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A. Summary of Main Definitions

A.1. Orderings

Let > be a strict partial ordering on M; let M’ C M.

a € M’ is called minimal in M’ if there is no b € M’ with a > b.
a € M' is called smallest in M’ if b - a for all b € M’ \ {a}.
Analogously:

a € M’ is called maximal in M’ if there is no b € M’ with a < b.
a € M' is called largest in M’ if b < a for all b € M’ \ {a}.
Moreover:

a € M' is called strictly maximal in M’ if there is no b € M’ — {a} with a < b.

A.2. Multiset Orderings

Multiset Extensions Let (M, ) be an abstract reduction system. The multiset exten-
sion of > to multisets over M is defined by

S1 > mul S2 if and only if
there exist multisets X and Y over M such that
0 #X C S,
Sy = (51— X)UY,
VyeY dze X:z >y

The (Huet—Oppen) multiset extension of > to multisets over M is defined by

S1 >§81 So if and only if
S1 # S9 and
Vm € M: (S2(m) > Si(m)

= 3m' € M: m' = m and S;(m’) > S3(m’))

A third way to characterize the multiset extension of a binary relation > is to define it

as the transitive closure of the relation >—rlnu1 given by

Sy =L | Sy if and only if
there exists x € S7 and a multiset Y over M such that
Sy = (51 —{z}) VY,
VyeY:x >y



A.3. CNF Transformation for Propositional Logic

We describe a (naive) algorithm to convert a formula to CNF.
Apply the following rules as long as possible (modulo commutativity of A and V):

Step 1: Eliminate equivalences:

H[F < Gl =cne H[(F = G)N (G = Fy

Step 2: Eliminate implications:

H[F—)G]p =CNF H[ﬁF\/G]p

Step 3: Push negations inward:

H[~(FVG)], =cxe H[-F NG,
H[~(FAG)], =cxy H[-F V-G,

Step 4: Eliminate multiple negations:

H[==F], =cne H[F]p

Step 5: Push disjunctions inward:

H[(F/\F,)\/G]p =CNF H[(F\/G)/\(F/\/G)]p

Step 6: Eliminate T and _L:

H[F A T]p =CNF H[F]p
H[F A L]p =CNF H[L]p
H[F V T]p =CNF H[T]p
H[F V L]p =CNF H[F]p
H[-1], =cne H[T]p
H[-T], =oxr H[L],



A.4. DPLL

boolean DPLL(literal set M, clause set N) {

if (all clauses in N are true in M) return true;
elsif (some clause in N is false in M) return false;
elsif (N contains unit literal P) return DPLL(M U {P}, N);
elsif (N contains unit literal =P) return DPLL(M U {—=P}, N);
elsif (N contains pure literal P) return DPLL(M U {P}, N);
elsif (N contains pure literal =P) return DPLL(M U {-P}, N);
else {

let P be some undefined variable in N;

if (DPLL(M U{—=P}, N)) return true;

else return DPLL(M U {P}, N);
}

A.5. CNF Transformation for First-Order Logic

Prenex Normal Form Computing prenex normal form by the reduction system = p:

H[(F < G)l, =p H[F—G ANG—=PF))
H[-Qz F|, =p H[Qz-F],
H[(Qz F) o G), =p H[Qy(F{z—y} o G)lp,
o€ {N,V}
H[(Qz F) = G)l, =p HQy(F{z—y} =G,
H[(F o (QzG))l, =p H[Qy(F o G{z =y}l
o€ {A,V,—}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual to
Q,ie,V=dand 3=V.
Skolemization Transformation =g
(to be applied outermost, not in subformulas):
Vey,...,ep3y F =g Voi,...,xn, F{y— f(x1,...,2,)}

where f/n is a new function symbol (Skolem function).

The Complete Picture



F =% Quy1 ... Quun G (G quantifier-free)
=% Var,...,e;m H (m < n, H quantifier-free)
k n;

=% V&i,...,T Li;

CNF - 1 m Z/\l ]‘\/1 ij

eave out < .

clauses C}
E/
N ={C1,...,C}} is called the clausal (normal) form of F'.

Note: The variables in the clauses are implicitly universally quantified.

A.6. Unification

Rule-Based Naive Standard Unification

t=t,F =gy
f(317"'78n)if(t17"'7tn)7E =SU
fG.)=9(.)E =g

r=t,F =gy

r=t,F =gy

t=x,F =gy

IfE:{.%'li’u,l,..

E
s1=1t1,..., 8, =1tp, E
1

if f#g

x=t,E{r —t}

if x € var(E),x & var(t)
L

if v #t,x € var(t)
r=tF

iftg X

., X = ug}, with z; pairwise distinct, z; ¢ var(u;), then E is called

an (equational problem in) solved form representing the solution op = {1 — uq,...,

Rule-Based Polynomial Unification



To obtain the unifier og/, we have to sort the list of equality problems x; = ¢; in such a
way that x; does not occur in ¢; for j < 7, and then we have to compose the substitutions

t=t,F =py

f(sl, ’Sn) = f(tl’ ,tn)aE =PU
f(): ( ),E = PU

CC:y,E =PU

r1 =11, Ty =, B =pu
r=t,F =py

t:.%',E = PU

r=t,x=sFE =py

{IlHtl}O---O{xkl—}tk}.

E

sS1=1t1,..., 8, =tp, F

€L

if f#g

x =y, E{z — y}

if v € var(E),x #y

1L

if there are positions p; with

tilp; = Tit1,tnlp, = 21
and some p; # €

L

if x #t,x € var(t)
r=tF

iftg X
r=tt=sF

ift,s ¢ X and [t| < [s]

A.7. Ordered Resolution with Selection

Ground Clause Orderings

1.

We assume that > is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e.g., the length-based ordering on atoms

when these are viewed as words over a suitable alphabet.)

2. Extend > to an ordering >, on ground literals:
A >y
A -y
—A =
—A =
—A =

B ifA-B
-B ifA=B
B ifA-B
-B ifA-B
A

3. Extend > to an ordering > on ground clauses:

¢ = (>1)mul, the multiset extension

Notation: = also for >=;, and >.

of =1.



The Inference Rules
The resolution calculus ResZ, is parameterized by

e a selection function sel, which is a mapping

sel : C' +— set of occurrences of negative literals in C,

e and a well-founded ordering > on atoms that is total on ground atoms and stable
under substitutions.

Ordered Resolution with Selection:

DvB Cv-A
(DVC)o

if the following conditions are satisfied:
(i) o =mgu(4, B);
(i) Bo £ Lo for all L in D;
(iii) nothing is selected in D V B by sel;
)

(iv) —A is selected in C'V —A, or nothing is selected in C'V —A and Ao A Lo for all
Lin C.

Ordered Factorization with Selection:

CVAVB
(CV Ao

if the following conditions are satisfied:
(i) 0 = mgu(A, B);
(ii) Ao £ Lo for all L in C;
(iii) nothing is selected in C'V AV B by sel.

Construction of Candidate Interpretations Let N, > be given. We define sets I and
A¢ for all ground clauses C' over the given signature inductively over »:

Ie = UC>-DAD
{A}, fCeN,C=C'VA A-C"IcEC

A =
0, otherwise

We say that C' produces A if Ac = {A}.

The candidate interpretation for N (w.r.t. =) is given as Iy := Jo Ac.



A.8. Redundancy

Let N be a set of ground clauses and C' a ground clause (not necessarily in N). C is
called redundant w.r.t. N if there exist Cq,...,C, € N, n > 0, such that C; < C and
Cy,...,C, EC.

Redundancy for general clauses: C' is called redundant w.r.t. N if all ground instances
Co of C are redundant w.r.t. Gx(N).

Notation: The set of all clauses that are redundant w.r.t. N is denoted by Red(N).

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N\ Red(N) is contained in N U Red(N).

A.9. Semantic Tableaux

Propositional Expansion Rules

Negation Elimination

- F il oL
F € T
a-Expansion
@
aq
o9
B-Expansion
_B
Br | Bo
Classification of Formulas
conjunctive disjunctive

a a; @ B Br o
FAG F G| -FAG) | -F -G
~(FVG) | -F -G| FvG | F G
~«(F>G)| F =G| F5G |-F &

We assume that the binary connective <+ has been eliminated in advance.



universal existential

7 Q) 5 5(0)
VeF | F{x—t} || JzF | F{z—t}
—~JzF | ~F{x — t} | -VzF | = F{x — t}

Expansion Rules Specific to Tableaux with Ground Instantiation

y-expansion
——  where t is some ground term
(1)

d-expansion

1)
——  where ¢ is a new Skolem constant

d(c)

Expansion Rules Specific to Free-Variable Tableaux

y-expansion
——  where z is a new free variable
v(x)

d-expansion

o
0(f(z1,...,2n))

where f is a new Skolem function, and the z; are the free variables in §

A.10. E-Algebras

Let E be a set of equations over Tx(X). The following inference system allows us to
derive consequences of E:

Ertst (Reflexivity)
for every t € Tx(X)

Ert~t
EEd~t (Symmetry)
ErFtt EFt ~

Frtat! (Transitivity)
Erti~t, ... Ert,~t,

Congruence

EF f(tr, o tn) ~ F(B, o 1) (Congruence)
Erto~to (Instance)

if t~t)e Fando:X — Tx(X)



A.11. Simplification Orderings

Polynomial Orderings
Instance of the interpretation method:
The carrier set is Uy = {n € N | n > 1}.

With every function symbol f/n we associate a polynomial Pr(X1,...,X,) € N[X;,
.., Xy] with coefficients in N and indeterminates X, ..., X,,. Then we define f4(aq,
S ap) = Prlar,...,ay) for a; € Uy.

If arity(f) = 0, then Py is a constant > 1.

If arity(f) = n > 1, then Py is a polynomial P(X7,...,X,), such that every X; occurs
in some monomial m - X3! Xff with exponent at least 1 and nonzero coefficient
m € N.

The mapping from function symbols to polynomials can be extended to terms: A term ¢
containing the variables z1, . .., z, yields a polynomial P, with indeterminates X1,...,X,,.

Lexicographic Path Ordering Let ¥ = (,II) be a finite signature, let > be a strict
partial ordering (“precedence”) on (.

The lexicographic path ordering >1,, on Tx(X) induced by > is defined by: s >, t if
(1) t € var(s) and t # s, or
(2) s= f(S1,.--y8m), t=g(t1,...,t,), and

(a) s; =1po t for some i, or

(b) f > gand s >y t; for all j, or

(c) f=g9,s>pot; forall j, and (s1,...,8m) (ipo)iex (t1,---,tn)-

where (>p0)1ex is the m-fold lexicographic combination of >,
(note that f = g implies m = n).

Knuth—-Bendix Ordering Let ¥ = (2,1II) be a finite signature, let > be a strict partial
ordering (“precedence”) on €2, let w: QU X — R{ be a weight function, such that the
following admissibility conditions are satisfied:

w(z) = wy € RT for all variables = € X; w(c) > wy for all constants ¢ € .
If w(f) =0 for some f/1 € Q, then f > g for all g/n € Q with f # g.

The weight function w can be extended to terms recursively:

10



w(f(tr, - tn)) = w(f)+ D wlt)

1<i<n

or alternatively

wt) = > wlx) - #x,t)+ > wlf) - #(/,1)

x€var(t) feq
where #(a,t) is the number of occurrences of a in .

The Knuth—Bendix ordering =i, on Tx(X) induced by > and w is defined by: s >ypo t
if

x,8) > #(x,t) for all variables x and w(s) > w(t), or
#(x,t) for all variables z, w(s) = w(t), and
) t =z, s = f"(x) for some n > 1, or
b) s= f(s1,..-,8m), t =g(t1,...,t,), and f > g, or
(¢) s=f(s1y..ySm)yt = f(t1,...,tm), and (s1,...,8m) (kbo)lex (t1s---stm)-

A.12. Dependency Pairs

Given: finite TRS R over ¥ = (,0).
Ty := {t € Tx(X) | 3 infinite deriv. t =g t; g to >pr -}

Tootz{tETO|\V/p>€It|p¢T0}
= minimal elements of Ty w.r.t. ©>.

t € Ty = there exists a t’ € Ty, such that ¢t > t'.

D :={root(l) | | — r € R} is called the set of defined symbols of R; C := Q\ D is called
the set of constructor symbols of R.

We introduce a new set of function symbols f# that are only used for the root symbols
of this derivation:

QOF = {f*/n| f/n€Q}.

For a term t = f(t1,...,t,) we define t* := fi(t1,... t,); for a set of terms T we define
T = {t* |t e T}

The set of dependency pairs of a TRS R is then defined by

DP(R) :={I* 5 uf |l > r € R, r>u,u¢ X, root(u) € D, | ¢ u}.

11



The functions cap and ren are defined by

cap(z) =z

y if feD
cap(f(t1,... ,tn)) - {f(cap(tl), .. ,Cap(tn)) if feCuU Dt

ren(z) =y, y fresh
ren(f(t1,...,tn)) = f(ren(t1),...,ren(ty,))

A.13. Completion
Critical Pairs Let [; — r; (i = 1,2) be two rewrite rules in a TRS R whose variables
have been renamed such that var(ly) N var(ly) = 0.

Let p € pos(l1) be a position such that {1, is not a variable and o is an mgu of /1|, and
la.

Then rio <+ ljo — (110)[7“20]p.
(r10o,(lio)[reo]p) is called a critical pair of R.

CP(R) denotes the set of all critical pairs between rules in R.

Knuth—-Bendix Completion The completion procedure is presented as a set of inference
rules working on a set of equations F and a set of rules R: Fo, Ro - F1,Ri - F5, Ro ...

At the beginning, F = Ej is the input set and R = Ry is empty. At the end, E should
be empty; then R is the result.

For each step F, R+ E', R, the equational theories of FU R and E' U R’ agree: ~gur =
%E/UR/ .

Notation: The formula s = ¢ denotes either s ~ t or t ~ s.

Orient:
E ~
Uls~t} R if s>t
E, RU{s—t}
Delete:
EUu{s~s}, R
E, R
Deduce:
E, R
’ if {s,t) € CP(R).
Eu{s=~t}, R if {s,1) € CP(R)

Simplify-Eq:

12



Eu{s=~t}, R

if .
EU{u%t}, = 1IS—RU
R-Simplify-Rule:
E, RU{s—t}
. if ¢ .
E, RU{s— u} R
L-Simplify-Rule:
E, RU{s—t} if s spuusingarulel -reR

FEu{u~t}, R such that s 7 1.

The encompassment quasi-ordering - is defined by
s J1 if s|, =lo for some p and o

and = J\ L is the strict part of J.

Semicritical Pairs Let u; =~ v; (i = 1,2) be equations in F whose variables have been
renamed such that var(u; ~ vi) Nvar(us &~ vy) = 0. Let p € pos(u1) be a position such
that ui|, is not a variable, o is an mgu of u;|, and us, and w;oc A vio (i = 1,2). Then
(v10, (u10)[va0]p) is called a semicritical pair of E with respect to >.

The set of all semicritical pairs of E is denoted by SP. (FE).

Unfailing Completion The “Deduce” rule now takes the following form:

Deduce:
E, R
Eu{s~t}, R

if (s,t) € SPy(EUR).

A.14. Superposition

The Inference Rules

13



Pos. Superposition:

Neg. Superposition:

Equality Resolution:

Equality Factoring:

Clause Orderings

Let > be a reduction ordering that is total on ground terms.

To a positive literal s

extension of >.

The clause ordering > compares clauses by comparing their multisets of literals using

D'vtxt  C'Vslu

(D'VvC'Vs[t~s
where o0 = mgu(t,u) an
u 1s not a variable.

| ~
)

D'vit=t C'V slu) % s

(D'Vv C'V st % s')o
where o = mgu(t, u) and
u is not a variable.

C'vse#s

Cl'o
where o = mgu(s, s').

C'Vvs ~tvst

(C'Vt#gtVs=t)o
where o = mgu(s, s').

~ t, we assign the multiset {s,t}, to a negative literal s % ¢ the
multiset {s, s,t,t}. The literal ordering >, compares these multisets using the multiset

the multiset extension of .

The Ordering Restrictions Inferences have to be computed only if the following order-
ing restrictions are satisfied (after applying the unifier to the premises):

— In superposition inferences, the left premise is not greater than or equal to the right

one.

— The last literal in each premise is maximal in the respective premise, i.e., there exists
no greater literal (strictly maximal for positive literals in superposition inferences,

i.e., there exists no greater or equal literal).

— In these literals, the lhs is neither smaller than nor equal to the rhs (except in equality
resolution inferences).

14



Construction of Candidate Interpretations Let N be a set of clauses not containing
1. Using induction on the clause ordering we define sets of rewrite rules Fo and R for
all C € Gx(N) as follows:

Assume that Ep has already been defined for all D € Gx(N) with D <s C. Then
¢ =Up=.c Ep-

The set E¢ contains the rewrite rule s — ¢ if
(a) C=C"Vs~t.
(b) s &t is strictly maximal in C.
(c) s
(d) C is false in Re.
(e) C"is false in Ro U {s — t}.
(f)

n

s is irreducible w.r.t. R¢.

In this case, C is called productive. Otherwise Ec = ().

Finally, Ry, = UDeGE(N) Ep.
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