
Automated Theorem Proving

Lecture 4: First-Order Logic

Prof. Dr. Jasmin Blanchette

based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

1

Part 3: First-Order Logic

→First-order logic

• is expressive:

can be used to formalize mathematical concepts,

can be used to encode Turing machines,

but cannot axiomatize natural numbers or uncountable sets,

• has important decidable fragments,

• has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

2

3.1 Syntax

Syntax:

• nonlogical symbols (domain-specific)

⇒ terms, atomic formulas

• logical connectives (domain-independent)

⇒ boolean combinations, quantifiers

3

Signatures

A signature Σ = (Ω,Π) fixes an alphabet of nonlogical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written arity(f) = n,

• Π is a set of predicate symbols P with arity m ≥ 0,

written arity(P) = m.

Function symbols are also called operator symbols.

If n = 0 then f is also called a constant (symbol).

If m = 0 then P is also called a propositional variable.

4

Signatures

We will usually use

b, c , d for constant symbols,

f , g , h for nonconstant function symbols,

P , Q, R, S for predicate symbols.

Convention: We will usually write f /n ∈ Ω instead of

f ∈ Ω, arity(f) = n (analogously for predicate symbols).

5

Signatures

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming

languages);

no big change from a logical point of view.

6

Variables

Predicate logic admits the formulation of abstract, schematic assertions.

(Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we

use to denote variables.

7

Terms

Terms over Σ and X (Σ-terms) are formed according to these syntactic

rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f /n ∈ Ω (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

8

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this

syntax:

A,B ::= P(s1, . . . , sm) , P/m ∈ Π (nonequational atom)
[

| (s ≈ t) (equation)
]

Whenever we admit equations as atomic formulas we are in the realm of

first-order logic with equality. Admitting equality does not really increase

the expressiveness of first-order logic (see next part). But deductive systems

where equality is treated specifically are much more efficient.

9

Literals

L ::= A (positive literal)

| ¬A (negative literal)

10

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ · · · ∨ Lk , k ≥ 1 (nonempty clause)

11

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀x F (universal quantification)

| ∃x F (existential quantification)

12

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

∀x1, . . . , xn F and ∃x1, . . . , xn F abbreviate

∀x1 . . . ∀xn F and ∃x1 . . . ∃xn F .

13

Notational Conventions

We use infix, prefix, postfix, or mixfix notation with the usual operator

precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u),+(t, v))

−s for −(s)

s! for !(s)

|s| for | |(s)

0 for 0()

14

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {</2}

Examples of formulas over this signature are

∀x , y ((x < y ∨ x ≈ y) ↔ ∃z (x + z ≈ y))

∃x∀y (x + y ≈ y)

∀x , y (x ∗ s(y) ≈ x ∗ y + x)

∀x , y (s(x) ≈ s(y) → x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

15

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

pos(x) = {ε},

pos(f (s1, . . . , sn)) = {ε} ∪
⋃n

i=1{i p | p ∈ pos(si)},

pos(P(t1, . . . , tn)) = {ε} ∪
⋃n

i=1{i p | p ∈ pos(ti)},

pos(∀x F) = {ε} ∪ {1p | p ∈ pos(F)},

pos(∃x F) = {ε} ∪ {1p | p ∈ pos(F)}.

16

Positions in Terms and Formulas

The prefix order ≤, the subformula (subterm) operator, the formula (term)

replacement operator, and the size operator are extended accordingly.

17

Variables

The set of variables occurring in a term t is denoted by var(t)

(and analogously for atoms, literals, clauses, and formulas).

18

Bound and Free Variables

In Qx F , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound

if it is inside the scope of a quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are called closed formulas

(or sentential forms).

Formulas without variables are called ground.

19

Bound and Free Variables

Example:

∀y

scope of ∀y
︷ ︸︸ ︷

((∀x

scope of ∀x
︷ ︸︸ ︷

P(x)) → R(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second

occurrence of x is a free occurrence.

20

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs

in all inference systems for first-order logic.

Substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of variables

occurring in one of the terms σ(x), with x ∈ dom(σ), is denoted by

codom(σ).

21

Substitutions

Substitutions are often written as {x1 7→ s1, . . . , xn 7→ sn}, with xi pairwise

distinct, and then denote the mapping

{x1 7→ s1, . . . , xn 7→ sn}(y) =







si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =







t, if y = x

σ(y), otherwise

22

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by

structural induction over the syntactic structure of t or F by the equations

on the next slide.

In the presence of quantification it is surprisingly complex:

We must not only ensure that bound variables are not replaced by σ.

We must also make sure that the (free) variables in the codomain of σ are

not captured upon placing them into the scope of a quantifier Qy .

Hence the bound variable must be renamed into a “fresh,” that is,

previously unused, variable z .

23

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

P(s1, . . . , sn)σ = P(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(F ◦ G)σ = (Fσ ◦ Gσ) for each binary connective ◦

(Qx F)σ = Qz (F σ[x 7→ z]) with z a fresh variable

24

Application of a Substitution

If s = tσ for some substitution σ,

we call the term s an instance of the term t,

and we call t a generalization of s (analogously for formulas).

25

3.2 Semantics

To give semantics to a logical system means to define a notion of truth for

the formulas. The concept of truth that we will now define for first-order

logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values

“true” and “false” denoted by 1 and 0, respectively.

26

Algebras

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un
A → UA)f /n∈Ω, (PA ⊆ Um

A)P/m∈Π)

where UA 6= ∅ is a set, called the universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

Σ-algebras generalize the valuations from propositional logic.

27

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to

be defined externally (explicitly or implicitly in a given context) by an

assignment.

A (variable) assignment (over a given Σ-algebra A) is a function

β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

28

Value of a Term in A with respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)), f /n ∈ Ω

29

Value of a Term in A with respect to β

In the scope of a quantifier we need to evaluate terms with respect to

modified assignments. To that end, let β[x 7→ a] : X → UA, for x ∈ X and

a ∈ UA, denote the assignment

β[x 7→ a](y) =







a if x = y

β(y) otherwise

30

Truth Value of a Formula in A with respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(P(s1, . . . , sn)) = if (A(β)(s1), . . . ,A(β)(sn)) ∈ PA

then 1 else 0

A(β)(s ≈ t) = if A(β)(s) = A(β)(t) then 1 else 0

31

Truth Value of a Formula in A with respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(¬F) = 1−A(β)(F)

A(β)(F ∧ G) = min(A(β)(F),A(β)(G))

A(β)(F ∨ G) = max(A(β)(F),A(β)(G))

A(β)(F → G) = max(1−A(β)(F),A(β)(G))

A(β)(F ↔ G) = if A(β)(F) = A(β)(G) then 1 else 0

A(β)(∀x F) = min
a∈UA

{A(β[x 7→ a])(F)}

A(β)(∃x F) = max
a∈UA

{A(β[x 7→ a])(F)}

32

Example

The “standard” interpretation for Peano arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

33

Example

Values over N for sample terms and formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y (x + y ≈ y + x)) = 1

N(β)(∀z (z < y)) = 0

N(β)(∀x∃y (x < y)) = 1

34

Ground Terms and Closed Formulas

If t is a ground term, then A(β)(t) does not depend on β, that is,

A(β)(t) = A(β′)(t) for every β and β′.

Analogously, if F is a closed formula, then A(β)(F) does not depend on β,

that is, A(β)(F) = A(β′)(F) for every β and β′.

35

Ground Terms and Closed Formulas

An element a ∈ UA is called term-generated if a = A(β)(t) for some

ground term t.

In general, not every element of an algebra is term-generated.

36

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is true in A (A is a model of F ; F is valid in A):

A |= F :⇔ A,β |= F for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F for all A ∈ Σ-Alg

F is called satisfiable if there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

37

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G , if for

all A ∈ Σ-Alg and β ∈ X → UA, we have

A,β |= F ⇒ A,β |= G

F and G are called equivalent, written F |=| G , if for all A ∈ Σ-Alg and

β ∈ X → UA we have

A,β |= F ⇔ A,β |= G

38

Entailment and Equivalence

Proposition 3.3.1:

F |= G if and only if F → G is valid

Proposition 3.3.2:

F |=| G if and only if F ↔ G is valid.

Extension to sets of formulas N as in propositional logic, e.g.:

N |= F :⇔ for all A ∈ Σ-Alg and β ∈ X → UA:

if A,β |= G for all G ∈ N, then A,β |= F .

39

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained

by the following proposition.

Proposition 3.3.3:

Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker), it is sufficient

to design a checker for unsatisfiability.

40

Substitution Lemma

Lemma 3.3.4:

Let A be a Σ-algebra, let β be an assignment, let σ be a substitution. Then

for any Σ-term t

A(β)(tσ) = A(β ◦ σ)(t),

where β ◦ σ : X → UA is the assignment (β ◦ σ)(x) = A(β)(xσ).

Proposition 3.3.5:

Let A be a Σ-algebra, let β be an assignment, let σ be a substitution. Then

for every Σ-formula F

A(β)(Fσ) = A(β ◦ σ)(F) .

41

Substitution Lemma

Corollary 3.3.6:

A,β |= Fσ ⇔ A,β ◦ σ |= F

These theorems basically express that the syntactic concept of substitution

corresponds to the semantic concept of an assignment.

42

Two Lemmas

Lemma 3.3.7:

Let A be a Σ-algebra. Let F be a Σ-formula with free variables x1, . . . , xn.

Then

A |= ∀x1, . . . , xn F if and only if A |= F .

43

Two Lemmas

Lemma 3.3.8:

Let A be a Σ-algebra.

Let F be a Σ-formula with free variables x1, . . . , xn.

Let σ be a substitution and let y1, . . . , ym be the free variables of Fσ. Then

A |= ∀x1, . . . , xn F implies A |= ∀y1, . . . , ym Fσ .

44

3.4 Algorithmic Problems

Validity(F): |= F?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A,β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

45

Theory of an Algebra

Let A ∈ Σ-Alg. The (first-order) theory of A is defined as

Th(A) = {G ∈ FΣ(X) | A |= G}

Problem of axiomatizability:

Given an algebra A (or a class of algebras) can one axiomatize Th(A), that

is, can one write down a formula F (or a semidecidable set F of formulas)

such that

Th(A) = {G | F |= G}?

46

Two Interesting Theories

Let ΣPres = ({0/0, s/1,+/2}, {<}) and N+ = (N, 0, s, +,<) its standard

interpretation on the natural numbers.

Th(N+) is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of N, considers the

integer numbers Z as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS,

16(3):323–332, 1978), and in 2EXPSPACE, using automata-theoretic

methods (and there is a constant c ≥ 0 such that Th(Z+) 6∈ NTIME(22
cn

)).

47

Two Interesting Theories

However, N∗ = (N, 0, s, +, ∗,<), the standard interpretation of ΣPA =

({0/0, s/1,+/2, ∗/2}, {<}), has as theory the so-called Peano arithmetic

which is undecidable and not even semidecidable.

48

(Non)computability Results

1. For most signatures Σ, validity is undecidable for Σ-formulas.

(One can easily encode Turing machines in most signatures.)

2. Gödel’s completeness theorem:

For each signature Σ, the set of valid Σ-formulas is semidecidable.

(We will prove this by giving complete deduction systems.)

3. Gödel’s incompleteness theorem:

For Σ = ΣPA and N∗ = (N, 0, s, +, ∗,<), the theory Th(N∗) is not

semidecidable.

These complexity results motivate the study of subclasses of formulas

(fragments) of first-order logic.

49

