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Exercises 1: Motivation and Preliminaries

More difficult exercises are identified with an asterisk (∗). These are included because
they can be fun and instructive, but they are not typical exam questions.

Exercise 1.1: Solve the sudoku puzzle presented in the lecture.

Proposed solution.

1 2 3 4 5 6 7 8 9

1 6 9 3 7 8 4 5 1 2

2 4 8 7 5 1 2 9 3 6

3 1 2 5 9 6 3 8 7 4

4 9 3 2 6 5 1 4 8 7

5 5 6 8 2 4 7 3 9 1

6 7 4 1 3 9 8 6 2 5

7 3 1 9 4 7 5 2 6 8

8 8 5 6 1 2 9 7 4 3

9 2 7 4 8 3 6 1 5 9

Exercise 1.2: Find an abstract reduction system (A,→) such that the relations →, ↔,
and ↔∗ are all different.
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Proposed solution. We take A := N = {0, 1, 2, . . . } and

→ := {(n+ 1, n + 2) | n ∈ N}.

Then

↔ := {(n+ 1, n + 2) | n ∈ N} ∪ {(n + 2, n+ 1) | n ∈ N}

↔+ := {(m+ 1, n + 1) | m,n ∈ N},

↔∗ := {(m+ 1, n + 1) | m,n ∈ N} ∪ {(0, 0)}.

Exercise 1.3: Find an abstract reduction system (A,→) such that →+ is irreflexive
and → is normalizing but not terminating.

Proposed solution. We take A := N and

→ := {(n + 1, n + 2) | n ∈ N} ∪ {(n+ 1, 0) | n ∈ N}.

The relation is clearly irreflexive (e.g., 1 → 2 but 2 6→ 1). It is also normalizing, with
n↓ = 0 as the unique normal form of any number n ∈ N. But it is not terminating,
because it allows the infinite chain 1 → 2 → 3 → 4 → · · · . Graphically:

1 2 3 · · · n · · ·

0

Exercise 1.4: Let (N \ {0, 1}, <d) be the set of natural numbers larger than 1 ordered
by the divisibility ordering <d that is defined by a <d b if a divides b and a 6= b. Are
there minimal elements? Is there a smallest element? What do they look like?

Proposed solution. There are minimal elements; namely, the prime numbers (2, 3, 5,
7, 11, . . . ) are the minimal elements.

There is, however, no smallest element. A plausible candidate might be 2, but since
2 6<d 3, it does not satisfy the criterion of being smallest.

Exercise 1.5: Let (Q, <) be the set of rational numbers with the usual ordering <.
Construct infinite subsets M1, M2, M3, and M4 of Q with the following properties:
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(1) M1 is well-founded and has a minimal element.

(2) M2 is not well-founded and has a minimal element.

(3) M3 is well-founded and does not have a maximal element.

(4) M4 is not well-founded and has a maximal element.

Proposed solution. (1) We take M1 := {0, 1, 2, . . . }. It is clearly well-founded, and
the minimal element is 0.

(2) We take M2 := {q ∈ Q | 0 ≤ q}. It admits infinite chains 1 > 1

2
> 1

3
> 1

4
> · · · , and

the minimal element is 0.

(3) We take M3 := {0, 1, 2, . . . }. Clearly it has no maximal element.

(4) We take M4 := {q ∈ Q | 0 ≤ q ≤ 1}. It admits infinite chains 1 > 1

2
> 1

3
> 1

4
> · · · ,

and the maximal element is 1.

Exercise 1.6 (∗): You are asked to review a scientific article that has been submitted
to a conference on automated reasoning. On page 3 of the article, the authors write the
following:

Theorem 2. Let →1 and →2 be two binary relations over a nonempty set M . If
→1 and →2 are terminating, then →1 ∪ →2 is also terminating.

Proof. Since →1 is terminating, →+
1 is a well-founded ordering. Assume that there

exists an infinite descending (→1 ∪ →2)-chain. Since →+
1 is well-founded, there

exists a minimal element b with respect to →+
1 such that there exists an infinite

descending (→1 ∪ →2)-chain starting with b.

Case 1: The (→1 ∪ →2)-chain starts with a →1-step b →1 b
′. The rest of the chain,

starting with b′, is still infinite. However, b′ is smaller than b with respect to →+
1 .

This contradicts the minimality of b.

Case 2: The (→1 ∪ →2)-chain starts with a →2-step b →2 b′. Since →2 is termi-
nating, the chain cannot consist only of →2-steps. Therefore there must be some
→1-step in the chain, say b′′ →1 b

′′′. Hence there exists an infinite (→1 ∪ →2)-chain
starting with this step. But as we have seen in Case 1, an infinite (→1 ∪ →2)-chain
cannot start with a →1-step. So there is again a contradiction.

Consequently, every descending (→1 ∪ →2)-chain must be finite, which means
that →1 ∪ →2 is terminating.

(1) Is the “proof” correct?

(2) If the “proof” is not correct:
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(a) Which step is incorrect?

(b) Does the “theorem” hold? If yes, give a correct proof; otherwise, give a
counterexample.

Proposed solution. No, the “proof” is not correct.

The step “But as we have seen in Case 1, an infinite (→1 ∪ →2)-chain cannot start with
a →1-step” is incorrect. What we have seen in Case 1 is that an infinite (→1 ∪ →2)-
chain cannot start with a →1-step of the form b →1 b′, where b is the minimal element
w.r.t. →+

1 . Nothing prevents the step from having the form b′′ →1 b
′′′, where b′′ 6= b.

In fact, the “theorem” does not hold. A counterexample is M := N and

→1 := {(2n + 1, 2n) | n ∈ N},

→2 := {(2n, 2n + 1) | n ∈ N}.

Each relation →i admits only chains of length at most 1 (e.g., 5 →1 4 or 4 →2 5), but
the two relations in combination admit infinite chains 5 →1 4 →2 5 →1 4 →2 5 →1 · · · .
Methodologically, a good way to locate the flaw in the “proof” is to analyze where the
proof goes wrong for this counterexample.

Exercise 1.7 (∗): (1) Prove: If > is a well-founded strict partial ordering on a set M

and if b is the only element of M that is minimal in M , then b is the smallest element
of M .

(2) Give an example of a strict partial ordering > on a set M and an element b ∈ M

such that b is the only element of M that is minimal in M but not the smallest element
of M .

Proposed solution. (1) Assume that > is well-founded and that b is the only element
of M that is minimal in M , but that b is not the smallest element of M . Let X = {x ∈
M | b ≤ x}, and let Y = M \X. Since b is not the smallest element of M , we know
that Y 6= ∅. Since > is well-founded, this implies that there exists some c ∈ Y that is
minimal in Y . By assumption, b is the only element of M that is minimal in M , so c

is not minimal in M . Therefore, there exists some d ∈ M such that d < c. Since c is
minimal in Y , d cannot be contained in Y . But then d ∈ X, which implies b ≤ d < c

and thus c ∈ X, contradicting the fact that c ∈ Y .

(2) Let M = {x ∈ Z | x ≤ 0}∪{b}, where > is the usual ordering on integer numbers and
b is incomparable with all integer numbers. Then b is minimal in M (since no element
of M is smaller), and it is the only minimal element of M (since for every other x ∈ M

there exists a smaller element x− 1 ∈ M , but b is not the smallest element of M , since
the other elements of M are not larger than b.
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Exercise 1.8 (∗): Let (A,→) be an abstract reduction system such that every element
of A has exactly one normal form w.r.t. →. For every b ∈ A, define L(b) as the minimal
n ∈ N such that b →n b′ and b′ is in normal form w.r.t. →. Define the binary relation ⇒
over A by b ⇒ c if and only if b → c and L(b) > L(c).

(1) Give an example that shows that → 6= ⇒.

(2) Show that for every b ∈ A we have b ⇒∗ b′, where b′ is the normal form of b w.r.t. →.

(3) Use part (2) to show that ↔∗ = ⇔∗.

Proposed solution. (1) Let A = {a, b} with → = {(a, a), (a, b)}. Every element of A
has exactly one normal form, namely b. We get L(a) = 1 and L(b) = 0, so a → a but
not a ⇒ a. Graphically:

a b

(2) We use induction over L(b). If L(b) = 0, then the normal form of b with respect to
→ is b itself. Obviously, b ⇒0 b and therefore b ⇒∗ b.

If L(b) = n+1, then there exists a derivation with n+1 steps b → b′′ →n b′, where b′ is the
normal form of both b and b′′. Clearly, there cannot exist any shorter derivation b′′ →m b′

with m < n, since otherwise there would be a derivation b →m+1 b′, contradicting the
minimality assumption. So L(b′′) = n, and therefore b ⇒ b′′. By induction, b′′ ⇒∗ b′, so
b ⇒∗ b′.

(3) Since → ⊇ ⇒, we get ↔∗ ⊇ ⇔∗. To prove the reverse inclusion, we first show that
→ ⊆ ⇔∗. Assume that a → b. Let c be the normal form of b. Clearly, c is also the
normal form of a. By part (2), a ⇒∗ c ⇐∗ b, so a ⇔∗ b as required. Since ⇔∗ is reflexive,
symmetric, and transitive, → ⊆ ⇔∗ implies ↔∗ ⊆ ⇔∗.
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