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Exercises 9: Rewrite Systems

Exercise 9.1: Let Σ = (Ω, ∅) with Ω = {b/0, f/1, g/1}. Let E be the set of (implicitly
universally quantified) equations {f(g(f(x))) ≈ b}.

Give one possible derivation for the statement E ⊢ f(g(b)) ≈ b.

Proposed solution.

E ⊢ f(g(f(b)) ≈ b

E ⊢ g(f(g(f(b)))) ≈ g(b)

E ⊢ f(g(f(g(f(b))))) ≈ f(g(b))

E ⊢ f(g(b)) ≈ f(g(f(g(f(b))))) E ⊢ f(g(f(g(f(b))))) ≈ b

E ⊢ f(g(b)) ≈ b

Note that the “Instance” rule (which is used to derive the two leaf formulas) does not
have a premise.

Exercise 9.2: Let Σ = (Ω, ∅), let Ω = {f/1, b/0, c/0, d/0}. Let E be the set of equa-
tions {f(b) ≈ d, f(c) ≈ d, f(f(x)) ≈ f(x)}. Let X be a countably infinite set of variables.

(a) Show that f(d)↔∗
E d.

(b) Sketch what the universe of TΣ(∅)/E looks like. How many elements does it have?

(c) Determine for each of the following equations whether it holds in TΣ(X)/E and
whether it holds in TΣ(∅)/E. Give a very brief explanation.

f(b) ≈ b (1)

∀y f(f(f(y))) ≈ f(f(y)) (2)

∀x∀y f(x) ≈ f(y) (3)
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Proposed solution. (a) f(d)←E f(f(c))→E f(c)→E d.

(b) The universe of TΣ(∅)/E consists of the congruence classes of TΣ(∅) w.r.t.↔
∗
E. Since

every ground term except b and c can be rewritten to d using E, there are three such
congruence classes, namely [b] = {b}, [c] = {c}, and [d] = TΣ(∅) \ {b, c}.

(c) By Birkhoff’s Theorem, an equation ∀~x (s ≈ t) holds in TΣ(X)/E if and only if
s ↔∗

E t. Therefore, (2) holds in TΣ(X)/E, and (1) and (3) do not hold. (It is not
possible to rewrite f(b) to b or f(x) to f(y) using ↔E .)

For T = TΣ(∅)/E, we observe that for every assignment β, T (β)(f(b)) = [d] and
T (β)(b) = [b], therefore (1) does not hold in TΣ(∅)/E. On the other hand, for every
assignment β, we have T (β)(f(f(f(y)))) = T (β)(f(f(y))) = [d] and T (β)(f(y)) =
T (β)(f(x)) = [d], therefore both (2) and (3) hold in TΣ(∅)/E.

Exercise 9.3: Let Σ = (Ω, ∅) with Ω = {f/1, b/0, c/0, d/0}. Let E be the set of
(implicitly universally quantified) equations {f(f(x)) ≈ b}.

(a) Show that b↔∗
E f(b). How does the rewrite proof look?

(b) Is the universe of the initial E-algebra TΣ(∅)/E finite or infinite? If it is finite, how
many elements does it have?

Proposed solution. (a) The shortest rewrite proof has the form b←E f(f(f(t)))→E

f(b), where the term t can be chosen arbitrarily. (There are also more complicated rewrite
proofs that consist of more than two steps.)

(b) The universe of TΣ(∅)/E consists of five congruence classes, namely [c] = {c}, [d] =
{d}, [f(c)] = {f(c)}, [f(d)] = {f(d)}, and [b]. The last class contains all remaining
ground terms, that is, b, f(b), and all terms of the form f(f(t)) with t ∈ TΣ(∅).

Exercise 9.4: Let Σ = (Ω, ∅) be a first-order signature with Ω = {f/1, b/0, c/0, d/0}.
Let E be the set of Σ-equations

{∀x (f(x) ≈ b), c ≈ d},

let X = {x, y, z} be a set of variables. For any t ∈ TΣ(X), let [t] denote the congruence
class of t w.r.t. E. Let T = TΣ(X)/E, let UT be the universe of T , and let β : X → UT

be the assignment that maps every variable to [c]. Determine for each of the following
statements whether they are true or false:
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(1) [z] is a finite set of Σ-terms.

(2) [f(z)] is a finite set of Σ-terms.

(3) [c] is a set of ground Σ-terms.

(4) [f(c)] is a set of ground Σ-terms.

(5) UT is finite.

(6) [b] ∈ UT .

(7) {x, y} ∈ UT .

(8) T (β)(∀z (z ≈ f(x))) = 1.

Proposed solution. The elements of the universe of T are the congruence classes of
TΣ({x, y, z}) with respect to E. There are five congruence classes, namely {x}, {y}, {z},
{c, d}, and a fifth class that contains all terms of TΣ({x, y, z}) with f or b at the root.
Consequently, we obtain:

(1) True. [z] = {z}.

(2) False. [f(z)] contains b, f(b), f(f(b)), . . . .

(3) True. [c] = {c, d}.

(4) False. [f(c)] contains, e.g., f(z).

(5) True. See above.

(6) True. [b] is a congruence class.

(7) False. {x, y} is not a congruence class.

(8) False. z ≈ f(x) is false for β[z 7→ [c]].

Exercise 9.5: Let Σ = (Ω, ∅) be a first-order signature with Ω = {f/2, b/0, c/0, d/0}.
Let E be the set of Σ-equations

{∀x (f(x, c) ≈ b), c ≈ d},

let X = {x, y, z} be a set of variables. For any t ∈ TΣ(X), let [t] denote the congruence
class of t w.r.t. E. Let T = TΣ(X)/E let UT be the universe of T , and let β : X → UT

be the assignment that maps every variable to [c]. Determine for each of the following
statements whether they are true or false:

(1) [c] is a finite set of Σ-terms.

(2) [f(c, c)] is a set of ground Σ-terms.

(3) [x] is an element of the universe of T .

(4) {b, f(x, c)} is a congruence class w.r.t. E.

(5) f(c, b) ∈ [f(d, b)].

(6) fT ([y], [d]) = [f(z, c)].

(7) T (β)(y ≈ d) = 1.

(8) T (β)(∀z (z ≈ c)) = 1.
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Proposed solution. (1) True. [c] = {c, d}.

(2) False. f(y, c)↔E b↔E f(c, c) implies f(y, c) ∈ [f(c, c)].

(3) True. The universe of T = TΣ(X)/E is the set of all E-congruence classes of terms
in TΣ(X), so it includes [x].

(4) False. An E-congruence class contains all terms in TΣ(X) that are E-equal to each
other, so the E-congruence class of b and f(x, c) contains, e.g., f(c, c) and f(f(y, y), c)
as well.

(5) True. f(c, b)↔E f(d, b) implies f(c, b) ∈ [f(d, b)].

(6) True. f(y, d)↔E f(y, c)↔E b↔E f(z, c) implies fT ([y], [d]) = [f(y, d)] = [f(z, c)].

(7) True. T (β)(y) = [c] = [d] = T (β)(d), so T (β)(y ≈ d) = 1.

(8) False. For the modified assignment γ = β[x 7→ [b]], T (γ)(z) = [b] 6= [c] = T (γ)(c).

Exercise 9.6 (∗): Find a signature Σ containing at least one constant symbol, a set E
of Σ-equations, and two terms s, t ∈ TΣ(X) such that

TΣ({x1})/E |= ∀~x (s ≈ t),

but
TΣ({x1, x2})/E 6|= ∀~x (s ≈ t),

where ~x consists of all the variables occurring in s and t. (The variables in ~x need not
be contained in {x1, x2}.)

Proposed solution. We take Σ := ({f/2, c/0}, ∅), E := {f(x, x) ≈ c, f(x, c) ≈
c, f(c, x) ≈ c} s := f(x, y), and t := c.

Exercise 9.7: Let R be the following term rewrite system over Σ = ({f/1, g/2, h/1, c/0}, ∅).

f(f(x))→ h(h(x)) (1)

g(f(y), x)→ g(y, x) (2)

h(g(z, f(c)))→ f(z) (3)

Give all critical pairs between the three rules.

4



Proposed solution. There are three critical pairs:

Between (1) at position 1 and a renamed copy of (1):
mgu {x 7→ f(x′)},
h(h(f(x′)))← f(f(f(x′)))→ f(h(h(x′))),
critical pair: 〈h(h(f(x′))), f(h(h(x′)))〉.

Between (2) at position 1 and a renamed copy of (1):
mgu {y 7→ f(x′)},
g(f(x′), x)← g(f(f(x′)), x)→ g(h(h(x′)), x),
critical pair: 〈g(f(x′), x), g(h(h(x′)), x)〉.

Between (3) at position 1 and (2):
mgu {z 7→ f(y), x 7→ f(c)},
f(f(y))← h(g(f(y), f(c))) → h(g(y, f(c))),
critical pair: 〈f(f(y)), h(g(y, f(c)))〉.

Since there exists a nonjoinable critical pair, the system is not locally confluent.

Exercise 9.8: Let

{f(b)→ f(c), f(c)→ f(d), f(d)→ f(b), f(x)→ x}

be a rewrite system over Σ = ({f/1, b/0 c/0, d/0}, ∅). Is it (a) terminating? (b) normal-
izing? (c) locally confluent? (d) confluent? Justify your answers.

Proposed solution. (a) No, the rewrite system is not terminating, due to the existence
of infinite chains such as f(b)→ f(c)→ f(d)→ f(b)→ · · · .

(b) Yes, the rewrite system is normalizing, because every term has a normal form. The
normal form of b, c, and d is itself. The normal forms of any term of the form

f(f(· · · (f
︸ ︷︷ ︸

≥ 1 f ’s

(s)) · · · )),

where s ∈ {b, c, d} are b, c, and d. For example, the normal form of b is b, the normal
forms of f(c) are b, c, and d, and the normal forms of f(f(d)) are b, c, and d.

(c) Yes, the rewrite system is locally confluent. There are three critical pairs:

Between the first rule at position ε and the fourth rule:
mgu {x 7→ b},
f(c)← f(b)→ b,
critical pair: 〈f(c), b〉.

The pair is joinable: f(c)→ f(d)→ f(b)→ b.
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Between the second rule at position ε and the fourth rule:
mgu {x 7→ c},
f(d)← f(c)→ c,
critical pair: 〈f(d), c〉.

The pair is joinable: f(d)→ f(b)→ f(c)→ c.

Between the third rule at position ε and the fourth rule:
mgu {x 7→ d},
f(b)← f(d)→ d,
critical pair: 〈f(b), d〉.

The pair is joinable: f(b)→ f(c)→ f(d)→ d.

(d) No, the system is not confluent. Consider the two chains f(b)→ b and f(b)→ f(c)→
d. There is no way to join b and d, which are in normal form.

Exercise 9.9 (∗): Let Σ = (Ω, ∅) with Ω = {f/1, g/1, h/1, b/0, c/0}. Let R be the
following term rewrite system over Σ:

{g(f(x))→ h(x), h(f(x))→ g(x), g(b)→ c, h(c)→ b}

Prove: If s, t ∈ TΣ(X) and R |= ∀~x (s ≈ t), then there exists a rewrite derivation s↔∗
R t

with at most |s|+ |t| − 2 rewrite steps.

Proposed solution. Since every application of a rule in R reduces the size of the term
by 1, the rewrite system R is obviously terminating. It has no critical pairs, so it is
locally confluent and, by termination, confluent. By Birkhoff’s Theorem, R |= ∀~x (s ≈ t)
if and only if s↔∗

R t. As R is confluent, s↔∗
R t if and only if s→∗

R u←∗
R t for some u.

Since every R-rewrite step reduces the size of the term by 1, the derivation s→∗
R u can

consist of at most |s| − 1 steps and the derivation u←∗
R t can consist of at most |t| − 1

steps; so we get a derivation s↔∗
R t with at most (|s| − 1) + (|t| − 1) rewrite steps.

Exercise 9.10 (∗): Let Σ = (Ω, ∅) be a signature. Let R be a term rewrite system.

(a) Prove: If s→R t, then var(s) ⊇ var(t).

(b) Prove: If x ∈ X is a variable, s ∈ TΣ(X) is a term such that x /∈ var(s), and
R |= x ≈ s, then R is not confluent.

6



Proposed solution. (a) Assume that s→R t using some rewrite rule l→ r in R. Then
s = s[lσ]p and t = s[rσ]p. Since var(r) ⊆ var(l), we obtain

var(t) = var(s[rσ]p) ⊆ var(s) ∪ var(rσ)
= var(s) ∪

⋃

x∈var(r) var(xσ)

⊆ var(s) ∪
⋃

x∈var(l) var(xσ)

= var(s) ∪ var(lσ) = var(s).

(b) First note that s →∗
R t implies var(s) ⊇ var(t); this follows from part (a) by an

obvious induction over the length of the rewrite derivation.

Assume that x ∈ X is a variable, s ∈ TΣ(X) is a term such that x /∈ var(s), R |= x ≈ s,
and R is confluent. By Birkhoff’s Theorem, R |= x ≈ s is equivalent to x ↔∗

R s. Since
confluence is equivalent to the Church–Rosser property, this implies that there exists a
term t such that x→∗

R t and s→∗
R t. Now note that the left-hand side of a rewrite rule

cannot be a variable; therefore a variable x cannot be rewritten to any other term using
→R. Consequently, x = t. But then s →∗

R x, which implies that var(s) ⊇ var(x) = {x},
contradicting the assumption that x /∈ var(s).

Exercise 9.11 (∗): Let Σ = (Ω, ∅) be a first-order signature, let E be a set of Σ-
equations such that for every equation s ≈ s′ in E neither s nor s′ is a variable. For any
term t ∈ TΣ(X), let [t] denote the congruence class of t w.r.t. E.

Prove or refute: For every variable x ∈ X we have [x] = {x}.

Proposed solution. The statement holds. Proof: Assume that there is a variable x ∈ X
such that [x] 6= {x}. Since x ∈ [x], this means that [x] must contain some term t different
from x. Therefore E ⊢ x ≈ t, and by Birkhoff’s Theorem, this implies x ↔∗

E t. Since
t is different from x, we have x ↔+

E t, and therefore x ↔E t′ ↔∗
E t for some term t′.

Consequently, x→E t′ or t′ →E x. So some subterm of x must be equal to either sσ or
s′σ for some equation s ≈ s′ in E. This is impossible, though, since neither s nor s′ is a
variable.

(An alternative proof uses induction over the derivation tree for E ⊢ t ≈ t′ to show that
no statement E ⊢ x ≈ t with t 6= x can be derived.)

Exercise 9.12 (∗): A friend asks you to proofread her master thesis. On page 15 of the
thesis, your friend writes the following:
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Lemma 5. Let ≻ be a well-founded ordering over a set A, let → be a binary
relation such that → ⊆ ≻. Let r be an element of A that is irreducible with
respect to →, and define Ar = {t ∈ A | t →∗ r}. If for every u0, u1, u2 ∈ A such
that u1 ← u0 → u2 →

∗ r there exists a u3 ∈ A such that u1 →
∗ u3 ←

∗ u2, then
for every t0 ∈ Ar and t1 ∈ A, t0 →

∗ t1 implies t1 ∈ Ar.

Proof. We use well-founded induction over t0 with respect to ≻. Let t0 ∈ Ar and
t1 ∈ A such that t0 →

∗ t1. If this derivation is empty, the result is trivial, so
suppose that t0 → t′1 →

∗ t1. Since t0 ∈ Ar is reducible, it is different from r, hence
there is a nonempty derivation t0 → t2 →

∗ r. By assumption, there exists a t3 ∈ A
such that t′1 →

∗ t3 ←
∗ t2. Now t0 ≻ t2 and t2 ∈ Ar, hence t3 ∈ Ar by the induction

hypothesis, and thus t′1 ∈ Ar. Since t0 ≻ t′1, we can use the induction hypothesis
once more and obtain t1 ∈ Ar as required.

(1) Is the “proof” correct?

(2) If the “proof” is not correct:

(a) Which step is incorrect?

(b) Does the “theorem” hold? If yes, give a correct proof; otherwise, give a
counterexample.

Proposed solution. Yes, the proof is correct.
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