Automated Theorem Proving

Lecture 7: Resolution Continued

Prof. Dr. Jasmin Blanchette
based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

3.13 Ordered Resolution with Selection

Motivation: Search space for Res very large.
|deas for improvement:

1. In the completeness proof (Model Existence Theorem 3.9.5) one only
needs to resolve and factor maximal atoms
= if the calculus is restricted to inferences involving maximal atoms,
the proof remains correct
= ordering restrictions

2. In the proof, it does not really matter with which negative literal an
inference is performed
= choose a negative literal don't-care-nondeterministically
= selection

Ordering Restrictions

In the completeness proof one only needs to resolve and factor maximal
atoms. Therefore the proof remains correct if we impose ordering restrictions
on ground inferences.

(Ground) Ordered Resolution:

DVA CVv-A
Dv C

if A= L forall Lin D and =A > L for all L in C.

(Ground) Ordered Factorization:

CVAVA
CVA

if A> L forall Lin C.

Ordering Restrictions

Problem: How to extend this to nonground inferences?

In the completeness proof, we talk about (strictly) maximal literals of

ground clauses.

In the nonground calculus, we have to consider those literals that correspond

to (strictly) maximal literals of ground instances.

Ordering Restrictions

An ordering > on atoms (or terms) is called stable under substitutions
if A> B implies Ac > Bo.

Note:

e We can not require that A = B if and only if Ao > Bo for all o,
because this is not computable.

e We can not require that > is total on nonground atoms, because this
would be incompatible with stability under substitution.

Consequence:
In the ordering restrictions for nonground inferences, we have to replace

> by A and > by <.

Ordering Restrictions

Ordered Resolution:
DV B CV-A

(DV C)o
if o = mgu(A, B) and Bo A Lo forall Lin D
and —-Ao X Lo for all L in C.

Ordered Factorization:
CVAVB

(CV Ao
if o = mgu(A, B) and Ao 4 Lo for all L in C.

Selection Functions

Selection functions can be used to override ordering restrictions for
individual clauses.

A selection function is a mapping

sel : C +— set of occurrences of negative literals in C

Example of selection with selected literals indicated as | X |:

—A|V-AVEB

By |V|B1|VA

Selection Functions

Intuition:

e If a clause has at least one selected literal, compute only inferences

that involve a selected literal.

e If a clause has no selected literals, compute only inferences that involve

a maximal literal.

>-
sel

Resolution Calculus Res

—

| Is parameterized by

The resolution calculus Res
e a selection function sel

e and a well-founded ordering > on atoms that is total on ground atoms
and stable under substitutions.

-
sel

Resolution Calculus Res

(Ground) Ordered Resolution with Selection:

DVA CVv-A
Dv C

if the following conditions are satisfied:

(i) A= Lforall Lin D;
(ii) nothing is selected in D VV A by sel;

(iii) —A is selected in C V —A,
or nothing is selected in C VvV =A and =A > Lfor all L in C.

10

-
sel

Resolution Calculus Res

(Ground) Ordered Factorization with Selection:

CVAVA
CVA

if the following conditions are satisfied:

(i) A= Lforall Lin C;

(i) nothing is selected in CV AV A by sel.

11

Resolution Calculus Res.,

The extension from ground inferences to nonground inferences is analogous
to ordered resolution (replace > by A and = by £). Again we assume that

— Is stable under substitutions.

12

>_
sel

Resolution Calculus Res

Ordered Resolution with Selection:

DV B CvVv-A
(DV C)o

if the following conditions are satisfied:
(i) o = mgu(A, B);

(ii) Bo £ Lo for all Lin D;

(iii) nothing is selected in DV B by sel;

(iv) —A is selected in C V —A,
or nothing is selected in CV —A and =Ac £ Lo for all Lin C.

-
sel

Resolution Calculus Res

Ordered Factorization with Selection:

CVAVBEB
(CV Ao

if the following conditions are satisfied:
(i) o = mgu(A, B);
(i) Ao 4 Lo for all Lin C;

(iii) nothing is selected in CV AV B by sel.

14

Lifting Lemma for Res_,

Lemma 3.13.1:
Let C and D be variable-disjoint clauses. If
D C
e
Doy cr S [ground inference in Res’|]

and if sel(D61) ~ sel(D), sel(CH,) ~ sel(C) (that is, “corresponding”

selected), then there exists a substitution p such that

D C

[inference in Res’]

j p
_ ¢y

literals are

15

-
sel

Lifting Lemma for Res

An analogous lifting lemma holds for factorization.

16

Saturation of Sets of General Clauses

Corollary 3.13.2:
Let NV be a set of general clauses saturated under Res,, i.e., Res’,,(N) C N.

Then there exists a selection function sel’ such that sel|y = sel’|y and

Gy (N) is also saturated, i.e.,

Res”.(Gs(N)) C Gs(N).

sel’

17

Soundness and Refutational Completeness

Theorem 3.13.3:
Let > be an atom ordering and sel a selection function such that
Res (NYC N.Then NE L& L eN

Proof:

(«<): trivial.

(=): Consider first the propositional level:

Construct a candidate interpretation /y as for unrestricted resolution,
except that clauses C in N that have selected literals are never productive
(even if they are false in /¢

and if their maximal atom occurs only once and is positive).

The result for general clauses follows using Corollary 3.13.2. (]

18

What Do We Gain?

Search spaces become smaller:

© 00 N O 61 & W N -

PV Q

PV[-Q

PV Q

—-PV

—Q

RV Q
Q
-P
P
1

Res 1, 3
Fact 5

Res 6, 4
Res 6, 2
Res 8, 7

We assume P >~ @ and sel as
indicated by | X | The maxi-

mal literal in a clause is de-

picted in red.

19

What Do We Gain?

Rotation redundancy can be avoided:

From
GGVA G V-AVEB
GivG VB GV B
CGiVvVG VG

we can obtain by rotation
GV-AvVvEB GV B

Ci VA GV -AV G
Ci VG VG

another proof of the same clause. In large proofs many rotations are

possible. However, if A > B, then the second proof does not fulfill the
ordering restrictions.

20

3.14 Redundancy

So far: local restrictions of the resolution inference rules using orderings
and selection functions.

Is it also possible to delete clauses altogether?
Under which circumstances are clauses unnecessary
(e.g., if they are tautologies)?

Intuition: If a clause is guaranteed to be neither a minimal counterexample
nor productive, then we do not need it.

21

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily
in N). C is called redundant w.r.t. N if there exist C;,...,C, € N, n > 0,
such that ¢; < C and G, ..., C, = C.

Redundancy for general clauses:

C is called redundant w.r.t. N if all ground instances Co of C are redundant
w.r.t. Gz(N)

Intuition: If a ground clause C is redundant and all clauses smaller than C
hold in I, then C holds in /¢

(so C is neither a minimal counterexample nor productive).

22

A Formal Notion of Redundancy

Notation: The set of all clauses that are redundant w.r.t. N is denoted by
Red(N).

Note: The same ordering > is used for ordering restrictions and for
redundancy (and for the completeness proof).

23

Examples of Redundancy

In general, redundancy is undecidable. Decidable approximations are

sufficient for us, however.

Proposition 3.14.1:
Some redundancy criteria:

= C) = C redundant w.r.t. any set .

e (tautology (i.e.,
¢ CoC D = D redundant w.r.t. NU{C}.

(Under certain conditions one may also use nonstrict subsumption, but this
requires a slightly more complicated definition of redundancy.)

24

Saturation up to Redundancy

N is called saturated up to redundancy (w.r.t. ResZ,) if

Res (N \ Red(N)) C N U Red(N)

sel

Theorem 3.14.2:
Let N be saturated up to redundancy. Then

N=lsleN

25

Monotonicity Properties of Redundancy

When we want to delete redundant clauses during a derivation, we have
to ensure that redundant clauses remain redundant in the rest of the
derivation.

Theorem 3.14.3:
(i) NC M= Red(N) C Red(M)
(i) M C Red(N) = Red(N) C Red(N \ M)

Recall that Red(N) may include clauses that are not in V.

26

Computing Saturated Sets

Redundancy is preserved when, during a theorem proving derivation one
adds new clauses or deletes redundant clauses. This motivates the following

definitions:

A run of the resolution calculus is a sequence

No b Ny = No = ---, such that

(i) N; = N;y1, and

(ii) all clauses in N; \ N;; 1 are redundant w.r.t. N;.y.

In other words, during a run we may add a new clause if it follows from the
old ones, and we may delete a clause if it is redundant w.r.t. the remaining

ones.

27

Computing Saturated Sets

For a run, we define N, = Uizo > N;.

The set N, of all persistent clauses is called the limit of the run.

28

Computing Saturated Sets

Lemma 3.14.4:
Let No = Ny = No F--- be a run.
Then Red(N;) C Red(J;~q Ni) and Red(N;) C Red(N) for every i.

Proof:
Omitted.

29

Computing Saturated Sets

Corollary 3.14.5:
N; C Ny U Red(No,) for every i.

Proof:

If C € N;\ Ny, then there is a k > i such that C € N, \ Nii1, so C must
be redundant w.r.t. Ny, .
Consequently, C is redundant w.r.t. N.]

30

Computing Saturated Sets

Even if a set N is inconsistent, it could happen that L is never derived,
because some required inference is never computed.

The following definition rules out such runs:

A run is called fair if the conclusion of every inference from clauses in
N \ Red(N.) is contained in some N; U Red(N;).

Lemma 3.14.6:
If a run is fair, then its limit is saturated up to redundancy.

31

Computing Saturated Sets

Theorem 3.14.7 (Refutational Completeness: Dynamic View):
Let Np = Ny = No = --- be a fair run, let N, be its limit.
Then Ny has a model if and only if 1 ¢ N,.

Proof:

(«<=): By fairness, N, is saturated up to redundancy.

If 1 ¢ N, then it has an Herbrand model.

Since every clause in Ny is contained in Ny, or redundant w.r.t. N,
this model is also a model of Gy (Np)

and therefore a model of M.

(=): Obvious, since Ny = Noo.

32

Simplifications

In theory, the definition of a run permits to add arbitrary clauses that are
entailed by the current ones.

33

Simplifications

In practice, we restrict to two cases:

e We add conclusions of Res.-inferences from nonredundant premises.
~> necessary to guarantee fairness

e We add clauses that are entailed by the current ones if this makes
other clauses redundant:

NU{C}+ NU{C,D} + NU{D}
if NU{C} = D and C € Red(N U {D}).

Net effect: C is simplified to D.
~» useful to get easier/smaller clause sets

34

Simplifications

Notation for simplification rules:

Means
NU{C, ..., C,} F NU{Dy, ..., Dy}

35

Simplifications

Examples of simplification techniques:

e Deletion of duplicated literals:

CVLVL
CVvLi

e Subsumption resolution:

DV L CV DoV Lo

DV L CV Do

36

3.15 Hyperresolution

There are many variants of resolution.

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C.
If we perform an inference with C, then one of the selected literals is
eliminated.

Suppose that the remaining selected literals of C are again selected in
the conclusion. Then we must eliminate the remaining selected literals
one by one by further resolution steps.

37

Hyperresolution

Hyperresolution replaces these successive steps by a single inference.

As for Res’,, the calculus is parameterized by an atom ordering >~ and a

selection function sel.

38

Hyperresolution

Di:vB ... D,V B, CV-AV...V-A,
(D1V...VD,V C)o

with o = mgu(A1 = Bl, ce ,An = Bn) If
(i) Bjo strictly maximal in Do, 1 < i < n;
(ii) nothing is selected in D;;

(iii) the indicated occurrences of the —A; are exactly the ones selected by
sel, or nothing is selected in the right premise and n =1 and —A0 is

maximal in Co.

Similarly to resolution, hyperresolution has to be complemented by a

factorization inference.

39

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated binary

resolution.

However, this yields intermediate clauses which HR might not derive.

40

3.16 Implementing Resolution: The Main Loop

Standard approach:
Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together with
the “given clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set of

clauses.

41

Implementing Resolution: The Main Loop

The set of clauses is split into two subsets:

e WO = "Worked-off" (or “active”) clauses:
Have already been selected as “given clause.”

e U = "Usable” (or “passive”) clauses:
Have not yet been selected as “given clause.”

42

Implementing Resolution: The Main Loop

During each iteration of the main loop:

Select a new given clause C from U,

U.=U\{C}

Find partner clauses D; from WO;

New := Conclusions of inferences from {D; |i € I} U C
where one premise is C;

U:= UU New;
WO = WO U{C}
= At any time, all inferences between clauses in WO have been computed.

= The procedure is fair if no clause remains in U forever.

43

Implementing Resolution: The Main Loop

Additionally:

Try to simplify C using WO.
(Skip the remainder of the iteration if C can be eliminated.)

Try to simplify (or even eliminate) clauses from WO using C.

44

Implementing Resolution: The Main Loop

Design decision: should one also simplify U using C?

Yes ~» “Otter loop”:

Advantage: simplifications of U may be useful to derive the empty clause.

No ~ “DISCOUNT loop":

Advantage: clauses in U are really passive;

only clauses in WO have to be kept in index data structure.

(Hence: can use index data structure for which retrieval is faster, even if
update is slower and space consumption is higher.)

45

3.17 Summary: Resolution Theorem Proving

e Resolution is a machine-oriented calculus.

e Using unification, the enumeration of instances becomes a by-product

of inference computation.

e Parameters: atom ordering > and selection function sel.
On the nonground level, ordering constraints can (only) be solved

approximately.

e Completeness proof by constructing candidate interpretations from
productive clauses C V A, A >~ C.

46

Summary: Resolution Theorem Proving

e [ocal restrictions of inferences via > and sel
= fewer proof variants.

e Global restrictions of the search space via redundancy
= computing with “smaller” / “easier”" clause sets.
(In practice: simplification and detection of redundant clauses uses
90% of the prover runtime.)

e Termination on many decidable fragments.

e However, not good enough for dealing with orderings, equality, and
more specific algebraic theories (lattices, abelian groups, rings, fields)
= further specialization of inference systems required.

47

