Satisfiability Modulo Theories
Lecture 2: SAT Solving

Lydia Kondylidou

WS 2025/26

Decision procedures for propositional logic

From now on, instead of wffs, we consider only their clausal form (clause sets)

Observe:
Each clause /1 V --- V I, can be itself regarded as a set, of literals: { h,...,/,}

A set of clauses is satisfiable iff there is an interpretation of its variables that
satisfies at least one literal in each clause

Decision procedures for propositional logic

Example:

The clause set A := {p1 V p3, =p1 V p2 V —p3 } can be represented as
{ {Pl, P3 } {_‘Pl, P2, 7 P3 } }

v :={ p1 — true, pp — true, p3 — false } is a satisfying assignment for A
Observe:
The empty clause set is trivially satisfiable (no constraints to satisfy)

The empty clause is trivially unsatisfiable (no options to choose)

SAT Solver Overview: features

Automated reasoners for the satisfiability problem in PL are called SAT solvers

There are two main categories of modern SAT solvers, both working with clause
sets:

1. Backtracking search solvers
Traversing and backtracking on a binary tree

Sound, complete and terminating

2. Stochastic search solvers
Solver guesses a full assignment v
If the set is falsified by v, starts to flip values of variables according to some (greedy) heuristic
Sound but neither complete nor terminating

Nevertheless, quite effective in certain applications

We focus on backtracking solvers in this course

SAT Solver Overview: performance

The SAT problem is hard (NP-complete). How well do SAT solvers do in

practice?

Modern SAT solvers can solve many real-life CNF formulas with hundreds of

thousands or even millions of variables in a reasonable amount of time

There are also instances of problems two orders of magnitude smaller that the

same tools cannot solve

In general, it is very hard to predict which instance is going to be hard to solve,

without actually attempting to solve it

SAT portfolio solvers: use machine-learning techniques to extract features of
CNF formulas in order to select the most suitable SAT solver for the job

SAT Solver Overview: performance

Success of SAT solvers can largely be attributed to their ability to:

Learn from failed assignments
Prune large parts of the search spaces quickly

Focus first on important variables

The DIMACS format

A standard format for clause sets accepted by most modern SAT solvers
Comment lines: Start with a lower-case letter ¢

Problem line: p cnf <#variables > <#clauses >

Clause lines:
Each variable is assigned a unique index i greater than 0
A positive literal is represented by an index
A negative literal is represented by the negation of its complement’s index
A clause is represented as a list of literals separated by white space

Value 0 is used to mark the end of a clause

The DIMACS format

Example:

{p1V=ps, p2VpsV-ps}

c example.cnf
pcnf 32
1-30
23-10

Basic SAT solvers

1960: Davis-Putnam (DP) algorithm

1961: Davis-Putnam-Logemann-Loveland (DPLL) algorithm

1996: Modern SAT solver based on Conflict-Driven Clause Learning (CDCL)
derived from DP and DPLL

A proof system for clause sets: resolution

There is a refutation sound and complete proof system for clause sets A
that consists of just one proof rule!

- CLGEA peG —peC C=(G\{pHU(G\{-p}) C¢A
esolve

AU{C)

Clause C is a (p-)resolvent of Ci and (;, and p is the pivot

Example: A := {{p1, ps}, {p2, =p3} } has a ps-resolvent: {p1, p2}
Note: if C is a resolvent of G, (; € A then {G, G} =C so A= AU{C}

10

Proofs by resolution example

Prove that the following clause set is unsatisfiable

{{p1

,Pz},{Pl,

ﬁpz}, {_‘Pl

,P3}, {_‘Pl,

—p3} }

{{p1

,Pz},{Pl,

ﬁpz}, {_‘Pl

,P3}, {_‘Pl,

“P3j. Pt}

{{p

,Pz},{Pl,

ﬁpz}, {_‘Pl

,P3}, {_‘Pl,

—ps}, {p1}, {p3} }

{{p

,Pz},{Pl,

ﬁpz}, {_‘Pl

,P3}, {_‘Pl,

—ps}, {pi}, Apst {—ps}}

{{p

,Pz},{Pl,

ﬁpz}, {_‘Pl

,P3}, {_‘Pl,

—-ps}, {pi}. {ps}. {—-ps}. {}}

The last clause set is unsatisfiable since it contains the empty clause {}

Since every clause set entails the next, it must be that the first one is

unsatisfiable

11

A resolution-based satisfiability proof system

In addition to the SAT and UNSAT states, we consider states of the form

(A, @)

with A and ® clause sets

Initial states have the form

(Do, 1)

where g is the clause set to be checked for satisfiability

12

A resolution-based satisfiability proof system

We modify the resolution rule Resolve and add three more rules

G, GeA peG —peCG C=(G\{pHU(G\{—-p}) CgAUP

Resolve
A :=AU{C}
CeA —p e C
Clash PP
A=A\{C} d:=0U{C}
c A No other rules appl
Unsat) Sat PP
UNSAT SAT

This proof system is sound, complete and terminating

13

A resolution-based decision procedure

Given a clause set A, apply Clash or Resolve until either
1. an empty clause is derived (return UNSAT)

2. neither applies (return SAT)

This procedure is terminating and decides the SAT problem

14

Unit resolution

Notation (

-p if [=p

If | is a literal and p is its variable, =/
p if I=-p

\
The unit resolution rule is a special case of resolution where one of the resolving

clauses is a unit clause, i.e., a clause with only one literal

G, GeA Clz{/} C2:{7}UD
AU{D)}

Unit Resolve

A proof system with unit resolution alone is not refutation-complete
(consider an unsat A with no unit clauses)

Modern SAT solvers use unit resolution plus backtracking search for deciding
SAT

15

Davis-Putnam (DP) procedure

A decision procedure for the SAT problem

DP leverages 4 satisfiability-preserving transformations:
o Unit propagation
o Pure literal elimination
o Tautology elimination

o Exhaustive resolution

The first two transformations reduce the total number of literals in the clause set

The third transformation reduces the number of clauses Repeatedly applying
these tranformations, eventually leads to

an empty clause (indicating unsatisfiability) or

an empty clause set (indicating satisfiability)

16

DP procedure: unit propagation

Also called the I-literal rule
Premise: The clause set A contains a unit clause C = {/}
Conclusion:

Remove all occurrences of / from clauses in A
Remove all clauses containing / (including C)

Justification: The only way to satisfy C is to make / true; thus, (i) | cannot be
used to satisfy any clause, and (ii) any clause containing / is satisfied and can be

ignored

17

DP procedure: unit propagation

Example:

Do :={{p1},{pP1.ps},{P2,p3,—p1}}
Ay :={{ps},{p2.p3}}
Dy :={{p2,p3}}

(unit propagation on p;)

(unit propagation on pa)

18

DP procedure: pure literal elimination

Also called the affirmation-negation rule

Premise: A literal / occurs in A but / does not Conclusion: Delete all clauses
containing /

Justification: For every assignment that satisfies A there is one that satisfies

both A and /; thus, all clauses containing / can be deleted since they can always
be satisfied

Example:

Do :={{p.p2,—p3} {-p.pa} {-p3, P2}, {—p3,—ps}}
Ay :={{-p1,ps}}

19

DP procedure: tautology elimination

Also called the clashing clause rule
Premise: a clause C € A contains both p and —p
Conclusion: remove C from A

Justification: C is satisfied by every variable assignment

20

DP procedure: resolution

Also called the rule for eliminating atomic formulas

Premise: A variable p occurs in a clause of A and —p occurs in another clause
Conclusion:

Let P be the set of clauses in A where p occurs positively and
let N be the set of clauses in A where p occurs negatively

Replace the clauses in P and N with those obtained by resolution on p

using all pairs of clauses from P x N
Example:
Ao :={{p,p2},{-p..p3}, {p1,7p3.ps }, { P2, —pa}}

Ar:={{p2.ps} . {p2ps.ps}, { P2, 7ps}} (resolution on p1)

21

DP Example 1

A = { {p1, P2, Ps}, {P2, —p3, ﬁP6}' {ﬁP2' P5} }

Res p»

Res ps3

PL p1

SAT

{p1, P2, p3} {p2,—2p3,—ps} {—p2,ps}

\

{p1.p3.ps} { —ps, —ps, ps }
{p1,ps, —ps }

L

22

DP Example 2

A = { {pl, pz}, {pl, —'Pz}, {_'Pl, P3}, {_'Pl, ﬂP3} }

Res po {pr.p2} {p1,—p2} {—p1.p3} {—p1, —ps3}
UP p; {pr} {-p1.p3} {—p1,—p3}
Res ps3 {p3} {—p3}

W/

UNSAT {}

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution?

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

24

From DP to DPLL

The resolution transformation does not increase the number of variables
However, it may increase the size of the clause set

Question: If a variable appears positively in 3 clauses and negatively in 3 clauses,
how many clauses after applying resolution? 9

In the worst case, the resolution transformation can cause a quadratic expansion
each time it is applied

For large enough formulas, this can quickly exhaust the available memory

25

From DP to DPLL

The DPLL procedure improves on DP by replacing resolution with splitting:

1. Let A be the input clause set
2. Arbitrarily choose a literal / occurring in A

3. Recursively check the satisfiability of AU { {/} }

4. If result is SAT, return SAT frm-e Otherwise, recursively check the satisfiability
of AU {{—/}} and return that result

26

The Original DPLL Procedure

Modern SAT solvers are based on an extension of the DPLL procedure
DPLL tries to build incrementally a satisfying assignment M for a clause set A

M is grown by
deducing the truth value of a literal from M and A, or
guessing a truth value

If a wrong guess for a literal leads to an inconsistency,
the procedure backtracks and tries the opposite value

27

DPLL as a Proof System

To facilitate a deeper look at DPLL, we present it as a proof system: Abstract

DPLL

The proof system is a re-elaboration of those in [1,2]

[1] Nieuwenhuis et al, “Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).",
Journal of the ACM, 53(6).

[2] Krsti¢ and Goel, “Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL."”, FroCos 2007.

28

Abstract DPLL: A Proof System for DPLL

States:
UNSAT (M, A)

where

M is a sequence of literals and decision points e
denoting a partial variable assignment

A is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set Provided M contains no
complementary literals it determines the assignment

(true if peM
vm(p) =< false ifpeM

\ undef otherwise

29

Abstract DPLL: A Proof System for DPLL

Notation: If M = My e M; e --- ¢ M,, where each M; contains no decision points
M; is decision level i of M

MU denotes the subsequence My e - - - @ M;, from decision level 0 to decision
level |

Initial state:

(€, Ag), where € is the empty assignment and A is to be checked for
satisfiability

Expected final states:
UNSAT if Ag is unsatisfiable

(M, A,) otherwise, where A, is equisatisfiable with Ay and satisfied by M

30

Some clause terminology

Notation / denotes the complement of I, that is, =/ if | is a variable, and p if /

Is —p

Given a partial assignment: v := { p1 — true, p» — false, ps — true}

o clause {p1, p3, p,} is satisfied by v

o clause {p;, p2} is conflicting with v
o clause {p;, p3, P, } is unit in v

o clause {p;, p3, ps} is unresolved by v
o variable p; is assigned in v

o variable ps is unassigned in v

Abstract DPLL proof rules: extending the assignment

Propagate M — M]

Deduce the value of unassigned literal in unit clauses

The clause {h, -, 1,1} is the antecedent clause of I, denoted by

Antecedent(l)

b [literal of A I not literal of A [, 1 ¢ M
Hre M:=M |

Make a pure literal true

32

Abstract DPLL proof rules: extending the assignment

| e LA I,1 ¢ M
M:=Me/

Decide
Guess a truth value for an unassigned literal

Notation: LA := {/ |/ literal of A} U {/ |/ literal of A}

| is a decision literal of the new M

33

Abstract DPLL proof rules: repairing the assighment

{/1,...,/,7}EA 71,...,/n€|\/| M= M, el M, 0§§M2

Backtrack =

M:= M; |
There is a conflicting clause and a decision point to backtrack to
Backtrack over last decision point and add complement of decision literal

Note: Premise @ ¢ N enforces chronological backtracking

{/1,...,/,,}EA 71,...,/nEM 0§§M

Fail UNSAT

There is a conflicting clause and no decision points to backtrack to
Conclude that clause set is unsatisfiable

34

The DPLL proof system

Propagate
| literal of A I not literal of A [,1¢ M
M:=M/

| or | occurs in A [,1 ¢ M
M:=Me/

Pure

Decide

{/1 /n}EA 71 7,«,EM M=M;el M

o & M,

Backtrack . —

35

Transforming DPLL to Resolution

The search procedure of DPLL can be reduced a posteriori to a resolution proof

(a sequence of applications of resolution rules)

36

DPLL Shortcomings

OK for randomly generated CNFs, but not for practical ones. Why?

No learning: throws away all work performed to conclude that current
assignment is bad

Revisits bad partial assignments leading to conflicts due to the same root cause

Chronological backtracking: backtracks only one level, even if it can be

concluded that the current partial assignment became doomed at a lower level

Naive decisions: picks an arbitrary variable to branch on

Fails to consider the state of the search to make heuristically better decisions

37

Conflict-Driven Clause Learning (CDCL)

Learning: A is augmented with a conflict clause that summarizes the root cause
of the conflict

Non-chronological backtracking: can backtrack several levels, based on the cause
of the conflict (conflict-driven backjumping)

Decision heuristics: chooses the next literal to add to the current assignment
based on the current state of the search

38

From DPLL to CDCL Solvers

To model conflict-driven backjumping and learning, we add a third component C
to states whose value is either no or a clause C, the conflict clause

States:
UNSAT (M, A, C)

Initial state:

(€, Ag,no), where Ay is to be checked for satisfiability

Expected final states:
UNSAT if Ag is unsatisfiable

(M, Ap, no) otherwise, where A, is equisatisfiable with Ay and satisfied by M

39

From DPLL to CDCL Solvers

Replace Backtrack with three rules:

Conflict

There is no conflict clause but a clause of A is falsified by M

So we set C to be that clause

40

From DPLL to CDCL Solvers

C={nuc {h,....I,1 e Ii,....0,1EM

71,...,/n-<|\/|/

Explain
xPl C={h, .. . ItucC

| <pm I” iff | occurs before I’ in M

A contains a clause D = {#h, ..., ln,7} such that
1. /is in the conflict clause and is falsified by M

2. h,---, 1, are all falsified by M before /

We derive a new conflict clause by resolution of C and D

41

From DPLL to CDCL Solvers

C=D D={h,....I. 1} 1ev(h),...,1ev(l,) < i< lev(/)
M:=M1/ Ci=no A :=AU{D}

Backjump

To compute the level to backjump to:
1. find the literal I € D that was assigned last

2. choose a level i smaller than 1ev(/) but not smaller than the levels of the
other literals in D

Then learn conflict clause D, reset C, backtrack to level i/ and add / to it

Note: lev(/) = n iff | occurs in decision level n of M

Note: The rules maintain the invariant: A = C and M = —C when C # no

42

From DPLL to CDCL Solvers

Modify Fail to

C#£no e¢M
UNSAT

Fail

C contains a conflict clause but there are no decision points to backjump over

Conclude that A is unsatisfiable

43

From DPLL to full CDCL Solvers

Also add

D is a clause AED D¢ A
A :=AU{D}

Learn
Can be applied to any clause entailed by A
In particular, to any conflict clause C # no (because then A = C)

The learned clause D is called a lemma

C =no A=AU{C} A"EC

Forget
- A=A

44

From DPLL to full CDCL Solvers

Learning can quickly add millions of clauses to A

So it is useful to be able to delete redundant clauses that might not be useful

anymore

Restart
M:=MA C:=no

If we are stuck in a hopeless area of the search space it may be better to just

restart

Note: Restart is not from scratch since propagations at level 0 are maintained,

together with all the learned lemmas not eliminated by Forget

45

Non-chronological vs. chronological backtracking

Note: Backjumping is not always better than chronological backtracking

See, e.g.,
“Chronological Backtracking” by Nadel and Ryvchin, SAT 2018.

“Lazy Reimplication in Chronological Backtracking” by Coutelier et al., SAT 2024.

46

Modeling Modern SAT Solvers

At the core, current CDCL SAT solvers are implementations of the proof system

with rules

Propagate, Pure, Decide,
Conflict, Explain, Backjump, Fail

Learn, Forget, Restart

Basic CDCL := { Propagate, Pure, Decide, Conflict, Explain, Backjump, Fail }

CDCL Basic CDCL + { Learn, Forget, Restart }

47

The CDCL System — Strategies

To ensure termination for the full system,
1. apply at least one Basic CDCL rule between each two Learn applications

2. apply Restart less and less often

48

The CDCL System — Strategies

A common basic strategy applies the rules with the following priorities,
using a bound n initially set to 0, until an irreducible state is reached:

1. If n > 0 conflicts have been found so far, increase n and apply Restart
2. It M falsifies a clause and has no decision points, apply Fail and stop

3. If M falsifies a clause, apply Conflict
(a) Apply Explain repeatedly
(b) Apply Learn to the current conflict clause
(c) Apply Backjump

4. Apply Propagate to completion

5. Apply Decide

49

The CDCL System — Strategies

Steps 3.1-3.3 achieve a form of conflict analysis and involve some heuristic
choices:

1. When to stop applying Explain to a conflict?

2. Which level to Backjump to?

50

The CDCL proof system

{h,..., I, I} € A I, ..., [, e M [, 1 ¢ M
Propagate M — M]
b | literal of A I not literal of A [,1¢ M
Hre M =M |
| or | occurs in A I, 1 ¢ M

Decide M — Mo

51

The CDCL proof system (continued)

Conflict C—1{h .. "
Explai C:{/}U C’ {/1 /n:7} c A\ 71 7,7,76 M 71 7n -<|\/|7
xplain
P C=1{h,....tuC
_ C=D D={h,..., I, I} lev(ly),..., lev(/,) < i < lev(/)
Backjump

M:=MlIl/ C:=no A:=AU{D}

52

The CDCL proof system (continued)

. D is a clause A =D D¢ A
eann A= AU{D}
C =no A=A U{C} A= C
Forget
A=A
Restart

M:= MPO C:=no

53

