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Exercises 2: Preliminaries Continued and Propositional Logic

Exercise 2.1: Determine all strict total orderings ≻ on the set {a, b, c, d, e} such that
the following properties hold simultaneously:

(1) {a, b} ≻mul {a, a, c}

(2) {c, d} ≻mul {b, b, b}

(3) {a, e} ≻mul {c, e, e}

Proposed solution. Ineq. (1) holds if and only if b ≻ a and b ≻ c. Ineq. (2) holds if
and only if c ≻ b or d ≻ b, but the first of the two possibilities is excluded by (1). Finally
Ineq. (3) holds if and only if a ≻ c and a ≻ e. There are two strict orderings that satisfy
these conditions, namely d ≻ b ≻ a ≻ c ≻ e and d ≻ b ≻ a ≻ e ≻ c.

Exercise 2.2: Let M be a set, and let ≻ be a strict partial ordering over M . Let
b, b1, b2 ∈ M , and let S, S1, S2 be finite multisets over M .

(a) Prove or refute: If {b} ≻mul S1 and {b} ≻mul S2, then {b} ≻mul S1 ∪ S2.

(b) Prove or refute: If S ≻mul {b1} and S ≻mul {b2}, then S ≻mul {b1, b2}.

Proposed solution. (a) The statement holds: If {b} ≻mul S1, then by definition S1 =
({b} − X) ∪ Y for multisets X and Y such that ∅ 6= X ⊆ {b} and such that for each
y ∈ Y there is an x ∈ X with x ≻ y. Clearly X must equal {b}, and therefore Y = S1.
Thus we have b ≻ y for each y ∈ S1. Analogously, we can show that b ≻ y for each
y ∈ S2. Therefore b ≻ y for each y ∈ S1 ∪ S2, which implies {b} ≻mul S1 ∪ S2.
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(b) The statement does not hold: Let S = {b1, b2}, then obviously {b1, b2} ≻mul {b1}
and {b1, b2} ≻mul {b2}, but not {b1, b2} ≻mul {b1, b2}.

Exercise 2.3: (a) Let M = {a, b, c, d}. Suppose that the binary relation → over multi-
sets over M is defined by the rules (1)–(3):

(1) S ∪ {b, c} → S ∪ {a, a, a}

(2) S ∪ {b, a} → S ∪ {b, c, c}

(3) S ∪ {c} → S ∪ {d}

Then → can be shown to be terminating using the multiset extension ≻mul of an appro-
priate well-founded ordering on M . What does ≻ look like?

(b) If the binary relation → is defined by the rules (4)–(6),

(4) S ∪ {a, a} → S ∪ {b, c}

(5) S ∪ {b, b} → S ∪ {a, c}

(6) S ∪ {b, c} → S ∪ {a, d, c, c}

then there is no well-founded ordering on M such that → is contained in ≻mul. Why?
Give a short explanation.

(c) Nevertheless, the relation → defined by the rules (4)–(6) is terminating. Prove it.
(Hint: Think about lexicographic combinations.)

Proposed solution. (a) The only possible ordering on M is b ≻ a ≻ c ≻ d.

(b) For rule (4), we need {a, a} ≻mul {b, c}, therefore a ≻ b and a ≻ c. For rule (5), we
need {b, b} ≻mul {a, c}, therefore b ≻ a and b ≻ c. From a ≻ b and b ≻ a, it follows that
a ≻ a, contradicting irreflexivity.

(c) We map every multiset S over M to a pair of two natural numbers, where the first
one is S(a) + S(b) (that is, the sum of the numbers of occurrences of a and b in S), and
the second one is S(b), and compare these pairs of natural numbers lexicographically.
In rule (4), the first component decreases, in rule (5), the first component decreases,
in rule (6), the first component remains constant and the second component decreases,
therefore the lexicographic combination decreases for all rules (4)–(6).

Alternatively, we can map every multiset S to the natural number 2 · S(a) + 3 · S(b).
This number also decreases for all rules (4)–(6).

Exercise 2.4 (∗): Prove: If S and S′ are finite multisets over a set M , and S ≻mul S
′

holds for every strict partial ordering ≻ over M , then S′ ⊂ S (that is, S′ ⊆ S and
S′ 6= S).
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Proposed solution. Suppose that S and S′ are finite multisets over a set M , and that
S ≻mul S

′ holds for every strict partial ordering ≻ over M . The empty relation ≻0, for
which x ≻0 y is false for all elements x and y, is a strict partial ordering (it is trivially
irreflexive and transitive). So the property holds in particular for ≻0. By the definition
of the multiset extension, S (≻0)mul S

′ if and only if there are multisets X and Y such
that ∅ 6= X ⊆ S and S′ = (S − X) ∪ Y and for every y ∈ Y there is an x ∈ X such
that x ≻0 y. Since x ≻0 y is false for all x and y, Y must be empty. So S′ equals S −X,
which is a subset of S, and since X is nonempty, we obtain S′ ⊂ S.

Exercise 2.5: Which of the following propositional formulas are valid? Which are sat-
isfiable?

(1) ¬P

(2) P → ⊥

(3) ⊥ → P

(4) (P ∨Q) → P

(5) P → (Q → P )

(6) Q → ¬Q

(7) Q ∧ ¬Q

(8) ¬(¬P ∧ ¬¬P )

Proposed solution. (1) invalid (with P interpreted as ⊤) but satisfiable (with P in-
terpreted as ⊥)

(2) invalid (with P interpreted as ⊤) but satisfiable (with P interpreted as ⊥)

(3) valid and hence satisfiable

(4) invalid (with P interpreted as ⊥ and Q interpreted as ⊤) but satisfiable (with P and
Q interpreted as ⊥)

(5) valid and hence satisfiable

(6) invalid (with P interpreted as ⊤) but satisfiable (with P interpreted as ⊥)

(7) invalid and in fact unsatisfiable

(8) valid and hence satisfiable
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Exercise 2.6: Let F , G, H be propositional formulas, let p be a position of H. Prove
or refute: If H[F ]p is valid and H[G]p is valid, then H[F ∨G]p is valid.

Proposed solution. Proof: Suppose that H[F ]p and H[G]p are valid. Let A be any
valuation. By assumption, A(H[F ]p) = A(H[G]p) = 1. If A(F ) = 1, then A(F ∨ G) =
A(F ), therefore, by Prop. 2.3.6 A(H[F ∨ G]p) = A(H[F ]p) = 1. Otherwise A(F ) = 0,
then A(F ∨ G) = A(G), therefore. by Prop. 2.3.6 A(H[F ∨ G]p) = A(H[G]p) = 1. So
A(H[F ∨G]p) = 1 for every valuation A.

Exercise 2.7: Let F , G, H be propositional formulas, let p be a position of H. Prove
or refute: If H[F ∧G]p is valid, then H[F ]p and H[G]p are valid.

Proposed solution. Counterexample: Let F = P , G = ¬P , and H = ¬Q. Then
H[F ∧G]1 = ¬(F ∧G) = ¬(P ∧¬P ) is valid, but H[F ]1 = ¬F = ¬P and H[G]1 = ¬G =
¬¬P are not valid.

Exercise 2.8: Let Π be a set of propositional variables with P,Q ∈ Π. For every
propositional formula F over Π, let φ(F ) be the formula that one obtains from F by
replacing every occurrence of P by P ∨ Q. For instance, if F = ((R ∨ ¬P ) ∧ (Q ∨ P )),
then φ(F ) = ((R ∨ ¬(P ∨Q)) ∧ (Q ∨ (P ∨Q))), and if F = R, then φ(F ) = R.

(a) Prove: If φ(F ) is satisfiable, then F is satisfiable. (Note: It is sufficient if you con-
sider propositional variables, negations, and conjunctions; the other cases are treated
analogously.)

(b) Refute: If φ(F ) is valid, then F is valid.

Proposed solution. (a) Assume that φ(F ) is satisfiable. Let the valuation A be a
model of φ(F ). We define a valuation A′ by A′(P ) = A(P ∨Q) and A′(R) = A(R) for
every propositional variable R ∈ Π different from P .

Now we can show by induction over the structure of formulas that A′(G) = A(φ(G)) for
every Π-formula G:

Case 1: G is a propositional variable. If G = P , then A′(P ) = A(P ∨ Q) by definition
of A′ and A(φ(P )) = A(P ∨ Q) by definition of φ; if G is a propositional variable R

different from P , then A′(R) = A(R) and A(φ(R)) = A(R).

Case 2: G is a negation ¬G1. We must show A′(¬G1) = A(φ(¬G1)). Then A′(¬G1) =
1−A′(G1) = 1−A(φ(G1)) by induction and A(φ(¬G1)) = A(¬φ(G1)) = 1−A(φ(G1)).
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Case 3: G is a conjunctive formula G1∧G2. We must show A′(G1∧G2) = A(φ(G1∧G2)).
Then A′(G1 ∧ G2) = min{A′(G1),A

′(G2)} = min{A(φ(G1)),A(φ(G2))} by induction
and A(φ(G1 ∧G2)) = A(φ(G1) ∧ φ(G2)) = min{A(φ(G)),A(φ(G2))}.

The remaining cases are handled analogously.

Since A(φ(F )) = 1, we conclude that A′(F ) = 1, so A′ is a model of F .

(b) Let F = P ∨ ¬Q, then F is not valid, but φ(F ) = (P ∨Q) ∨ ¬Q is valid.

Exercise 2.9: Let Π be a set of propositional variables. Let Q and R be two proposi-
tional variables in Π. For any Π-formula F let φ(F ) be the formula that one obtains by
replacing every occurrence of Q in F by R.

Prove: If φ(F ) is satisfiable, then F is satisfiable. (It is sufficient if you consider proposi-
tional variables, conjunctions, and negations; the other cases are handled analogously.)

Proposed solution. Assume that φ(F ) is satisfiable. Then there exists a valuation A
such that A(φ(F )) = 1. We have to show that there exists a valuation A′ such that
A′(F ) = 1. Define A′ by A′(Q) = A(R) and A′(P ) = A(P ) for every propositional
variable P ∈ Π \ {Q}.

We show by induction over the formula structure that A′(G) = A(φ(G)) for every Π-
formula G.

Case 1: G is a propositional variable. If G = Q, then φ(Q) = R. Therefore A′(Q) =
A(R) = A(φ(Q)) by definition of A′(Q). Otherwise G = P for some P ∈ Π \ {Q}, then
φ(P ) = P . Therefore A′(P ) = A(P ) = A(φ(P )) by definition of A′(P ).

Case 2: G is a conjunctive formula G1 ∧G2. Using the induction hypothesis for G1 and
G2 we get A′(G) = A′(G1 ∧ G2) = min(A′(G1),A

′(G2)) = min(A(φ(G1)),A(φ(G2))) =
A(φ(G1) ∧ φ(G2)) = A(φ(G1 ∧G2)).

Case 3: G is a negation ¬G1. We use the induction hypothesis for G1 and obtain A′(G) =
A′(¬G1) = 1−A′(G1) = 1−A(φ(G1)) = A(¬φ(G1)) = A(φ(¬G1)).

The remaining cases are handled analogously.

Since A(φ(F )) = 1 by assumption and A′(G) = A(φ(G)) for every Π-formula G, we
obtain A′(F ) = 1, so F is satisfiable.
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