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Exercises 9: Rewrite Systems

Exercise 9.1: Let ¥ = (Q,0) with Q = {b/0, f/1, g/1}. Let E be the set of (implicitly
universally quantified) equations {f(g(f(z))) ~ b}.

Give one possible derivation for the statement E F f(g(b)) ~ b.

Proposed solution.

E+ flg(f(b) = b
EFg(f(g(f (b)) = g(b)
E+ flg(f(g(f (b)) = f(g(b))
EF f(g) = flg(fg(f()  EF flg(f(g(f(b) ~b
Et+ fg(b) =

Note that the “Instance” rule (which is used to derive the two leaf formulas) does not
have a premise.

Exercise 9.2: Let ¥ = (Q,0), let Q = {f/1, /0, ¢/0, d/0}. Let E be the set of equa-
tions { f(b) = d, f(c) = d, f(f(x)) = f(x)}. Let X be a countably infinite set of variables.

(a) Show that f(d) <73, d.
(b) Sketch what the universe of Tx(0)/E looks like. How many elements does it have?

(c) Determine for each of the following equations whether it holds in Tx(X)/E and
whether it holds in Tx(0)/E. Give a very brief explanation.

f(b) = b (1)
Vy fFFFW)) = F(fy)  (2)
vaVy f(z) ~ f(y) 3)



Proposed solution. (a) f(d) g f(f(c)) =g f(c) =g d.

(b) The universe of Tx(())/E consists of the congruence classes of T () w.r.t. <+7,. Since
every ground term except b and ¢ can be rewritten to d using F, there are three such
congruence classes, namely [b] = {b}, [¢] = {c}, and [d] = Tx(0) \ {b, c}.

(c) By Birkhoff’s Theorem, an equation VZ (s = t) holds in Tx(X)/E if and only if
s <}, t. Therefore, (2) holds in Tx(X)/E, and (1) and (3) do not hold. (It is not
possible to rewrite f(b) to b or f(z) to f(y) using <>g.)

For T = Tx(0)/E, we observe that for every assignment £, T(8)(f(b)) = [d] and
T(B)(b) = [b], therefore (1) does not hold in Tx(@)/E. On the other hand, for every

assignment 3, we have T(8)(f(f(f(¥)) = T(B)(f(f(y))) = [d] and T(B)(f(y)) =
T(B)(f(x)) = [d], therefore both (2) and (3) hold in Tx(0)/E.

Exercise 9.3: Let ¥ = (Q,0) with Q@ = {f/1, b/0, ¢/0, d/0}. Let E be the set of
(implicitly universally quantified) equations {f(f(z)) ~ b}.

a ow that b < . How does the rewrite proot look?
(a) Show that b <% f(b). How does th i f look?

(b) Is the universe of the initial E-algebra Tx(())/E finite or infinite? If it is finite, how
many elements does it have?

Proposed solution. (a) The shortest rewrite proof has the form b «—pg f(f(f(t))) =g
f(b), where the term ¢ can be chosen arbitrarily. (There are also more complicated rewrite
proofs that consist of more than two steps.)

(b) The universe of Tx(())/E consists of five congruence classes, namely [c] = {c}, [d] =
{d}, [f(co)] = {f(e)}, [f(d)] = {f(d)}, and [b]. The last class contains all remaining
ground terms, that is, b, f(b), and all terms of the form f(f(¢t)) with ¢t € Tx(0).

Exercise 9.4: Let X = (Q, () be a first-order signature with Q = {f/1, b/0, ¢/0, d/0}.
Let E be the set of Y-equations

Vo (f(z) = b), c~d},

let X = {x,y,z} be a set of variables. For any ¢ € Tx(X), let [¢t] denote the congruence
class of t w.r.t. E. Let T = Tx(X)/E, let Ur be the universe of 7, and let 8 : X — Uy
be the assignment that maps every variable to [c]. Determine for each of the following
statements whether they are true or false:



1) [#] is a finite set of X-terms. 5) Ur is finite.

2) [f(2)] is a finite set of Y-terms. 6) [b] € Ur.

(1) (5)
(2) (6)
(3) [c] is a set of ground S-terms. (7) {z,y} € Ur.
(4) (8)

4 T(8)(¥2 (= ~ f(a))) = L.

[f(c)] is a set of ground X-terms. 8

Proposed solution. The elements of the universe of 7 are the congruence classes of
Tx({z,y, z}) with respect to E. There are five congruence classes, namely {z}, {y}, {2},
{¢,d}, and a fifth class that contains all terms of Tx({z,y,z}) with f or b at the root.
Consequently, we obtain:

(1) True. [2] = {z}.

(2) False. [f(2)] contains b, f(b), f(f(b)), ...
(3) True. [d] = {c,d}.

(4) False. [f(c)] contains, e.g., f(2).

(5) True. See above.

(6)

(7)

(8)

True. [b] is a congruence class.
False. {x,y} is not a congruence class.

False. z =~ f(x) is false for [z — [c]].

Exercise 9.5: Let X = (Q, () be a first-order signature with Q = {f/2, b/0, ¢/0, d/0}.
Let E be the set of Y-equations

Ve (f(z,c) = b), c~d},

let X = {x,y,z} be a set of variables. For any ¢ € Tx(X), let [¢t] denote the congruence
class of t w.rt. E. Let T = Tx(X)/E let Ur be the universe of 7, and let 5: X — Ur
be the assignment that maps every variable to [c]. Determine for each of the following
statements whether they are true or false:

(1) [c] is a finite set of Y-terms. (5)
(2) [f(e,0)] is a set of ground Y-terms. 6) fr(yl,[d) = [f(z ).
(3) [z] is an element of the universe of T . (7)
@ (®)

4) {b, f(z,c)} is a congruence class w.r.t. E.



Proposed solution. (1) True. [¢] = {c,d}.
(2) False. f(y,c) <> b<g f(c,c) implies f(y,c) € [f(c,0)].

(3) True. The universe of T = Tx(X)/FE is the set of all E-congruence classes of terms
in Ty (X), so it includes [z].

(4) False. An E-congruence class contains all terms in Tx(X) that are E-equal to each
other, so the E-congruence class of b and f(x,c) contains, e.g., f(c,c¢) and f(f(y,y),c)
as well.

(5) True. f(c,b) ¢+ f(d,b) implies f(c,b) € [f(d.b))-
(6) True. f(y,d) &5 f(y,0) &5 b f(2,¢) implies fr((y]. [d)) = [f(y, )] = [f(z,0)].
(7) True. T(8)(y) = [d] = [d] = T(8)(d), so0 T(B)(y ~ d) = L.

(8) False. For the modified assignment v = [z — [b]], T(7)(2) = [b] # [d = T(y)(c).

Exercise 9.6 (x): Find a signature ¥ containing at least one constant symbol, a set E
of Y-equations, and two terms s,t € Tx(X) such that

Tx({z1})/E |E VZ(s=~t),

but
Ty({z1,22})/E [ V¥ (s~ 1),

where & consists of all the variables occurring in s and ¢. (The variables in & need not
be contained in {z1,z2}.)

Proposed solution. We take ¥ := ({f/2, ¢/0}, 0), E = {f(z,z) =~ ¢, f(z,¢) =~
¢, fle,x) = c} s:= f(x,y), and t :=c.

Exercise 9.7: Let R be the following term rewrite system over ¥ = ({f/1, g/2, h/1, ¢/0},0).

= h(h(z)) (1)
-y

Give all critical pairs between the three rules.



Proposed solution. There are three critical pairs:

Between (1) at position 1 and a renamed copy of (1):
mgu {z — f(a)},
h(h(f () « f(f(f(")) = f(h(h(z"))),
critical pair: (h(h(f(z"))), f(h(h(z)))).

Between (2) at position 1 and a renamed copy of (1):
mgu {y — f(z')},
9(f ('), x) = g(f(f (")), ) = g(h(h(z")), z),
critical pair: {(g(f(2'),x), g(h(h(z")), z)).

Between (3) at position 1 and (2):
mgu {z — f(y), = f(0)},
F(f () = Pg(f (), f())) = hlg(y, f(e))),
critical pair: (f(f(y)), h(g(y, f(c))))-

Since there exists a nonjoinable critical pair, the system is not locally confluent.

Exercise 9.8: Let

{F(0) = f(¢), f(c) = f(d), f(d) = f(b), f(x) = x}

be a rewrite system over ¥ = ({f/1, b/0¢/0, d/0}, (). Is it (a) terminating? (b) normal-
izing? (c) locally confluent? (d) confluent? Justify your answers.

Proposed solution. (a) No, the rewrite system is not terminating, due to the existence
of infinite chains such as f(b) — f(c) — f(d) — f(b) — ---.

(b) Yes, the rewrite system is normalizing, because every term has a normal form. The
normal form of b, ¢, and d is itself. The normal forms of any term of the form

SUC(f(s)-+)),
>1f’s

where s € {b,c,d} are b, ¢, and d. For example, the normal form of b is b, the normal
forms of f(c) are b, ¢, and d, and the normal forms of f(f(d)) are b, ¢, and d.

(c) Yes, the rewrite system is locally confluent. There are three critical pairs:

Between the first rule at position € and the fourth rule:
mgu {z — b},
7(e) & 1(6) — b,
critical pair: (f(c),b).

The pair is joinable: f(c¢) — f(d) — f(b) — b.



Between the second rule at position € and the fourth rule:
mgu {z — c},
F(d) + f(e) = e,
critical pair: (f(d),c).

The pair is joinable: f(d) — f(b) — f(c) — ¢

Between the third rule at position € and the fourth rule:
mgu {x — d},
f(b) < f(d) — d,
critical pair: (f(b),d).

The pair is joinable: f(b) — f(c) — f(d) — d.

(d) No, the system is not confluent. Consider the two chains f(b) — band f(b) — f(c) —
d. There is no way to join b and d, which are in normal form.

Exercise 9.9 (x): Let ¥ = (Q,0) with Q = {f/1,9/1,h/1,b/0,¢/0}. Let R be the

following term rewrite system over X::

{9(f(x)) = (=), h(f(z)) = g(x), g(b) = ¢, h(c) — b}

Prove: If s,t € Tx(X) and R |= V@ (s = t), then there exists a rewrite derivation s <7 t
with at most |s| 4 |t| — 2 rewrite steps.

Proposed solution. Since every application of a rule in R reduces the size of the term
by 1, the rewrite system R is obviously terminating. It has no critical pairs, so it is
locally confluent and, by termination, confluent. By Birkhoff’s Theorem, R =V (s &~ t)
if and only if s <% t. As R is confluent, s <3}, ¢ if and only if s =% u <} t for some u.
Since every R-rewrite step reduces the size of the term by 1, the derivation s —7% u can
consist of at most |s| — 1 steps and the derivation u <} t can consist of at most |t| —1
steps; so we get a derivation s <7, t with at most (|s| — 1) + (|t| — 1) rewrite steps.

Exercise 9.10 (x): Let ¥ = (©2,0) be a signature. Let R be a term rewrite system.
(a) Prove: If s — R t, then var(s) D var(t).

(b) Prove: If z € X is a variable, s € Tx(X) is a term such that x ¢ var(s), and
R =z =~ s, then R is not confluent.



Proposed solution. (a) Assume that s — g ¢ using some rewrite rule [ — r in R. Then
s = s[lo], and t = s[ro],. Since var(r) C var(l), we obtain

var(t) = var(s[rol,) C var(s) U var(ro)
= var(s) U evar(r) var(zo)
( ) U Umevar(l) V&I‘(I‘O’)
(s) Uvar(lo) = var(s).

(b) First note that s —7, t implies var(s) 2 var(t); this follows from part (a) by an
obvious induction over the length of the rewrite derivation.

Assume that x € X is a variable, s € Tx(X) is a term such that z ¢ var(s), R =z ~ s,
and R is confluent. By Birkhoff’s Theorem, R |= x = s is equivalent to <7} s. Since
confluence is equivalent to the Church—Rosser property, this implies that there exists a
term ¢ such that x —7% ¢ and s —} t. Now note that the left-hand side of a rewrite rule
cannot be a variable; therefore a variable x cannot be rewritten to any other term using
—r. Consequently, x = ¢. But then s —% x, which implies that var(s) 2 var(z) = {x},
contradicting the assumption that x ¢ var(s).

Exercise 9.11 (x): Let ¥ = (Q,0) be a first-order signature, let E be a set of X-
equations such that for every equation s ~ s’ in E neither s nor s is a variable. For any
term ¢t € Ty (X), let [¢t] denote the congruence class of t w.r.t. E.

Prove or refute: For every variable z € X we have [z] = {z}.

Proposed solution. The statement holds. Proof: Assume that there is a variable x € X
such that [x] # {z}. Since = € [z], this means that [x] must contain some term ¢ different
from x. Therefore E/ - x ~ ¢, and by Birkhoff’s Theorem, this implies x <+7 t. Since
t is different from z, we have x <—>E t, and therefore x <> t' <»%, t for some term t'.
Consequently, z —g t' or t' — g . So some subterm of x must be equal to either so or
s'o for some equation s ~ s’ in E. This is impossible, though, since neither s nor s is a
variable.

(An alternative proof uses induction over the derivation tree for E -t ~ t' to show that
no statement £ F x ~ ¢t with ¢ # x can be derived.)

Exercise 9.12 (x): A friend asks you to proofread her master thesis. On page 15 of the
thesis, your friend writes the following:



Lemma 5. Let = be a well-founded ordering over a set A, let — be a binary
relation such that — C >. Let r» be an element of A that is irreducible with
respect to —, and define A, = {t € A |t —* r}. If for every g, u1,u2 € A such
that uq < ug — us —* r there exists a ug € A such that u; —* ug +* us, then
for every tg € A, and t1 € A, tg —* t1 implies t; € A,.

Proof. We use well-founded induction over £y with respect to =. Let tg € A, and
t1 € A such that tg —* t;. If this derivation is empty, the result is trivial, so
suppose that tyg — t| —* t1. Since tg € A, is reducible, it is different from r, hence
there is a nonempty derivation tg — t9 —* r. By assumption, there exists a t3 € A
such that t] —* t3 «* to. Now tg > t3 and to € A, hence t3 € A, by the induction
hypothesis, and thus ¢} € A,. Since ¢y > t|, we can use the induction hypothesis
once more and obtain t; € A, as required.

(1) Is the “proof” correct?
(2) If the “proof” is not correct:
(a) Which step is incorrect?

(b) Does the “theorem” hold? If yes, give a correct proof; otherwise, give a
counterexample.

Proposed solution. Yes, the proof is correct.



