propositional logic

Ix.Vz. Jy. ((p(x) A =q(x)) V (=p(y) V q(2)))

becomes

Ix.Vz. Jy. ((p(x) vV =p(y) V q(2)) A (=q(x) V =p(y) V q(2)))

This formula contains existentials and is therefore not yet in clausal form

21



l1l: Transforming into Clausal Form (Skolemization)

Ix.Vz. 3y. ((p(x) V =p(y) V q(2)) A (—a(x) V —p(y) V q(2)))

For every existential quantifier 9v in the PCNF, let uq, ..., u, be the universally
quantified variables preceding Jv,

1. introduce a fresh function symbol f, with arity n and (sort(u1), . .. sort(u,), sort(v))

2. delete dv and replace every occurrence of v by f,(u1, .. ., Un)

For the formula above, introduce nullary function (i.e., a constant) symbol £, and
unary function symbol f, for 3x and Jy, respectively

vz. ((p(f) vV =p(f(2)) V a(2)) A (=q(f) V —p(£(2)) V q(2)))

The functions f, are called Skolem functions and the process of replacing
existential quantifiers by functions is called Skolemization

Note: Technically, the resulting formula is no longer a X-formula, but a > g-formula, where Zg —¥°
and ;. =¥ " UU,{f}

22



Clausal forms as clause sets

As with propositional logic, we can write a formula in clausal form
unambiguously as a set of clauses

Example:
Vz.((p(f(z)) V —p(g(2)) V q(z2)) A (—q(f(2)) V —p(g(2)) V q(2)))
can be written as

A= 1{p(f(2)), ~p(&(2)) a(2)}, {~q(f(2)), ~p(g(2)). a(2)} }

where all variables are implicitly universally quantified

Traditionally, theorem provers for FOL use the latter version of the clausal
form

23



A resolution-based proof system for PL

Recall: The satisfiability proof system consisting of the rules below is sound,
complete and terminating for clause sets in PL

G, GeA peCG —peC C=(GN\{pHU(G\{—-p}) CgAUP

Resolve
A:=AU{C}
CeA —p e C
Clash PP
A=A\{C} d:=0U{C}
c A No other rules appl
Unsat ) Sat PP
UNSAT SAT

Can we extend this proof system to FOL?

24



A resolution-based proof system for FOL?

C,GeA peC —peC C=(G\{pHU(G\{—-p}) C&AUP
Resolve

A=AU{C}

CeA ,—p € C c A
Clash p. P Unsat i

A=A\{C} d:=0U{C} UNSAT
No other rules apply

Sat

SAT

Consider the FOL clause set below where x, z are variables and a is a constant symbol
A= {{=P(z), Q(2)},{P(a)}, {—Q(x)} }

Note that A is equivalent to Vz.(P(z) = Q(z)) A P(a) A ¥x.—Q(x), which is
unsatisfiable

However, no rules above apply to A. We need another rule to deal with variables

25



A resolution-based proof system for FOL

CLGEA pcC —-peC C=(G\{pHU(G\{-p}) C¢AUD

Resolve
A:=AU{C}
CeA p—peC CeA veFV(C) sort(t) =sort(v)
Clash Inst
A=A\{C} d:=0uU{C} A= AU{C[v « t]}
Unsat {} e A Sat No other rules apply

UNSAT SAT

26



A resolution-based proof system for FOL

Example: G : {—-P(2),Q(z2)} G :{P(a)} G :{-Q(x)}

é | A

{} 1 {G, &G, G}

(Y1 {G, G, G, G:{=P(a),Q(a)} } | by Inst on Ci with z < a

{1 {G, G, G, G, GH{Q(a)} } by Resolve on G, G,

{1 {G, G G,G, G, G:{—Q(a)} } | by Inst on G5 with x < a

{}11G G, G, G, G, G, G:{} } by Resolve on Gs, Gs
UNSAT by Unsat on (;

27



A resolution-based proof system for FOL

This system is refutation-sound and complete for FOL clause sets without
equality:

If a clause set Ay is unsatisfiable, there is a derivation of UNSAT from Ay

The system is also solution-sound:

There is a derivation of SAT from Ag only if Ag is satisfiable
The system is not, and cannot be, terminating:

if Ag is satisfiable, it is possible for Sat to never apply

Note: This proof system is challenging to implement efficiently because Inst is
not constrained enough

28



A resolution-based proof system for FOL

Automated theorem provers for FOL use instead a more sophisticated Resolve
rule

where two literals in different clauses are instantiated directly, and only as needed,
to make them complementary (see ML Chap. 10)

Example: {P(x, y), Q(a, f(y))}, {~Q(z f(b)), R(g(2))} resolve to { P(x, b), R(g(a))}

Problem: How do we prove the unsatisfiability of these clause sets?

Ix=yh -y =x)}1} {ix=yhiy=zhi-x=2)}} {{Ix=yhA2(f(x) =f(y)}}

We need specialized rules for equality reasoning!

29



A resolution-based proof system for FOL

Another Problem: How to we prove the unsatisfiability of these clause sets?

H{x <x}}

H{x <yidy <zhi~x<2)}}
{{-x+y=y+x);;
{H{~(x+0=x)}}

The thing is: each of these clause set is actually satisfiable in FOL!
However, they are unsatisfiable in the theory of arithmetic

We need proof systems for satisfiability modulo theories

30



First-order resolution

le (G -leCG G,GeA
AU{(G—-{I})Uu(G—-{~1})}

where | is a literal (i.e., an atomic formula or its negation).

(prop. resolution)

Now consider A := {{=Pz, Qz},{Pa},{—-Qa}}, where z is a universally
quantified variable, and a is a constant.

Is Pz equal to P a? No, but they are equal if z = a

We can instantiate the literals to make them equal and then perform resolution

31



First-order resolution: Unification

A substitution 6 is a map from variables to well-sorted terms (of matching sorts)
Note: we assume the terms do not contain any variables

We write tf for the result we get by replacing variables in t according to 0
Example: Let 0 .= {z — a} , then (p(g(z, 2)))0 = p(g(a, a))

We use {h,...,,}0 to represent {40, ..., 1,0}

A substitution 6 is a unifier of two terms s and t if t0 = sf

Can there be more than one unifier of two terms? Yes. Consider p(x) and p(f(y))
we can have x = f(a), y = a, x = f(f(a)), y = f(a) etc.

Can there be no unifier of two terms? Yes. Consider p(x) and q(y)

32



First-order resolution

Now we can write first-order resolution as

heC —heCG CG,GeA 0isaunifierof Iy, b

AU(G ={h})U(G—-{~h})}0
Example: {=Pz, Qz},{Pa}, {—-Q a}

(First-order resolution)

33



First-order resolution

Now we can write first-order resolution as

heC —heCG CG,GeA 0isaunifierof Iy, b
AU{(G—{h}HU(CG—{~k})}0

(First-order resolution)

Example

{=Pz Qz}, {Pa},{-Qa}
{=Pz Qz} {Pa}, {-Qa}

(0 :={z+> a} unifies Pz and P a)

34



First-order resolution

Now we can write first-order resolution as

he GG —-LelG C,GeA 0isaunifierof Iy, b
AU{(G—{h})U(G—{~h})}0

Example

{=Pz Qz},{Pa},{-Q a}
{-Pz Qz} {Pa},{—Qa},
{-Pz, Qz} {Pa}, {-Qa},{Qa},

Therefore, a :=Vz.((-PzV Qz) A PaA —=Q a) is unsatisfiable.

(First-order resolution)

(0 :={z+> a} unifies Pz and {P a})
(Resolve {—Q a},{Q a})

What do we know about —«a?

-« Is valid.

35



First-order resolution

This suggests a strategy to prove the validity of a X-formula «:
1. Negate the formula;

2. Transform into Clausal Form:

3. Apply first-order resolution until an empty clause is derived (might not

terminate!)

36



