
Satisfiability Modulo Theories

Lecture 1: Abstract Proof Systems

Lydia Kondylidou

WS 2025/26

1

Agenda

Abstract Proof Systems

Satisfiability Proof Systems

Soundness, Completeness, Termination, and Progressiveness

A Decision Procedure for Propositional Logic

Strategies

2

Proofs for Automated Reasoning

What is a proof ?

A sequence of steps leading from some assumptions to some conclusions

Each step should be convincing and should be drawn from a set of

accepted proof rules

3

Proofs for Automated Reasoning

Proof theory is a branch of mathematical logic in which proofs themselves

are formal objects we can prove things about

In AR, representing algorithms as proof systems has several advantages:

◦ They are modular and composable

◦ It is easier to prove things about the algorithms

◦ Can choose which implementation aspects to highlight and which to

leave out

4

Abstract Proof Systems

An abstract proof system is a tuple P = 〈S,R〉 where S is a set of proof

states and R is a set of proof rules

Proof state: Data structure representing what is known at each stage of

the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state S ⊇ {α, α =⇒ β } to the state

set {S ∪ {β } }

5

Proof Rules

◦ Take an input proof state S

◦ Are only applicable if S satisfies some premises

◦ Return one or more derived proof states, the conclusions

Notation:

R
P1 P2 · · · Pm

C1 | C2 | · · · | Cn

R is the rule’s name (for reference)

Each Pi is a premise, each Ci is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

6

A Proof System for Propositional Logic

Let PPL = 〈SPL,RPL〉 where every proof state S ∈ SPL is a set of

well-formed formulas of PL

If RPL contains the modus ponens rule (MP for short) we can write MP

as follows:

MP
α ∈ S α =⇒ β ∈ S β 6∈ S

S ∪ {β}

Technically, MP is a proof rule schema

α and β are parameters, and each possible instantiation with well-formed

formulas is a separate proof rule

For convenience, we will refer to proof rule schemas also as proof rules

7

Example

MP
α ∈ S α =⇒ β ∈ S β 6∈ S

S ∪ {β}

Let a, b, c , d be propositional variables

What is the result of applying MP to the following proof states?

1. {a, a =⇒ b}

2. {¬d , a ∨ ¬c ,¬d =⇒ b}

3. {c , d , c =⇒ d}

8

Example

MP
α ∈ S α =⇒ β ∈ S β 6∈ S

S ∪ {β}

Let a, b, c , d be propositional variables

What is the result of applying MP to the following proof states?

1. {a, a =⇒ b} {a, a =⇒ b, b}

2. {¬d , a ∨ ¬c ,¬d =⇒ b} {a ∨ ¬c ,¬d ,¬d =⇒ b, b}

3. {c , d , c =⇒ d} does not apply

9

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

Split
α ∈ V α occurs in some formula of S α 6∈ S ¬α 6∈ S

S ∪ {α} | S ∪ {¬α}

Can we apply Split to {a ∨ (b ∧ c),¬d}?

10

A Proof System for Propositional Logic

Let V be the set of all propositional variables

Consider the following rule for PPL:

Split
α ∈ V α occurs in some formula of S α 6∈ S ¬α 6∈ S

S ∪ {α} | S ∪ {¬α}

Can we apply Split to {a ∨ (b ∧ c),¬d}?

Yes, if we choose to instantiate α with a, b, or c but not d

Let Splitb be the proof rule obtained by instantiating α with b

Then, formally:

{a ∨ (b ∧ c),¬d}
Splitb7−→ {{a ∨ (b ∧ c),¬d , b}, {a ∨ (b ∧ c),¬d ,¬b}}

11

A Proof System for Propositional Logic

Let V be the set of all propositional variables and let L = V ∪ {¬α | α ∈ V }

L is the set of all propositional literals, variables or negations of variables

Now consider the following rule for PPL:

Contr
α ∈ V α ∈ S ¬α ∈ S

unsat

where unsat is a distinguished state

Note: The rule applies only to states with contradictory literals

12

Derivation Trees

Let P = 〈S,R〉 be an abstract proof system

A derivation tree (in P) from S0 is a finite tree with

◦ nodes from S

◦ root S0

◦ an edge from a node S to a node S′ iff

S′ is a conclusion of the application of a rule of R to S′

A proof state S ∈ S is reducible (in P) if one or more proof rules of R

applies to S (It is irreducible (in P) otherwise)

A derivation tree is reducible (in P) if at least one of its leaves is reducible

(It is irreducible (in P) otherwise)

13

Derivation Tree Example

What could a derivation tree from {b =⇒ c,¬b =⇒ c,¬c} look like?

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c, b} {b =⇒ c,¬b =⇒ c,¬c,¬b}
Split

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c, b}

{b =⇒ c,¬b =⇒ c,¬c, b, c}
MP

{b =⇒ c,¬b =⇒ c,¬c,¬b}
Split

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c, b}

{b =⇒ c,¬b =⇒ c,¬c, b, c}

unsat

Contr

MP
{b =⇒ c,¬b =⇒ c,¬c,¬b}

Split

14

Derivation Tree Example

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c, b}

{b =⇒ c,¬b =⇒ c,¬c, b, c}

unsat

Contr

MP
{b =⇒ c,¬b =⇒ c,¬c,¬b}

{b =⇒ c,¬b =⇒ c,¬c,¬b, c}
MP

Split

{b =⇒ c,¬b =⇒ c,¬c}

{b =⇒ c,¬b =⇒ c,¬c, b}

{b =⇒ c,¬b =⇒ c,¬c, b, c}

unsat

Contr

MP
{b =⇒ c,¬b =⇒ c,¬c,¬b}

{b =⇒ c,¬b =⇒ c,¬c,¬b, c}

unsat

Contr

MP

Split

This tree is irreducible

15

Derivations

Let P = 〈S,R〉 be an abstract proof system

A derivation (in P) from a derivation tree τ0 is a (possibly infinite)

sequence τ0, τ1, . . . of derivation trees where each τi+1 is derivable from

τi by applying a rule from R to a leaf of τi

A derivation is saturated if it is finite and ends with an irreducible tree

16

Satisfiability Proof Systems

Let P = 〈S,R〉 be an abstract proof system

P is a satisfiability proof system if S includes the distinguished states sat

and unsat

A rule of R is a refuting rule if its only conclusion is unsat

A rule of R is a corroborating rule if its only conclusion is sat

A refutation tree (from S in P) is a derivation tree from S with only unsat leaves

A refutation (of S in P) is a derivation from S ending with a refutation tree

A corroboration tree (from S in P) is a derivation tree from S with at least one sat leaf

A corroboration (of S in P from) is a derivation from S ending with a corroborating tree

17

A Satisfiability Proof System for Propositional Logic

Can we extend PPL to be a satisfiability proof system?

Yes, simply by adding sat to SPL

Rule Contr is a refuting rule

We have no corroborating rules, yet

18

Soundness

Let P = 〈S,R〉 be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset

S
Sat ⊆ S such that

sat ∈ S
Sat and unsat 6∈ S

Sat

P is refutation sound (wrt SSat) if no state S ∈ S that has a refutation

in P is in S
Sat

P is solution sound (wrt SSat) if every S ∈ S that has a corroboration in

P is in S
Sat

P is sound (wrt SSat) if it is both refutation and solution sound (wrt

S
Sat)

19

Completeness and Termination

Let P be a satisfiability proof system with satisfiability predicate S
Sat

P is complete (wrt S
Sat) if for every S ∈ S, there exists either a

corroboration or a refutation (wrt SSat) of S in P

P is terminating if every derivation in P is finite

Recall

P is sound (wrt SSat) if (i) no state S ∈ S that has a refutation in P is in S
Sat, and

(ii) every S ∈ S that has a corroboration in P is in S
Sat

20

Proof Systems and Decision Procedures

If P is sound and complete wrt SSat and terminating,

it induces a decision procedure for checking whether a S is in S
Sat:

Simply start with S and produce any derivation

It must eventually terminate

If the final tree is a refutation tree, then S 6∈ S
Sat

Otherwise, S ∈ S
Sat

21

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from V to {true, false},

and v |= S means that each formula in S evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

v(p) =















true if p ∈ S

false if ¬p ∈ S

undefined otherwise

S fully defines v if

1. v is the variable assignment induced by S and

2. for each variable p occurring in S, either p ∈ S or ¬p ∈ S

22

A Decision Procedure for Propositional Logic

Let PE = 〈SE,RE〉 where

SE consists of all sets of wffs plus the distinguished states sat and unsat

RE consists of the following proof rules:

Split
p ∈ V p occurs in some formula in S p 6∈ S ¬p 6∈ S

S ∪ {p} | S ∪ {¬p}

Sat
S fully defines v v |= S

sat

Unsat
S fully defines v v 6|= α for some α ∈ S

unsat

23

A Decision Procedure for Propositional Logic

Let SSat consist of sat and all satisfiable sets of wffs

◦ Each rule in PE is satisfiability preserving wrt SSat

◦ PE is sound wrt SSat

◦ PE is terminating

◦ PE is complete

Therefore, PE can be used as a decision procedure for the SAT problem

24

Example

Consider the set of propositional formulas {a,¬a ∨ b, a =⇒ ¬b}

{a,¬a ∨ b, a =⇒ ¬b}

{a,¬a ∨ b, a =⇒ ¬b}

{a,¬a ∨ b, a =⇒ ¬b, b} {a,¬a ∨ b, a =⇒ ¬b,¬b}
Split

{a,¬a ∨ b, a =⇒ ¬b}

{a,¬a ∨ b, a =⇒ ¬b, b}

unsat

Unsat
{a,¬a ∨ b, a =⇒ ¬b,¬b}

Split

{a,¬a ∨ b, a =⇒ ¬b}

{a,¬a ∨ b, a =⇒ ¬b, b}

unsat

Unsat
{a,¬a ∨ b, a =⇒ ¬b,¬b}

unsat

Unsat

Split

25

Example

Alternatively, consider the set of propositional formulas {a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b, b} {a,¬a ∨ ¬b, a ∧ ¬b,¬b}
Split

{a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b, b}

unsat

Unsat
{a,¬a ∨ ¬b, a ∧ ¬b,¬b}

Split

{a,¬a ∨ ¬b, a ∧ ¬b}

{a,¬a ∨ ¬b, a ∧ ¬b, b}

unsat

Unsat
{a,¬a ∨ ¬b, a ∧ ¬b,¬b}

sat

Sat

Split

26

Derivation Strategies

Sometimes, a proof system has some desirable properties

only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

27

Derivation Strategies

Let P = 〈S,R〉 be a proof system

A (derivation) strategy for P is a partial function that, when defined,

takes a derivation tree τ in P and returns a new derivation tree τ ′ such

that (τ , τ ′) is a derivation in P

A derivation D in P follows a strategy π for P

1. if each non-initial derivation tree in D is the result of applying π

to the previous derivation tree, and

2. if D is finite, π is not defined for the final derivation tree

28

Derivation Strategy Example

Let ≺ be a total order on literals in L defined as alphabetical by variable name,

with variables smaller than their negations (e.g., a ≺ ¬a ≺ b ≺ ¬b ≺ · · ·)

Consider the following strategy πPL for PPL, usable when every formula is either a

literal or an implication between literal:

1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree;

if none, then stop (πPL is undefined in that case)

2. if MP applies, apply it to the formulas l1 and l1 =⇒ l2 where l1 is minimal

according to ≺, breaking ties by choosing a minimal l2

3. Otherwise, if Split applies, apply it to the smallest variable p among those

occurring in the state

4. Otherwise, apply Contr if possible

29

Properties of Strategies

Let SSat be a satisfiability predicate for P

A strategy π for P is

solution sound wrt to S
Sat if S ∈ S

Sat whenever there exists a

corroboration in P from S following π

refutation sound wrt to S
Sat if S /∈ S

Sat whenever there exists a refutation

in P from S following π

sound wrt SSat if it is both refutation sound and solution sound wrt SSat

terminating if every derivation in P following π is finite

progressive if it is defined for every derivation tree that is not a refutation

tree or a saturated tree

30

Properties of Strategies

Let SSat be a satisfiability predicate for P

Note:

If P is sound wrt SSat, then every strategy for P is also sound wrt SSat

If P is terminating, then every strategy for P is also terminating

P is complete iff there exists a progressive and terminating strategy for it

31

