Satisfiability Modulo Theories

Lecture 1: Abstract Proof Systems

Lydia Kondylidou

WS 2025/26

Agenda

Abstract Proof Systems

Satisfiability Proof Systems

Soundness, Completeness, Termination, and Progressiveness

A Decision Procedure for Propositional Logic

Strategies

Proofs for Automated Reasoning

What is a *proof*?

A sequence of steps leading from some assumptions to some conclusions

Each step should be convincing and should be drawn from a set of accepted *proof rules*

Proofs for Automated Reasoning

Proof theory is a branch of mathematical logic in which proofs themselves are formal objects we can prove things about

In AR, representing algorithms as proof systems has several advantages:

- They are modular and composable
- It is easier to prove things about the algorithms
- Can choose which implementation aspects to highlight and which to leave out

Abstract Proof Systems

An abstract proof system is a tuple $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ where \mathbb{S} is a set of **proof** states and \mathbb{R} is a set of **proof rules**

Proof state: Data structure representing what is known at each stage of the proof

Example: a set of propositional formulas

Proof Rule: A partial function from proof states to sets of proof states

Example: Modus Ponens maps a state $S \supseteq \{ \alpha, \alpha \implies \beta \}$ to the state set $\{ S \cup \{ \beta \} \}$

Proof Rules

- \circ Take an input proof state ${\mathcal S}$
- \circ Are only applicable if $\mathcal S$ satisfies some *premises*
- Return one or more *derived* proof states, the *conclusions*

Notation:

$$\mathbf{R} \quad \frac{P_1 \quad P_2 \quad \cdots \quad P_m}{C_1 \quad | \quad C_2 \quad | \quad \cdots \quad | \quad C_n}$$

R is the rule's name (for reference)

Each P_i is a premise, each C_i is a conclusion

Note: Intuitively, premises are conjunctive; conclusions are disjunctive

Let $\mathbb{P}_{PL} = \langle \mathbb{S}_{PL}, \mathbb{R}_{PL} \rangle$ where every proof state $S \in \mathbb{S}_{PL}$ is a set of well-formed formulas of PL

If \mathbb{R}_{PL} contains the *modus ponens* rule (**MP** for short) we can write **MP** as follows:

Technically, **MP** is a proof rule *schema*

 α and β are parameters, and each possible instantiation with well-formed formulas is a separate proof rule

For convenience, we will refer to proof rule schemas also as *proof rules*

Example

Let a, b, c, d be propositional variables

What is the result of applying **MP** to the following proof states?

- 1. $\{a, a \implies b\}$
- 2. $\{\neg d, a \lor \neg c, \neg d \implies b\}$
- 3. $\{c, d, c \implies d\}$

Example

Let a, b, c, d be propositional variables

What is the result of applying **MP** to the following proof states?

1.
$$\{a, a \Longrightarrow b\}$$
 $\{a, a \Longrightarrow b, b\}$

$$\{a, a \implies b, b\}$$

2.
$$\{\neg d, a \lor \neg c, \neg d \implies b\}$$
 $\{a \lor \neg c, \neg d, \neg d \implies b, b\}$

$$\{a \lor \neg c, \neg d, \neg d \implies b, b\}$$

3.
$$\{c, d, c \implies d\}$$
 does not apply

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

Can we apply **Split** to $\{a \lor (b \land c), \neg d\}$?

Let \mathcal{V} be the set of all propositional variables

Consider the following rule for \mathbb{P}_{PL} :

Split
$$\alpha \in \mathcal{V}$$
 α occurs in some formula of \mathcal{S} $\alpha \notin \mathcal{S}$ $\neg \alpha \notin \mathcal{S}$ $\mathcal{S} \cup \{\alpha\}$ $\mid \mathcal{S} \cup \{\neg \alpha\}$

Can we apply **Split** to $\{a \lor (b \land c), \neg d\}$?

Yes, if we choose to instantiate α with a, b, or c but not d

Let **Split**_b be the proof rule obtained by instantiating α with b

Then, formally:

$$\{a \lor (b \land c), \neg d\} \stackrel{\mathsf{Split}_b}{\longmapsto} \{\{a \lor (b \land c), \neg d, b\}, \{a \lor (b \land c), \neg d, \neg b\}\}$$

Let \mathcal{V} be the set of all propositional variables and let $\mathcal{L} = \mathcal{V} \cup \{ \neg \alpha \mid \alpha \in \mathcal{V} \}$

 \mathcal{L} is the set of all propositional *literals*, variables or negations of variables

Now consider the following rule for \mathbb{P}_{PL} :

Contr
$$\frac{\alpha \in \mathcal{V} \quad \alpha \in \mathcal{S} \quad \neg \alpha \in \mathcal{S}}{\text{UNSAT}}$$

where UNSAT is a distinguished state

Note: The rule applies only to states with contradictory literals

Derivation Trees

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

A derivation tree (in \mathbb{P}) from \mathcal{S}_0 is a finite tree with

- nodes from S
- \circ root \mathcal{S}_0
- \circ an edge from a node \mathcal{S} to a node \mathcal{S}' iff \mathcal{S}' is a conclusion of the application of a rule of \mathbb{R} to \mathcal{S}'

A proof state $S \in \mathbb{S}$ is *reducible* (in \mathbb{P}) if one or more proof rules of \mathbb{R} applies to S (It is *irreducible* (in \mathbb{P}) otherwise)

A derivation tree is *reducible* (in \mathbb{P}) if at least one of its leaves is reducible (It is *irreducible* (in \mathbb{P}) otherwise)

Derivation Tree Example

What could a derivation tree from $\{b \implies c, \neg b \implies c, \neg c\}$ look like?

Derivation Tree Example

$$\frac{\{b \implies c, \neg b \implies c, \neg c\}}{\{b \implies c, \neg b \implies c, \neg c, b\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b\}}{\{b \implies c, \neg b \implies c, \neg c, b, c\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b\}}{\{b \implies c, \neg b \implies c, \neg c, \neg b, c\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b, c\}}{\{b \implies c, \neg b \implies c, \neg c, b\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b\}}{\{b \implies c, \neg b \implies c, \neg c, b\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b\}}{\{b \implies c, \neg b \implies c, \neg c, \neg b\}} \text{MP} \frac{\{b \implies c, \neg b \implies c, \neg c, \neg b\}}{\{b \implies c, \neg b \implies c, \neg c, \neg b, c\}} \text{Contr}$$

This tree is **irreducible**

Derivations

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

A *derivation* (in \mathbb{P}) from a derivation tree τ_0 is a (possibly infinite) sequence τ_0, τ_1, \ldots of derivation trees where each τ_{i+1} is derivable from τ_i by applying a rule from \mathbb{R} to a leaf of τ_i

A derivation is saturated if it is finite and ends with an irreducible tree

Satisfiability Proof Systems

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be an abstract proof system

 ${\mathbb P}$ is a satisfiability proof system if ${\mathbb S}$ includes the distinguished states SAT and UNSAT

A rule of $\mathbb R$ is a *refuting* rule if its only conclusion is UNSAT

A rule of $\mathbb R$ is a *corroborating* rule if its only conclusion is SAT

A refutation tree (from S in \mathbb{P}) is a derivation tree from S with only UNSAT leaves

A refutation (of S in \mathbb{P}) is a derivation from S ending with a refutation tree

A corroboration tree (from S in \mathbb{P}) is a derivation tree from S with at least one SAT leaf

A corroboration (of S in \mathbb{P} from) is a derivation from S ending with a corroborating tree

A Satisfiability Proof System for Propositional Logic

Can we extend \mathbb{P}_{PL} to be a satisfiability proof system?

Yes, simply by adding SAT to \mathbb{S}_{PL}

Rule **Contr** is a refuting rule

We have no corroborating rules, yet

Soundness

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a satisfiability proof system

A set of satisfiable proof states, or satisfiability predicate, is a subset $\mathbb{S}^{\mathsf{Sat}} \subset \mathbb{S}$ such that

 $\mathrm{SAT} \in \mathbb{S}^\mathsf{Sat}$ and $\mathrm{UNSAT} \not \in \mathbb{S}^\mathsf{Sat}$

 $\mathbb P$ is refutation sound (wrt $\mathbb S^{\mathsf{Sat}}$) if **no** state $\mathcal S\in\mathbb S$ that has a refutation in $\mathbb P$ is in $\mathbb S^{\mathsf{Sat}}$

 \mathbb{P} is solution sound (wrt \mathbb{S}^{Sat}) if **every** $S \in \mathbb{S}$ that has a corroboration in \mathbb{P} is in \mathbb{S}^{Sat}

 \mathbb{P} is *sound* (wrt \mathbb{S}^{Sat}) if it is **both** refutation and solution sound (wrt \mathbb{S}^{Sat})

Completeness and Termination

Let $\mathbb P$ be a satisfiability proof system with satisfiability predicate $\mathbb S^{\mathsf{Sat}}$

 \mathbb{P} is *complete* (wrt $\mathbb{S}^{\mathsf{Sat}}$) if for every $\mathcal{S} \in \mathbb{S}$, there exists either a corroboration or a refutation (wrt $\mathbb{S}^{\mathsf{Sat}}$) of \mathcal{S} in \mathbb{P}

 \mathbb{P} is *terminating* if every derivation in \mathbb{P} is finite

Recall

 \mathbb{P} is **sound** (wrt $\mathbb{S}^{\mathsf{Sat}}$) if (i) **no** state $S \in \mathbb{S}$ that has a **refutation** in \mathbb{P} is in $\mathbb{S}^{\mathsf{Sat}}$, and (ii) **every** $S \in \mathbb{S}$ that has a **corroboration** in \mathbb{P} is in $\mathbb{S}^{\mathsf{Sat}}$

Proof Systems and Decision Procedures

If \mathbb{P} is **sound** and **complete** wrt $\mathbb{S}^{\mathsf{Sat}}$ and **terminating**, it induces a **decision procedure** for checking whether a \mathcal{S} is in $\mathbb{S}^{\mathsf{Sat}}$:

Simply start with ${\cal S}$ and produce any derivation

It must eventually terminate

If the final tree is a refutation tree, then $\mathcal{S} \not\in \mathbb{S}^{\mathsf{Sat}}$

Otherwise, $\mathcal{S} \in \mathbb{S}^{\mathsf{Sat}}$

A Decision Procedure for Propositional Logic

Recall: A variable assignment v is a partial mapping from \mathcal{V} to $\{\text{true}, \text{false}\}$, and $v \models \mathcal{S}$ means that each formula in \mathcal{S} evaluates to true under v

Let S be a set of propositional formulas

The variable assignment v induced by S is defined as follows:

$$v(p) = \begin{cases} \text{true} & \text{if } p \in \mathcal{S} \\ \text{false} & \text{if } \neg p \in \mathcal{S} \\ \textit{undefined} & \text{otherwise} \end{cases}$$

S fully defines v if

- 1. v is the variable assignment induced by ${\cal S}$ and
- 2. for each variable p occurring in S, either $p \in S$ or $\neg p \in S$

A Decision Procedure for Propositional Logic

Let
$$\mathbb{P}_{\mathsf{E}} = \langle \mathbb{S}_{\mathsf{E}}, \mathbb{R}_{\mathsf{E}} \rangle$$
 where

 \mathbb{S}_{E} consists of all sets of wffs plus the distinguished states \mathtt{SAT} and \mathtt{UNSAT}

 \mathbb{R}_{E} consists of the following proof rules:

A Decision Procedure for Propositional Logic

Let $\mathbb{S}^{\mathsf{Sat}}$ consist of SAT and all satisfiable sets of wffs

- \circ Each rule in \mathbb{P}_{E} is satisfiability preserving wrt $\mathbb{S}^{\mathsf{Sat}}$
- $\circ \mathbb{P}_{\mathsf{F}}$ is sound wrt $\mathbb{S}^{\mathsf{Sat}}$
- $\circ \mathbb{P}_{\mathsf{E}}$ is terminating
- $\circ \mathbb{P}_{\mathsf{E}}$ is complete

Therefore, \mathbb{P}_{E} can be used as a decision procedure for the SAT problem

Example

Consider the set of propositional formulas $\{a, \neg a \lor b, a \implies \neg b\}$

$$\{a, \neg a \lor b, a \implies \neg b\}$$

$$\frac{\{a, \neg a \lor b, a \implies \neg b\}}{\{a, \neg a \lor b, a \implies \neg b, \neg b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \implies \neg b\}}{\{a, \neg a \lor b, a \implies \neg b, \neg b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \implies \neg b, b\}}{\text{UNSAT}} \quad \text{Unsat} \quad \frac{\{a, \neg a \lor b, a \implies \neg b, \neg b\}}{\{a, \neg a \lor b, a \implies \neg b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor b, a \implies \neg b\}}{\{a, \neg a \lor b, a \implies \neg b, \neg b\}} \quad \text{Unsat}$$

$$\frac{\{a, \neg a \lor b, a \implies \neg b, b\}}{\text{Unsat}} \quad \text{Unsat}$$

Example

Alternatively, consider the set of propositional formulas $\{a, \neg a \lor \neg b, a \land \neg b\}$

$$\{a, \neg a \lor \neg b, a \land \neg b\}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \quad \text{Split}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}}$$
 Unsat
$$\frac{\{a, \neg a \lor \neg b, a \land \neg b, b\}}{\{a, \neg a \lor \neg b, a \land \neg b, \neg b\}}$$

$$\frac{\{a, \neg a \lor \neg b, a \land \neg b\}}{\{a, \neg a \lor \neg b, a \land \neg b, b\}} \quad \textbf{Split}$$
UNSAT
$$\frac{\{a, \neg a \lor \neg b, a \land \neg b, b\}}{\text{SAT}} \quad \textbf{Sat}$$

Derivation Strategies

Sometimes, a proof system has some desirable properties only if the rules are applied in a specific way

We capture those specific ways with rule application strategies

Derivation Strategies

Let $\mathbb{P} = \langle \mathbb{S}, \mathbb{R} \rangle$ be a proof system

A (derivation) strategy for \mathbb{P} is a partial function that, when defined, takes a derivation tree τ in \mathbb{P} and returns a new derivation tree τ' such that (τ, τ') is a derivation in \mathbb{P}

A derivation D in $\mathbb P$ follows a strategy π for $\mathbb P$

- 1. if each non-initial derivation tree in D is the result of applying π to the previous derivation tree, and
- 2. if D is finite, π is not defined for the final derivation tree

Derivation Strategy Example

Let \prec be a total order on literals in $\mathcal L$ defined as alphabetical by variable name, with variables smaller than their negations (e.g., $a \prec \neg a \prec b \prec \neg b \prec \cdots$)

Consider the following strategy π_{PL} for \mathbb{P}_{PL} , usable when every formula is either a literal or an implication between literal:

- 1. Find the first reducible leaf in a left-to-right depth-first traversal of the tree; if none, then stop (π_{PL} is undefined in that case)
- 2. if **MP** applies, apply it to the formulas l_1 and $l_1 \implies l_2$ where l_1 is minimal according to \prec , breaking ties by choosing a minimal l_2
- 3. Otherwise, if **Split** applies, apply it to the smallest variable p among those occurring in the state
- 4. Otherwise, apply **Contr** if possible

Properties of Strategies

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for \mathbb{P}

A strategy π for $\mathbb P$ is

solution sound wrt to $\mathbb{S}^{\mathsf{Sat}}$ if $\mathcal{S} \in \mathbb{S}^{\mathsf{Sat}}$ whenever there exists a corroboration in \mathbb{P} from \mathcal{S} following π

refutation sound wrt to $\mathbb{S}^{\mathsf{Sat}}$ if $\mathcal{S} \notin \mathbb{S}^{\mathsf{Sat}}$ whenever there exists a refutation in \mathbb{P} from \mathcal{S} following π

sound wrt $\mathbb{S}^{\mathsf{Sat}}$ if it is both refutation sound and solution sound wrt $\mathbb{S}^{\mathsf{Sat}}$ terminating if every derivation in \mathbb{P} following π is finite

progressive if it is defined for every derivation tree that is not a refutation tree or a saturated tree

Properties of Strategies

Let $\mathbb{S}^{\mathsf{Sat}}$ be a satisfiability predicate for \mathbb{P}

Note:

If \mathbb{P} is sound wrt $\mathbb{S}^{\mathsf{Sat}}$, then every strategy for \mathbb{P} is also sound wrt $\mathbb{S}^{\mathsf{Sat}}$

If $\mathbb P$ is terminating, then every strategy for $\mathbb P$ is also terminating

 ${\mathbb P}$ is complete iff there exists a progressive and terminating strategy for it