Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD, Tanguy Bozec, and Lydia Kondylidou based on exercises by Dr. Uwe Waldmann

Winter Term 2025/26

Exercises 5: Resolution

Exercise 5.1: Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Determine for each of the following statements whether they are true or false:

- (1) There is a Σ -model \mathcal{A} of $P(b) \wedge \neg P(f(b))$ such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (2) There is a Σ -model \mathcal{A} of $P(b) \wedge \neg P(f(f(b)))$ such that $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$.
- (3) $P(b) \wedge \neg P(f(b))$ has a Herbrand model.
- (4) $P(b) \wedge \forall x \neg P(x)$ has a Herbrand model.
- (5) $\forall x P(f(x))$ has a Herbrand model with a two-element universe.
- (6) $\forall x P(x)$ has exactly one Herbrand model.
- (7) $\forall x P(f(x))$ entails $\forall x P(f(f(x)))$.

Proposed solution. (1) True. Define $b_A = 7$, $f_A(a) = 8$ for $a \in \{7, 8, 9\}$ and $P_A = \{7\}$.

- (2) False. If there existed a model \mathcal{A} such that $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$, then we would have $b_{\mathcal{A}} = f_{\mathcal{A}}(b_{\mathcal{A}}) = f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}}))$, but $b_{\mathcal{A}} \in P_{\mathcal{A}}$ and $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}})) \notin P_{\mathcal{A}}$.
- (3) True. Define $P_{\mathcal{A}} = \{b\}$.
- (4) False. The formula is contradictory; it has no model and in particular no Herbrand model.
- (5) False. Every Herbrand interpretation (and therefore every Herbrand model) over the signature Σ has the infinite universe $T_{\Sigma} = \{b, f(b), f(f(b)), \dots\}$.
- (6) True. The Herbrand interpretation in which $P_{\mathcal{A}} = T_{\Sigma}$ is the only Herbrand model.

(7) True. If $f_{\mathcal{A}}(a) \in P_{\mathcal{A}}$ for every $a \in U_{\mathcal{A}}$, since $f_{\mathcal{A}}(a) \in U_{\mathcal{A}}$ we have $f_{\mathcal{A}}(f_{\mathcal{A}}(a)) \in P_{\mathcal{A}}$ for every $a \in U_{\mathcal{A}}$.

Exercise 5.2: Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Let F be the Σ -formula

$$\neg P(b) \land P(f(f(b))) \land \forall x (\neg P(x) \lor P(f(x))).$$

Determine for each of the following statements whether they are true or false:

- (1) There is a Σ -model \mathcal{A} of F such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (2) There is a Σ -model \mathcal{A} of F such that $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$.
- (3) F has exactly two Σ -models.
- (4) Every Σ -model of F is a model of $\exists x P(x)$.
- (5) Every Σ -model of F is a model of $\forall x P(f(f(x)))$.
- (6) There are infinitely many Herbrand interpretations over Σ .
- (7) There is a Herbrand model of F over Σ whose universe has exactly two elements.
- (8) There is a Herbrand model of F over Σ with an infinite universe.
- (9) F has exactly two Herbrand models over Σ .

Proposed solution. (1) True. E.g., $U_{\mathcal{A}} = \{7, 8, 9\}$, $b_{\mathcal{A}} = 7$, $f_{\mathcal{A}}(7) = 8$, $f_{\mathcal{A}}(8) = 8$, $f_{\mathcal{A}}(9) = 9$, $P_{\mathcal{A}} = \{8\}$.

- (2) False. If $f_{\mathcal{A}}(a) = a$ for every $a \in U_{\mathcal{A}}$, then $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}})) = f_{\mathcal{A}}(b_{\mathcal{A}}) = b_{\mathcal{A}}$, but $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}})) \in P_{\mathcal{A}}$ and $b_{\mathcal{A}} \notin P_{\mathcal{A}}$.
- (3) False. F has infinitely many models.
- (4) True. In every model of F, P(x) holds for the assignment that maps x to $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}}))$.
- (5) False. E.g., in the model given for (1), P(f(f(x))) does not hold for the assignment that maps x to 9.
- (6) True. The universe of a Herbrand interpretation over Σ is the set of ground Σ -terms, i.e., $T_{\Sigma}(\emptyset) = \{b, f(b), f(f(b)), f(f(f(b))), \dots\}$. Since the universe is infinite, there are infinitely many ways to interpret P.
- (7) False. For every Herbrand model of F over Σ , the universe is infinite, see (6).
- (8) True. In fact, every Herbrand model over Σ has an infinite universe, see (6).

(9) True. In every Herbrand model for F, P(b) must be false and $P(f^n(b))$ must be true for every $n \geq 2$. Since P(f(b)) can be either true or false, there are two Herbrand models for F.

Exercise 5.3: Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{f/1, b/0, c/0\}$ and $\Pi = \{P/1\}$. Are the following statements correct?

- (1) The formula $\forall x P(x)$ has infinitely many Σ -models.
- (2) Every model of $\forall x P(x)$ is a model of $\forall x P(f(x))$.
- (3) The formula $\neg P(b) \land \forall x P(x)$ has a Σ -model with an infinite universe.
- (4) The formula $\neg P(b) \land \forall x P(f(x))$ has a Σ -model with a two-element universe.
- (5) Every Σ -model of $P(b) \wedge P(c) \wedge \forall x \, P(f(x))$ is a model of $\forall x \, P(x)$.
- (6) Every Herbrand model over Σ of $P(b) \wedge P(c) \wedge \forall x \, P(f(x))$ has an infinite universe.
- (7) The formula $P(b) \vee P(c)$ has exactly three Herbrand models over Σ .
- (8) The formula $\forall x P(f(x))$ has exactly four Herbrand models over Σ .

Proposed solution. (1) True. In particular, it has models with arbitrarily large universes.

- (2) True. $\forall x P(x) \models \forall x P(f(x))$.
- (3) False. The formula is unsatisfiable, so it has no models at all.
- (4) True. Take $U_{\mathcal{A}} = \{1, 2\}, b_{\mathcal{A}} = 1, c_{\mathcal{A}} = 1, f_{\mathcal{A}} : a \mapsto 2, P_{\mathcal{A}} = \{2\}.$
- (5) False. Take $U_{\mathcal{A}} = \{1, 2\}, \ b_{\mathcal{A}} = 1, \ c_{\mathcal{A}} = 1, \ f_{\mathcal{A}} : a \mapsto 1, \ P_{\mathcal{A}} = \{1\}.$
- (6) True. In fact all Herbrand interpretations over Σ have the same infinite universe $\{b, c, f(b), f(c), f(f(b)), f(f(c)), \dots\}$.
- (7) False. $P(b) \vee P(c)$ has infinitely many Herbrand models over Σ , which differ in the interpretation of P on ground terms different from b and c.
- (8) True. The interpretation of P on all ground terms with f at the root is fixed, but P can be either true or false for b and either true or false for c; this leaves four combinations.

Exercise 5.4: Let $\Sigma = (\Omega, \Pi)$ be a first-order signature with $\Omega = \{b/0, f/1\}$ and $\Pi = \{P/1\}$. Let F be the Σ -formula

$$\neg P(b) \land P(f(f(b))) \land \forall x (P(x) \lor P(f(x))).$$

Determine for each of the following statements whether they are true or false:

- (1) If \mathcal{A} is a Σ -model of F, then $P_{\mathcal{A}} \neq \emptyset$ and $P_{\mathcal{A}} \neq U_{\mathcal{A}}$.
- (2) There is a Σ -model \mathcal{A} of F such that $U_{\mathcal{A}} = \{7, 8, 9\}$.
- (3) There is a Σ -model \mathcal{A} of F such that $f_{\mathcal{A}}(a) = f_{\mathcal{A}}(a')$ for all $a, a' \in U_{\mathcal{A}}$.
- (4) F has exactly four Σ -models.
- (5) There are infinitely many Herbrand interpretations over Σ .
- (6) There is an Herbrand model of F over Σ with a finite universe.
- (7) There is an Herbrand model \mathcal{A} of F over Σ and an assignment β such that $\mathcal{A}(\beta)(f(b)) = \mathcal{A}(\beta)(f(f(b)))$.

Proposed solution. (1): True. $P_{\mathcal{A}}$ cannot equal $U_{\mathcal{A}}$, since $b_{\mathcal{A}} \notin P_{\mathcal{A}}$; $P_{\mathcal{A}}$ cannot be empty, since $f_{\mathcal{A}}(f_{\mathcal{A}}(b_{\mathcal{A}})) \in P_{\mathcal{A}}$.

- (2) True. Let $U_{\mathcal{A}} = \{7, 8, 9\}$, let $b_{\mathcal{A}} = 7$, let $f_{\mathcal{A}}$ map every element of $U_{\mathcal{A}}$ to 8, and let $P_{\mathcal{A}} = \{8\}$.
- (3) True. See (2).
- (4) False. F has infinitely many Σ -models; in particular it has Σ -models with any universe with at least 2 elements.
- (5) True. Since $T_{\Sigma}(\emptyset)$ is infinite, there are infinitely many different possibilities to choose a subset $P_{\mathcal{A}} \subseteq T_{\Sigma}(\emptyset)$.
- (6) False. All Herbrand models of F over Σ have the same universe $T_{\Sigma}(\emptyset)$ (which is infinite).
- (7) False. If \mathcal{A} is an Herbrand model over Σ , then $\mathcal{A}(\beta)(t) = t$ for every ground term $t \in \mathcal{T}_{\Sigma}(\emptyset)$, so $\mathcal{A}(\beta)(f(b))$ and $\mathcal{A}(\beta)(f(f(b)))$ are different elements of the universe.

Exercise 5.5: Determine for each of the following statements whether it is true or false:

- (1) If $\Sigma = (\{b/0, c/0\}, \{P/1\})$, then $P(b) \vee \neg P(c)$ has exactly three Herbrand models over Σ .
- (2) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, then $P(c) \vee P(f(c))$ has an Herbrand model over Σ whose universe has exactly four elements.

- (3) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, then $\neg P(c) \wedge \forall x P(f(x))$ has a model whose universe has exactly five elements
- (4) If $\Sigma = (\{b/0, c/0, d/0\}, \{P/1\})$, then $P(b) \vee \neg P(b)$ and $P(c) \vee \neg P(d)$ are equisatisfiable.
- (5) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, N is a set of universally quantified Σ -clauses, and every clause in N has at least one positive literal, then N has an Herbrand model.
- (6) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, N is a set of universally quantified Σ -clauses, and $N \models \neg P(x) \lor P(f(x))$, then N has a model.
- (7) If $\Sigma = (\{f/1, c/0\}, \{P/1\})$, then $\forall x P(f(x)) \models \forall y P(c) \lor P(f(f(y)))$.

Proposed solution. (1) True. There are exactly four Herbrand interpretations over Σ , namely \emptyset , $\{P(b)\}$, $\{P(c)\}$, and $\{P(b), P(c)\}$, and three of them (the first, the second, and the fourth) are models of $P(b) \vee \neg P(c)$.

- (2) False. The universe of every Herbrand model is the set of ground terms. Since Σ contains a unary function symbol, there are infinitely many ground terms.
- (3) True. Take A with $U_A = \{1, 2, 3, 4, 5\}$, $c_A = 1$, $f_A : n \mapsto 2$, and $P_A = \{2\}$.
- (4) True. Both formulas are satisfiable, therefore the are equisatisfiable.
- (5) True. Take an Herbrand interpretation in which all atoms are true; then every clause that has at least one positive literal is true in that interpretation.
- (6) False. Take $N = \{\bot\}$.
- (7) True. By Lemma 3.3.8, every model of $\forall x \, P(f(x))$ is also a model of $\forall y \, P(f(f(y)))$ and thus a model of $\forall y \, P(c) \vee P(f(f(y)))$.

Exercise 5.6: Let N be the set consisting of the following ground clauses:

$$P \vee Q$$
 (1)

$$P \vee \neg Q$$
 (2)

$$\neg P \lor Q$$
 (3)

$$\neg P \lor \neg Q \quad (4)$$

- (a) Show that $N \vdash_{Res} \bot$, that is, derive \bot from N using the "Resolution" and "Factorization" rules.
- (b) Why is it impossible to derive the empty clause from N without using "Factorization"?

Proposed solution. (a) From (1) and (2), using "Resolution" we obtain

$$P \vee P$$
 (5)

From (5), using "Factorization" we obtain

$$P$$
 (6)

From (3) and (4), using "Resolution" we obtain

$$\neg P \lor \neg P$$
 (7)

From (6) and (7), using "Resolution" we obtain

$$\neg P$$
 (8)

From (6) and (8), using "Resolution" we obtain the empty clause.

(b) Given two clauses with $m \ge 1$ and $n \ge 1$ literals, respectively, the result of "Resolution" always has m+n-2 literals. Since the problem consists exclusively of two-literal clauses, the result of all inferences from N also consist of 2+2-2=2 literals, which in turn can only yield two-literal clauses, and so on. The empty clause, which has zero literals, can never be generated.

Exercise 5.7 (*): Find a finite set N of ground clauses such that no clause in N is a tautology and such that $Res^*(N)$ is infinite.

Proposed solution. We take N to be the set consisting of the following clauses:

$$P$$
 (1)

$$\neg P \lor Q \lor Q$$
 (2)

$$\neg Q \lor P \lor P$$
 (3)

Using the "Resolution" rule, from (1) and (2) we obtain

$$Q \vee Q$$
 (4)

Using the "Resolution" rule, from (4) and (3) we obtain

$$P \vee P \vee Q$$
 (5)

Using the "Resolution" rule, from (5) and (2) we obtain

$$Q \lor Q \lor P \lor Q$$
 (6)

Using the "Resolution" rule, from (6) and (3) we obtain

$$P \lor P \lor Q \lor P \lor Q$$
 (7)

And so on. At each step, we derive a clause with one more literal than we started with. Thus $Res^*(N)$ is infinite.

Exercise 5.8: Let $\Sigma = (\Omega, \Pi)$ with $\Omega = \{b/0, c/0\}$ and $\Pi = \{P/1, Q/0, R/0\}$. Use the ground resolution calculus Res to check whether the following clause set is satisfiable:

$$\neg P(b) \lor Q \quad (1)$$

$$\neg P(b) \lor R \quad (2)$$

$$\neg P(c) \lor Q \quad (3)$$

$$\neg Q \lor \neg R \quad (4)$$

$$Q \lor R \quad (5)$$

$$P(b) \quad (6)$$

$$\neg P(c) \quad (7)$$

Proposed solution. From (6) and (1) we obtain via "Resolution" Q (8), from (6) and (2) we obtain via "Resolution" R (9), from (8) and (4) we obtain via "Resolution" R (10), and from (9) and (10) we obtain via "Resolution" L. Since resolution is sound, the clause set is unsatisfiable.

Exercise 5.9: Use the ground resolution calculus to show that

$$\big\{(P \leftrightarrow (Q \land R)),\, (P \leftrightarrow Q)\big\} \models Q \to R$$

Hint: You will need some preprocessing.

Proposed solution.

- 1. Convert to CNF:
 - $P \leftrightarrow (Q \land R)$:

$$\begin{split} P &\leftrightarrow (Q \land R) \\ \Rightarrow_{CNF} (P \rightarrow (Q \land R)) \land ((Q \land R) \rightarrow P) \\ \Rightarrow^{+}_{CNF} (\neg P \lor (Q \land R)) \land (\neg (Q \land R) \lor P) \\ \Rightarrow^{+}_{CNF} (\neg P \lor Q) \land (\neg P \lor R) \land (\neg Q \lor \neg R \lor P) \end{split}$$

• $P \leftrightarrow Q$:

$$\begin{split} P &\leftrightarrow Q \\ \Rightarrow_{CNF} \ (P \to Q) \land (Q \to P) \\ \Rightarrow_{CNF}^+ \ (\neg P \lor Q) \land (\neg Q \lor P) \end{split}$$

• Negation of $Q \to R$:

$$\neg(Q \to R)$$
 $\Rightarrow^+_{CNF} (Q \land \neg R)$

- 2. Combine all the clauses: $\{\neg P \lor Q, \neg P \lor R, \neg Q \lor \neg R \lor P, \neg P \lor Q, \neg Q \lor P, Q, \neg R\}$.
- 3. Use the resolution calculus to derive a contradiction:

```
\neg P \lor Q
                                   (given)
 2
     \neg P \lor R
                                    (given)
 3
     \neg Q \lor \neg R \lor P
                                   (given)
 4
     \neg P \lor Q
                                   (given)
 5
     \neg Q \lor P
                                   (given)
 6
     Q
                                   (given)
     \neg R
                                   (given)
 8
     P
                          (Res. 6 into 5)
 9
                          (Res. 8 into 2)
     R
10
                          (Res. 9 into 7)
     \perp
```

Exercise 5.10: Prove or refute: Res(N) is satisfiable if and only if N is satisfiable.

Proposed solution. The statement does not hold. For example, if $N = \{P \lor Q, \neg P, \neg Q\}$, then $Res(N) = \{Q, P\}$; if $N = \{\neg P \lor \neg P, P\}$, then $Res(N) = \{\neg P\}$; and if $N = \{\bot\}$, then $Res(N) = \emptyset$. In all three cases, the set N is unsatisfiable, but Res(N) is satisfiable.

Exercise 5.11: Prove or refute: All clauses in $Res^*(N)$ are tautologies if and only if all clauses in N are tautologies.

Proposed solution. The statement holds.

Ground resolution is sound. This means that for every algebra \mathcal{A} , whenever the premises of an inference hold in \mathcal{A} , then the conclusion holds in \mathcal{A} as well. In particular, if the premises are tautological (i.e., hold in every algebra \mathcal{A}), then the conclusion holds in every algebra \mathcal{A} , so it is also tautological. Thus, if all clauses in a set M are tautologies, then all clauses in Res(M) are tautologies. By induction over n we can now show that, if all clauses in N are tautologies, then all clauses in $Res^n(N)$ are tautologies. So, all clauses in $Res^*(N) = \bigcup_{n>0} Res^n(N)$ are tautologies.

The reverse direction follows immediately from the fact that $N \subseteq Res^*(N)$.

Exercise 5.12 (*): Prove the following statement: If N is a set of propositional formulas and C is a propositional formula such that $N \models C$, then there exists a finite subset $M \subseteq N$ such that $M \models C$.

Proposed solution. Let $C = L_1 \vee \cdots \vee L_n$. If $N \models C$, then by definition of \models we have $N \cup \{\overline{L_1}, \ldots, \overline{L_n}\} \models \bot$, where $\overline{L_i}$ denotes the complementary literal of L_i . By refutational completeness of ground resolution, we have $\bot \in Res^*(N \cup \{\overline{L_1}, \ldots, \overline{L_n}\})$. This means that there exists a finite derivation tree with \bot at the root and clauses from $N \cup \{\overline{L_1}, \ldots, \overline{L_n}\}$ on its leaves. Take M to be the finite subset of clauses from N that appear on the leaves. The existence of the derivation tree means that $\bot \in Res^*(M \cup \{\overline{L_1}, \ldots, \overline{L_n}\})$. By soundness of ground resolution, we have $M \cup \{\overline{L_1}, \ldots, \overline{L_n}\} \models \bot$. Equivalently, $M \models C$.