Satisfiability Modulo Theories
Lecture 1: Abstract Proof Systems

Lydia Kondylidou

WS 2025/26

Agenda

Abstract Proof Systems

Satisfiability Proof Systems

Soundness, Completeness, Termination, and Progressiveness
A Decision Procedure for Propositional Logic

Strategies

Proofs for Automated Reasoning

What is a proof?
A sequence of steps leading from some assumptions to some conclusions

Each step should be convincing and should be drawn from a set of
accepted proof rules

Proofs for Automated Reasoning

Proof theory is a branch of mathematical logic in which proofs themselves
are formal objects we can prove things about

In AR, representing algorithms as proof systems has several advantages:

o They are modular and composable
o It is easier to prove things about the algorithms

o Can choose which implementation aspects to highlight and which to

leave out

Abstract Proof Systems

An abstract proof system is a tuple P = (S, R) where S is a set of proof
states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of

the proof
Example: a set of propositional formulas
Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S O {«, @« = [} to the state

set {SULB}}

Proof Rules

o Take an input proof state S
o Are only applicable if § satisfies some premises
o Return one or more derived proof states, the conclusions

Notation:
Pr P - Pp
G ‘ Gy ’ . e ‘ C,

R

R is the rule's name (for reference)

Each P; is a premise, each C; is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

A Proof System for Propositional Logic

Let Ppr = (SpL, RpL) where every proof state S € Sp| is a set of
well-formed formulas of PL

If Rp_ contains the modus ponens rule (MP for short) we can write MP
as follows:

aeS a = pes§ p&S§
SU{B}

Technically, MP is a proof rule schema

« and [are parameters, and each possible instantiation with well-formed
formulas is a separate proof rule

For convenience, we will refer to proof rule schemas also as proof rules

Example

aeS a = s &S
SU{S}

Let a, b, ¢, d be propositional variables

What is the result of applying MP to the following proof states?
1. {a,a = b}
2. {—d,aV-c,—d = b}

3. {c,d,c = d}

Example

aeS a = s &S
SU{S}

Let a, b, ¢, d be propositional variables

What is the result of applying MP to the following proof states?
1. {a,a = b} {a,a = b, b}
2. {-d,aV-c,-d = b} {aV-c,—~d —~d = b, b}

3. {c,d,c = d} does not apply

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for Pp:

«a €Y «aoccursinsome formulaof S a &S
Split

—a &S

S U{a} | S U{-a}

Can we apply Split to {aV (bAc), ~d}?

10

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for Pp:

a €V «occursin some formulaof S a¢S -a¢S

S U{a} | S U{-a}

Split

Can we apply Split to {aV (bAc), ~d}?
Yes, if we choose to instantiate o with a, b, or ¢ but not d

Let Split, be the proof rule obtained by instantiating o with b
Then, formally:

{aVv(bAc), ~d} P {{av(bAc),—d, b}, {aV(bAc),—d,—b}}

A Proof System for Propositional Logic

Let V be the set of all propositional variablesandlet L=V U{—-a|a eV}

L is the set of all propositional /iterals, variables or negations of variables

Now consider the following rule for Pp:

aclV aceS —-aces
Contr

UNSAT

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

12

Derivation Trees

Let P = (S, R) be an abstract proof system

A derivation tree (in IP) from Sy is a finite tree with

o nodes from S

o root Sy

o an edge from a node S to a node &’ iff
S’ is a conclusion of the application of a rule of R to S’

A proof state S € S is reducible (in IP) if one or more proof rules of R
applies to S (It is irreducible (in IP) otherwise)

A derivation tree is reducible (in P) if at least one of its leaves is reducible
(It is irreducible (in IP) otherwise)

13

Derivation Tree Example

What could a derivation tree from {b = ¢, —b = ¢, —c} look like?

{b = ¢,-b = ¢, ¢}

{b = ¢,-b = ¢, ¢}

{b = ¢,-b = ¢, —c, b} {b = ¢,-b = ¢, —c, b}

{b = ¢,-b = ¢, —c}

Split

Split

{b = ¢,-b = ¢, —c, b}

{b = ¢,-b = ¢, —c, b}

MP

{b = ¢,-b = c¢,—c, b,c}

{b = ¢,-b = ¢, ¢}

Split

{b = ¢,-b = ¢, —c, b}

{b = ¢,-b = ¢, —c, b}

b b b MP
: ! - : Y ! Y !
! - ©2¢b < Contr

UNSAT

14

Derivation Tree Example

{b = ¢,-b = ¢, ¢}

Split
{b = ¢,-b = ¢, —c, b} MP {b = ¢,-b = ¢, —c, b} M:;
{b = ¢,-b = c¢,—c, b,c} Contr {b = ¢,-b = ¢, —c,—b,c}
UNSAT
{b = ¢,-b = ¢, ¢} Split
{b = ¢,-b = ¢, —c, b} MP {b = ¢,-b = ¢, —c, b} M:;

h — C’_Ib — C,_lC,b,C
t J Contr

UNSAT

b — c¢,-b — c, ¢, b,c
{ s Contr

UNSAT

This tree is irreducible

15

Derivations

Let P = (S, R) be an abstract proof system

A derivation (in P) from a derivation tree 7y is a (possibly infinite)
sequence Ty, 71, . . . of derivation trees where each 7,1 is derivable from
7; by applying a rule from R to a leaf of 7;

A derivation is saturated if it is finite and ends with an irreducible tree

16

Satisfiability Proof Systems

Let P = (S, R) be an abstract proof system

IP is a satisfiability proof system if S includes the distinguished states SAT
and UNSAT

A rule of R is a refuting rule if its only conclusion is UNSAT

A rule of R is a corroborating rule if its only conclusion is SAT

A refutation tree (from S in P) is a derivation tree from S with only UNSAT leaves

A refutation (of S in P) is a derivation from S ending with a refutation tree

A corroboration tree (from S in P) is a derivation tree from S with at least one SAT leaf

A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

17

A Satisfiability Proof System for Propositional Logic

Can we extend Pp. to be a satisfiability proof system?

Yes, simply by adding SAT to Sp.

Rule Contr is a refuting rule

We have no corroborating rules, yet

18

Soundness

Let P = (S, R) be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset

St C S such that
SAT € St and UNSAT ¢ S

P is refutation sound (wrt S>) if no state S € S that has a refutation
in P is in S*

P is solution sound (wrt S>2t) if every S € S that has a corroboration in
P is in S>

P is sound (wrt S>2%) if it is both refutation and solution sound (wrt
SSat)

19

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate S°

P is complete (wrt St) if for every S € S, there exists either a
corroboration or a refutation (wrt S>t) of S in P

P is terminating if every derivation in PP is finite

Recall

P is sound (wrt $°*) if (/) no state S € S that has a refutation in P is in S°*, and

(ii) every S € S that has a corroboration in P is in S**

20

Proof Systems and Decision Procedures

If P is sound and complete wrt S>' and terminating,
it induces a decision procedure for checking whether a S is in S°2t:

Simply start with S and produce any derivation
It must eventually terminate

If the final tree is a refutation tree, then S ¢ S>

Otherwise, S € S>3t

21

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V' to {true, false},
and v = & means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

(true ifpesS
v(p) = < false if -pecS
\ undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and

2. for each variable p occurring in S, either pe Sor - p€ S

22

A Decision Procedure for Propositional Logic

Let P = <SE, RE> where
Sg consists of all sets of wffs plus the distinguished states SAT and UNSAT
Re consists of the following proof rules:

Split peEV p occurs in some formula in S péiS p &S
pli

SU{p} | SU{-p}

S fully definesv v E=S

SAT

Sat

S fully defines v v = a for some a € S
Unsat

UNSAT

23

A Decision Procedure for Propositional Logic

Let S°2t consist of SAT and all satisfiable sets of wffs

o Each rule in Pg is satisfiability preserving wrt S°
o Pg is sound wrt S>2
o [Pg Is terminating

o [Pg is complete

Therefore, P can be used as a decision procedure for the SAT problem

24

Example

Consider the set of propositional formulas {a, ma Vv b,a = —b}

{a,7aV b,a — —b}

{a,maV b,a — —b}

Split
{a,7aV b,a = —b, b} {a,7aV b,a = —b, -b}
{a,maV b,a — —b}

Split
{a,7aV b,a = —b, -b}

a,aVba— —bb
{ ; Unsat

UNSAT

{a,7aV b,a — —b}
{a,7aV b,a = —b, b}

{ ; s Split
, 1 \V4 , —> D, T
Unsat & ? Unsat

UNSAT UNSAT

25

Example

Alternatively, consider the set of propositional formulas {a, —a vV —=b, a A =b}

{a,—aV —b,a N —b}

{a,~aV —b,a N —b}
{a, maV —b,a A —b, b} {a,—aV —b,a A —b, —b}

Split

{a,—a Vv —b,a N —b}
{a,7a VvV —=b,a N —b, b} {a,—a Vv —b,a A —b, -b}

Split

Unsat
UNSAT

{a,—a Vv —b,a A —b} Split

by Sat

a,"aV —b,a/N —b,b a,aV —b,aAN —b,
{) Unsat {

UNSAT SAT

26

Derivation Strategies

Sometimes, a proof system has some desirable properties

only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

27

Derivation Strategies

Let P = (S,R) be a proof system

A (derivation) strategy for P is a partial function that, when defined,
takes a derivation tree 7 in P and returns a new derivation tree 7/ such

that (7, 7") is a derivation in P
A derivation D in P follows a strategy m for P

1. if each non-initial derivation tree in D is the result of applying 7

to the previous derivation tree, and

2. 1f D is finite, 7 is not defined for the final derivation tree

28

Derivation Strategy Example

Let < be a total order on literals in £ defined as alphabetical by variable name,

with variables smaller than their negations (e.g., a<-~a<b<-b<---)

Consider the following strategy wp; for Pp., usable when every formula is either a

literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;

if none, then stop (mp, is undefined in that case)

2. if MP applies, apply it to the formulas 1 and 1 — k where 1 is minimal

according to <, breaking ties by choosing a minimal 5

3. Otherwise, if Split applies, apply it to the smallest variable p among those

occurring in the state
4. Otherwise, apply Contr if possible

29

Properties of Strategies

Let S°¢ be a satisfiability predicate for P

A strategy m for P is

solution sound wrt to S if S € S whenever there exists a
corroboration in IP from S following

refutation sound wrt to S> if S ¢ S>3 whenever there exists a refutation
in P from & following 7

sound wrt S>2t if it is both refutation sound and solution sound wrt §>2t
terminating if every derivation in P following 7 is finite

progressive if it is defined for every derivation tree that is not a refutation
tree or a saturated tree

30

Properties of Strategies

Let S°¢ be a satisfiability predicate for P
Note:

If P is sound wrt S>3, then every strategy for IP is also sound wrt S>3

If P is terminating, then every strategy for P is also terminating

P is complete iff there exists a progressive and terminating strategy for it

31

