Automated Theorem Proving

Lecture 4: First-Order Logic

Prof. Dr. Jasmin Blanchette based on slides by Dr. Uwe Waldmann

Winter Term 2025/26

Part 3: First-Order Logic

First-order logic

- is expressive:
 - can be used to formalize mathematical concepts, can be used to encode Turing machines, but cannot axiomatize natural numbers or uncountable sets,
- has important decidable fragments,
- has interesting logical properties (model and proof theory).

First-order logic is also called (first-order) predicate logic.

3.1 Syntax

Syntax:

- nonlogical symbols (domain-specific)
 - \Rightarrow terms, atomic formulas
- logical connectives (domain-independent)
 - ⇒ boolean combinations, quantifiers

Signatures

A signature $\Sigma = (\Omega, \Pi)$ fixes an alphabet of nonlogical symbols, where

- Ω is a set of function symbols f with arity $n \ge 0$, written arity(f) = n,
- Π is a set of predicate symbols P with arity $m \ge 0$, written arity(P) = m.

Function symbols are also called operator symbols. If n = 0 then f is also called a constant (symbol). If m = 0 then P is also called a propositional variable.

Signatures

We will usually use

b, c, d for constant symbols,

f, g, h for nonconstant function symbols,

P, Q, R, S for predicate symbols.

Convention: We will usually write $f/n \in \Omega$ instead of $f \in \Omega$, arity(f) = n (analogously for predicate symbols).

Signatures

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in programming languages);

no big change from a logical point of view.

Variables

Predicate logic admits the formulation of abstract, schematic assertions. (Object) variables are the technical tool for schematization.

We assume that X is a given countably infinite set of symbols which we use to denote variables.

Terms

Terms over Σ and X (Σ -terms) are formed according to these syntactic rules:

$$s,\,t,\,u,\,v$$
 $::=$ x , $x\in X$ (variable)
$$\mid f(s_1,\,...,\,s_n) \quad,\,f/n\in\Omega \quad ext{(functional term)}$$

By $T_{\Sigma}(X)$ we denote the set of Σ -terms (over X).

A term not containing any variable is called a ground term.

By T_{Σ} we denote the set of Σ -ground terms.

Atoms

Atoms (also called atomic formulas) over Σ are formed according to this syntax:

$$A,B ::= P(s_1,\ldots,s_m)$$
 , $P/m \in \Pi$ (nonequational atom)
$$\left[\mid (s \approx t) \right]$$
 (equation)

Whenever we admit equations as atomic formulas we are in the realm of first-order logic with equality. Admitting equality does not really increase the expressiveness of first-order logic (see next part). But deductive systems where equality is treated specifically are much more efficient.

Literals

```
L ::= A (positive literal)
| \neg A \text{ (negative literal)}
```

Clauses

```
C,D ::= \bot (empty clause) L_1 \lor \cdots \lor L_k, \ k \ge 1 (nonempty clause)
```

General First-Order Formulas

 $F_{\Sigma}(X)$ is the set of first-order formulas over Σ defined as follows:

```
F, G, H ::= \bot
                                             (falsum)
                                             (verum)
                                    (atomic formula)
                                          (negation)
                                       (conjunction)
           | (F \vee G)|
                                        (disjunction)
           (F \rightarrow G)
                                      (implication)
              (F \leftrightarrow G)
                                       (equivalence)
              \forall x F (universal quantification)
           \exists x F (existential quantification)
```

Notational Conventions

We omit parentheses according to the conventions for propositional logic.

$$\forall x_1, \dots, x_n F$$
 and $\exists x_1, \dots, x_n F$ abbreviate $\forall x_1 \dots \forall x_n F$ and $\exists x_1 \dots \exists x_n F$.

Notational Conventions

We use infix, prefix, postfix, or mixfix notation with the usual operator precedences.

Examples:

$$s + t * u$$
 for $+(s, *(t, u))$
 $s * u \le t + v$ for $\le (*(s, u), +(t, v))$
 $-s$ for $-(s)$
 $s!$ for $!(s)$
 $|s|$ for $|-|(s)$
0 for 0()

Example: Peano Arithmetic

$$\Sigma_{PA} = (\Omega_{PA}, \Pi_{PA})$$
 $\Omega_{PA} = \{0/0, +/2, */2, s/1\}$
 $\Pi_{PA} = \{$

Examples of formulas over this signature are

$$\forall x, y ((x < y \lor x \approx y) \leftrightarrow \exists z (x + z \approx y))$$

$$\exists x \forall y (x + y \approx y)$$

$$\forall x, y (x * s(y) \approx x * y + x)$$

$$\forall x, y (s(x) \approx s(y) \rightarrow x \approx y)$$

$$\forall x \exists y (x < y \land \neg \exists z (x < z \land z < y))$$

Positions in Terms and Formulas

The set of positions is extended from propositional logic to first-order logic:

The positions of a term s (formula F):

$$pos(x) = \{\varepsilon\},\$$

$$pos(f(s_1, ..., s_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{i \, p \mid p \in pos(s_i)\},\$$

$$pos(P(t_1, ..., t_n)) = \{\varepsilon\} \cup \bigcup_{i=1}^n \{i \, p \mid p \in pos(t_i)\},\$$

$$pos(\forall x \, F) = \{\varepsilon\} \cup \{1 \, p \mid p \in pos(F)\},\$$

$$pos(\exists x \, F) = \{\varepsilon\} \cup \{1 \, p \mid p \in pos(F)\}.$$

Positions in Terms and Formulas

The prefix order \leq , the subformula (subterm) operator, the formula (term) replacement operator, and the size operator are extended accordingly.

Variables

The set of variables occurring in a term t is denoted by var(t) (and analogously for atoms, literals, clauses, and formulas).

Bound and Free Variables

In Qx F, $Q \in \{\exists, \forall\}$, we call F the scope of the quantifier Qx.

An occurrence of a variable x is called bound

if it is inside the scope of a quantifier Qx.

Any other occurrence of a variable is called free.

Formulas without free variables are called closed formulas (or sentential forms).

Formulas without variables are called ground.

Bound and Free Variables

Example:

scope of
$$\forall y$$

$$\forall y \qquad ((\forall x P(x)) \rightarrow R(x, y))$$

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of x is a free occurrence.

Substitutions

Substitution is a fundamental operation on terms and formulas that occurs in all inference systems for first-order logic.

Substitutions are mappings

$$\sigma: X \to \mathsf{T}_{\Sigma}(X)$$

such that the domain of σ , that is, the set

$$dom(\sigma) = \{x \in X \mid \sigma(x) \neq x\},\$$

is finite. The set of variables introduced by σ , that is, the set of variables occurring in one of the terms $\sigma(x)$, with $x \in \text{dom}(\sigma)$, is denoted by $\text{codom}(\sigma)$.

Substitutions

Substitutions are often written as $\{x_1 \mapsto s_1, \dots, x_n \mapsto s_n\}$, with x_i pairwise distinct, and then denote the mapping

$$\{x_1 \mapsto s_1, \dots, x_n \mapsto s_n\}(y) = \begin{cases} s_i, & \text{if } y = x_i \\ y, & \text{otherwise} \end{cases}$$

We also write $x\sigma$ for $\sigma(x)$.

The modification of a substitution σ at x is defined as follows:

$$\sigma[x \mapsto t](y) = \begin{cases} t, & \text{if } y = x \\ \sigma(y), & \text{otherwise} \end{cases}$$

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula F by structural induction over the syntactic structure of t or F by the equations on the next slide.

In the presence of quantification it is surprisingly complex:

We must not only ensure that bound variables are not replaced by σ .

We must also make sure that the (free) variables in the codomain of σ are not captured upon placing them into the scope of a quantifier Qy.

Hence the bound variable must be renamed into a "fresh," that is,

previously unused, variable z.

Application of a Substitution

"Homomorphic" extension of σ to terms and formulas:

$$f(s_1, \ldots, s_n)\sigma = f(s_1\sigma, \ldots, s_n\sigma)$$

$$\bot \sigma = \bot$$

$$\top \sigma = \top$$

$$P(s_1, \ldots, s_n)\sigma = P(s_1\sigma, \ldots, s_n\sigma)$$

$$(u \approx v)\sigma = (u\sigma \approx v\sigma)$$

$$\neg F\sigma = \neg (F\sigma)$$

$$(F \circ G)\sigma = (F\sigma \circ G\sigma) \text{ for each binary connective } \circ$$

$$(Qx F)\sigma = Qz (F \sigma[x \mapsto z]) \text{ with } z \text{ a fresh variable}$$

Application of a Substitution

```
If s=t\sigma for some substitution \sigma, we call the term s an instance of the term t, and we call t a generalization of s (analogously for formulas).
```

3.2 **Semantics**

To give semantics to a logical system means to define a notion of truth for the formulas. The concept of truth that we will now define for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth values "true" and "false" denoted by 1 and 0, respectively.

Algebras

A Σ -algebra (also called Σ -interpretation or Σ -structure) is a triple

$$\mathcal{A} = (U_{\mathcal{A}}, (f_{\mathcal{A}}: U_{\mathcal{A}}^n \to U_{\mathcal{A}})_{f/n \in \Omega}, (P_{\mathcal{A}} \subseteq U_{\mathcal{A}}^m)_{P/m \in \Pi})$$

where $U_{\mathcal{A}} \neq \emptyset$ is a set, called the universe of \mathcal{A} .

By Σ -Alg we denote the class of all Σ -algebras.

 Σ -algebras generalize the valuations from propositional logic.

Assignments

A variable has no intrinsic meaning. The meaning of a variable has to be defined externally (explicitly or implicitly in a given context) by an assignment.

A (variable) assignment (over a given Σ -algebra \mathcal{A}) is a function $\beta: X \to U_{\mathcal{A}}$.

Variable assignments are the semantic counterparts of substitutions.

Value of a Term in A with respect to β

By structural induction we define

$$\mathcal{A}(\beta):\mathsf{T}_{\Sigma}(X)\to U_{\mathcal{A}}$$

as follows:

$$\mathcal{A}(\beta)(x) = \beta(x), \qquad x \in X$$

$$\mathcal{A}(\beta)(f(s_1, \dots, s_n)) = f_{\mathcal{A}}(\mathcal{A}(\beta)(s_1), \dots, \mathcal{A}(\beta)(s_n)), \quad f/n \in \Omega$$

Value of a Term in A with respect to β

In the scope of a quantifier we need to evaluate terms with respect to modified assignments. To that end, let $\beta[x \mapsto a] : X \to U_A$, for $x \in X$ and $a \in U_A$, denote the assignment

$$\beta[x \mapsto a](y) = \begin{cases} a & \text{if } x = y \\ \beta(y) & \text{otherwise} \end{cases}$$

Truth Value of a Formula in A with respect to β

 $\mathcal{A}(\beta): \mathsf{F}_{\Sigma}(X) \to \{0,1\}$ is defined inductively as follows:

$$\mathcal{A}(eta)(ot) = 0$$
 $\mathcal{A}(eta)(ot) = 1$
 $\mathcal{A}(eta)(P(s_1, \ldots, s_n)) = ext{if } (\mathcal{A}(eta)(s_1), \ldots, \mathcal{A}(eta)(s_n)) \in P_{\mathcal{A}}$
 $ext{then 1 else 0}$
 $\mathcal{A}(eta)(s pprox t) = ext{if } \mathcal{A}(eta)(s) = \mathcal{A}(eta)(t) ext{ then 1 else 0}$

Truth Value of a Formula in A with respect to β

 $\mathcal{A}(\beta): \mathsf{F}_{\Sigma}(X) \to \{0,1\}$ is defined inductively as follows:

$$\mathcal{A}(\beta)(\neg F) = 1 - \mathcal{A}(\beta)(F)$$

$$\mathcal{A}(\beta)(F \land G) = \min(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \lor G) = \max(\mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \to G) = \max(1 - \mathcal{A}(\beta)(F), \mathcal{A}(\beta)(G))$$

$$\mathcal{A}(\beta)(F \leftrightarrow G) = \text{if } \mathcal{A}(\beta)(F) = \mathcal{A}(\beta)(G) \text{ then 1 else 0}$$

$$\mathcal{A}(\beta)(\forall x F) = \min_{a \in \mathcal{U}_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}$$

$$\mathcal{A}(\beta)(\exists x F) = \max_{a \in \mathcal{U}_{\mathcal{A}}} \{\mathcal{A}(\beta[x \mapsto a])(F)\}$$

Example

The "standard" interpretation for Peano arithmetic:

$$egin{array}{lll} U_{\mathbb{N}} &=& \{0,1,2,\ldots\} \ 0_{\mathbb{N}} &=& 0 \ & s_{\mathbb{N}} &:& n\mapsto n+1 \ & +_{\mathbb{N}} &:& (n,m)\mapsto n+m \ & *_{\mathbb{N}} &:& (n,m)\mapsto n*m \ & <_{\mathbb{N}} &=& \{(n,m)\mid n \ \mbox{less than } m\} \end{array}$$

Note that $\mathbb N$ is just one out of many possible Σ_{PA} -interpretations.

Example

Values over \mathbb{N} for sample terms and formulas:

Under the assignment $\beta: x \mapsto 1, y \mapsto 3$ we obtain

$$\mathbb{N}(\beta)(s(x) + s(0)) = 3$$

$$\mathbb{N}(\beta)(x + y \approx s(y)) = 1$$

$$\mathbb{N}(\beta)(\forall x, y (x + y \approx y + x)) = 1$$

$$\mathbb{N}(\beta)(\forall z (z < y)) = 0$$

$$\mathbb{N}(\beta)(\forall x \exists y (x < y)) = 1$$

Ground Terms and Closed Formulas

If t is a ground term, then $\mathcal{A}(\beta)(t)$ does not depend on β , that is, $\mathcal{A}(\beta)(t) = \mathcal{A}(\beta')(t)$ for every β and β' .

Analogously, if F is a closed formula, then $\mathcal{A}(\beta)(F)$ does not depend on β , that is, $\mathcal{A}(\beta)(F) = \mathcal{A}(\beta')(F)$ for every β and β' .

Ground Terms and Closed Formulas

An element $a \in U_A$ is called term-generated if $a = A(\beta)(t)$ for some ground term t.

In general, not every element of an algebra is term-generated.

3.3 Models, Validity, and Satisfiability

F is true in A under assignment β :

$$\mathcal{A}, \beta \models F :\Leftrightarrow \mathcal{A}(\beta)(F) = 1$$

F is true in \mathcal{A} (\mathcal{A} is a model of F; F is valid in \mathcal{A}):

$$\mathcal{A} \models F : \Leftrightarrow \mathcal{A}, \beta \models F \text{ for all } \beta \in X \to U_{\mathcal{A}}$$

F is valid (or is a tautology):

$$\models F :\Leftrightarrow \mathcal{A} \models F \text{ for all } \mathcal{A} \in \Sigma\text{-Alg}$$

F is called satisfiable if there exist A and β such that $A, \beta \models F$. Otherwise F is called unsatisfiable.

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written $F \models G$, if for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$, we have

$$A, \beta \models F \Rightarrow A, \beta \models G$$

F and G are called equivalent, written $F \models G$, if for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$ we have

$$\mathcal{A}, \beta \models F \Leftrightarrow \mathcal{A}, \beta \models G$$

Entailment and Equivalence

Proposition 3.3.1:

 $F \models G$ if and only if $F \rightarrow G$ is valid

Proposition 3.3.2:

 $F \models G$ if and only if $F \leftrightarrow G$ is valid.

Extension to sets of formulas N as in propositional logic, e.g.:

$$N \models F$$
 : \Leftrightarrow for all $A \in \Sigma$ -Alg and $\beta \in X \to U_A$:
if $A, \beta \models G$ for all $G \in N$, then $A, \beta \models F$.

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as explained by the following proposition.

Proposition 3.3.3:

Let F and G be formulas, let N be a set of formulas. Then

- (i) F is valid if and only if $\neg F$ is unsatisfiable.
- (ii) $F \models G$ if and only if $F \land \neg G$ is unsatisfiable.
- (iii) $N \models G$ if and only if $N \cup \{\neg G\}$ is unsatisfiable.

Hence in order to design a theorem prover (validity checker), it is sufficient to design a checker for unsatisfiability.

Substitution Lemma

Lemma 3.3.4:

Let $\mathcal A$ be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for any Σ -term t

$$\mathcal{A}(\beta)(t\sigma) = \mathcal{A}(\beta \circ \sigma)(t),$$

where $\beta \circ \sigma : X \to U_A$ is the assignment $(\beta \circ \sigma)(x) = A(\beta)(x\sigma)$.

Proposition 3.3.5:

Let $\mathcal A$ be a Σ -algebra, let β be an assignment, let σ be a substitution. Then for every Σ -formula F

$$\mathcal{A}(\beta)(F\sigma) = \mathcal{A}(\beta \circ \sigma)(F)$$
.

Substitution Lemma

Corollary 3.3.6:

$$\mathcal{A}, \beta \models F\sigma \iff \mathcal{A}, \beta \circ \sigma \models F$$

These theorems basically express that the syntactic concept of substitution corresponds to the semantic concept of an assignment.

Two Lemmas

Lemma 3.3.7:

Let A be a Σ -algebra. Let F be a Σ -formula with free variables x_1, \ldots, x_n . Then

$$\mathcal{A} \models \forall x_1, \ldots, x_n F$$
 if and only if $\mathcal{A} \models F$.

Two Lemmas

Lemma 3.3.8:

Let A be a Σ -algebra.

Let F be a Σ -formula with free variables x_1, \ldots, x_n .

Let σ be a substitution and let y_1, \ldots, y_m be the free variables of $F\sigma$. Then

$$\mathcal{A} \models \forall x_1, \dots, x_n F$$
 implies $\mathcal{A} \models \forall y_1, \dots, y_m F \sigma$.

3.4 Algorithmic Problems

Validity(F): $\models F$?

Satisfiability(F): F satisfiable?

Entailment(*F*, *G*): does *F* entail *G*?

Model(A,F): $A \models F$?

Solve(\mathcal{A} ,F): find an assignment β such that \mathcal{A} , $\beta \models F$.

Solve(F): find a substitution σ such that $\models F\sigma$.

Abduce(F): find G with "certain properties" such that $G \models F$.

Theory of an Algebra

Let $A \in \Sigma$ -Alg. The (first-order) theory of A is defined as

$$\mathsf{Th}(\mathcal{A}) = \{ G \in \mathsf{F}_{\Sigma}(X) \mid \mathcal{A} \models G \}$$

Problem of axiomatizability:

Given an algebra \mathcal{A} (or a class of algebras) can one axiomatize $\mathsf{Th}(\mathcal{A})$, that is, can one write down a formula F (or a semidecidable set F of formulas) such that

$$\mathsf{Th}(\mathcal{A}) = \{ G \mid F \models G \}?$$

Two Interesting Theories

Let $\Sigma_{\mathsf{Pres}} = (\{0/0, s/1, +/2\}, \{<\})$ and $\mathbb{N}_+ = (\mathbb{N}, 0, s, +, <)$ its standard interpretation on the natural numbers.

 $\mathsf{Th}(\mathbb{N}_+)$ is called Presburger arithmetic (M. Presburger, 1929).

(There is no essential difference when one, instead of \mathbb{N} , considers the integer numbers \mathbb{Z} as standard interpretation.)

Presburger arithmetic is decidable in 3EXPTIME (D. Oppen, JCSS, 16(3):323-332, 1978), and in 2EXPSPACE, using automata-theoretic methods (and there is a constant $c \geq 0$ such that $Th(\mathbb{Z}_+) \notin NTIME(2^{2^{cn}})$).

Two Interesting Theories

However, $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *, <)$, the standard interpretation of $\Sigma_{PA} = (\{0/0, s/1, +/2, */2\}, \{<\})$, has as theory the so-called Peano arithmetic which is undecidable and not even semidecidable.

(Non)computability Results

- 1. For most signatures Σ , validity is undecidable for Σ -formulas. (One can easily encode Turing machines in most signatures.)
- Gödel's completeness theorem:
 For each signature Σ, the set of valid Σ-formulas is semidecidable.
 (We will prove this by giving complete deduction systems.)
- 3. Gödel's incompleteness theorem:

For $\Sigma = \Sigma_{PA}$ and $\mathbb{N}_* = (\mathbb{N}, 0, s, +, *, <)$, the theory $\mathsf{Th}(\mathbb{N}_*)$ is not semidecidable.

These complexity results motivate the study of subclasses of formulas (fragments) of first-order logic.