Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD,
Tanguy Bozec, and Lydia Kondylidou
based on exercises by Dr. Uwe Waldmann

Winter Term 2025/26

Exercises 1: Motivation and Preliminaries

More difficult exercises are identified with an asterisk (). These are included because
they can be fun and instructive, but they are not typical exam questions.

Exercise 1.1: Solve the sudoku puzzle presented in the lecture.

Proposed solution.

31 51916 7|4
410913126514 7
S| 5168247391
6714113 8161215
T3 119 4|75 6 |8
I8 5|6 | 1|29 7]4]|3
9121714836159

Exercise 1.2: Find an abstract reduction system (A, —) such that the relations —, <,
and «<>* are all different.



Proposed solution. We take A :=N={0,1,2,... } and
— = {(n+1,n+2)|neN}
Then

— ={n+1,n+2)|neNyU{(n+2,n+1)|neN}
st = {m+1,n+1)|mneN},
< i={(m+1,n+1)|mmneN}U{0,0)}.

Exercise 1.3: Find an abstract reduction system (A4,—) such that —* is irreflexive
and — is normalizing but not terminating.

Proposed solution. We take A := N and
— ={(n+1,n+2)|neN}tU{(n+1,0) | n e N}

The relation is clearly irreflexive (e.g., 1 — 2 but 2 /4 1). It is also normalizing, with
nl = 0 as the unique normal form of any number n € N. But it is not terminating,
because it allows the infinite chain 1 -+ 2 — 3 — 4 — - --. Graphically:

e

o —

Exercise 1.4: Let (N\ {0,1}, <q) be the set of natural numbers larger than 1 ordered
by the divisibility ordering <4 that is defined by a <q b if a divides b and a # b. Are
there minimal elements? Is there a smallest element? What do they look like?

Proposed solution. There are minimal elements; namely, the prime numbers (2, 3,5,
7,11,...) are the minimal elements.

There is, however, no smallest element. A plausible candidate might be 2, but since
2 £4 3, it does not satisfy the criterion of being smallest.

Exercise 1.5: Let (Q, <) be the set of rational numbers with the usual ordering <.
Construct infinite subsets My, My, Ms, and My of Q with the following properties:



1) M is well-founded and has a minimal element.

2) Ms is not well-founded and has a minimal element.
3

4

(1)
(2)
(3) Ms is well-founded and does not have a maximal element.
(4)

M, is not well-founded and has a maximal element.

Proposed solution. (1) We take M; := {0,1,2,... }. It is clearly well-founded, and
the minimal element is 0.

(2) We take My :={q € Q| 0 < ¢}. It admits infinite chains 1 > % > % >1>... and
the minimal element is 0.

(3) We take M3 :={0,1,2,... }. Clearly it has no maximal element.

(4) We take My = {q € Q| 0 < ¢ < 1}. It admits infinite chains 1 > § > £ > 7 > ---,

and the maximal element is 1.

Exercise 1.6 (x): You are asked to review a scientific article that has been submitted
to a conference on automated reasoning. On page 3 of the article, the authors write the
following;:

Theorem 2. Let —1 and —9 be two binary relations over a nonempty set M. If
—1 and —9 are terminating, then —; U —5 is also terminating.

Proof. Since — is terminating, —>f is a well-founded ordering. Assume that there

exists an infinite descending (—; U —3)-chain. Since —] is well-founded, there

exists a minimal element b with respect to —>IL such that there exists an infinite
descending (—1 U —2)-chain starting with b.

Case 1: The (—1 U —9)-chain starts with a —1-step b —1 b’. The rest of the chain,
starting with #’, is still infinite. However, 0’ is smaller than b with respect to —>f.

This contradicts the minimality of b.

Case 2: The (—1 U —9)-chain starts with a —9-step b — V/. Since —9 is termi-
nating, the chain cannot consist only of —s-steps. Therefore there must be some
—1-step in the chain, say b” —1 b"”". Hence there exists an infinite (—1 U —3)-chain
starting with this step. But as we have seen in Case 1, an infinite (—1 U —2)-chain
cannot start with a —j-step. So there is again a contradiction.

Consequently, every descending (—71 U —2)-chain must be finite, which means
that —1 U —9 is terminating.

(1) Is the “proof” correct?

(2) If the “proof” is not correct:



(a) Which step is incorrect?

(b) Does the “theorem” hold? If yes, give a correct proof; otherwise, give a
counterexample.

Proposed solution. No, the “proof” is not correct.

The step “But as we have seen in Case 1, an infinite (—1 U —2)-chain cannot start with
a —1-step” is incorrect. What we have seen in Case 1 is that an infinite (—1 U —9)-
chain cannot start with a —-step of the form b — ¥, where b is the minimal element
w.r.t. —]. Nothing prevents the step from having the form b” —; b", where b” # b.

In fact, the “theorem” does not hold. A counterexample is M := N and

—1 = {(2n+1,2n) | n € N},
—9 = {(2n,2n +1) | n € N}.

Each relation —; admits only chains of length at most 1 (e.g., 5 —1 4 or 4 —2 5), but
the two relations in combination admit infinite chains 5 —+1 4 —95 —14 —9 5 —1 ---.
Methodologically, a good way to locate the flaw in the “proof” is to analyze where the
proof goes wrong for this counterexample.

Exercise 1.7 (x): (1) Prove: If > is a well-founded strict partial ordering on a set M
and if b is the only element of M that is minimal in M, then b is the smallest element
of M.

(2) Give an example of a strict partial ordering > on a set M and an element b € M
such that b is the only element of M that is minimal in M but not the smallest element
of M.

Proposed solution. (1) Assume that > is well-founded and that b is the only element
of M that is minimal in M, but that b is not the smallest element of M. Let X = {z €
M| b <z}, and let Y = M\ X. Since b is not the smallest element of M, we know
that Y # (). Since > is well-founded, this implies that there exists some ¢ € Y that is
minimal in Y. By assumption, b is the only element of M that is minimal in M, so ¢
is not minimal in M. Therefore, there exists some d € M such that d < c¢. Since ¢ is
minimal in Y, d cannot be contained in Y. But then d € X, which implies b < d < ¢
and thus ¢ € X, contradicting the fact that ¢ € Y.

(2) Let M ={z € Z | x < 0}U{b}, where > is the usual ordering on integer numbers and
b is incomparable with all integer numbers. Then b is minimal in M (since no element
of M is smaller), and it is the only minimal element of M (since for every other z € M
there exists a smaller element x — 1 € M, but b is not the smallest element of M, since
the other elements of M are not larger than b.



Exercise 1.8 (x): Let (A,—) be an abstract reduction system such that every element
of A has exactly one normal form w.r.t. —. For every b € A, define L(b) as the minimal
n € N such that b —™ b’ and ¥’ is in normal form w.r.t. —. Define the binary relation =
over A by b= cif and only if b — ¢ and L(b) > L(c).

(1) Give an example that shows that — # =.
(2) Show that for every b € A we have b =* b/, where V' is the normal form of b w.r.t. —.

(3) Use part (2) to show that <* = &*.

Proposed solution. (1) Let A = {a,b} with — = {(a,a), (a,b)}. Every element of A
has exactly one normal form, namely b. We get L(a) = 1 and L(b) = 0, so a — a but
not a = a. Graphically:

)

a——b

(2) We use induction over L(b). If L(b) = 0, then the normal form of b with respect to
— is b itself. Obviously, b =° b and therefore b =* b.

If L(b) = n+1, then there exists a derivation with n+1 steps b — 0" —™ V', where V/ is the
normal form of both b and b”. Clearly, there cannot exist any shorter derivation v —™ ¥/
with m < n, since otherwise there would be a derivation b —™*! ¥/, contradicting the
minimality assumption. So L(b") = n, and therefore b = b”. By induction, b =* V/, so
b=*1b.

(3) Since — 2 =, we get +>* O <*. To prove the reverse inclusion, we first show that
— C <%, Assume that a — b. Let ¢ be the normal form of b. Clearly, ¢ is also the
normal form of a. By part (2), a =* ¢ <* b, so a <* b as required. Since <* is reflexive,
symmetric, and transitive, — C <* implies +* C <*.



