
Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD,

Tanguy Bozec, and Lydia Kondylidou
based on text by Dr. Uwe Waldmann

Winter Term 2025/26

For convenience, a handout is provided with the definitions of the main calculi and
concepts covered in the course:

A. Summary of Main Definitions 2

A.1. Orderings . 2
A.2. Multiset Orderings . 2
A.3. CNF Transformation for Propositional Logic 3
A.4. DPLL . 4
A.5. CNF Transformation for First-Order Logic 4
A.6. Unification . 5
A.7. Ordered Resolution with Selection . 6
A.8. Redundancy . 8
A.9. Semantic Tableaux . 8
A.10.E -Algebras . 9
A.11.Simplification Orderings . 10
A.12.Dependency Pairs . 11
A.13.Completion . 12
A.14.Superposition . 13

1

A. Summary of Main Definitions

A.1. Orderings

Let ≻ be a strict partial ordering on M ; let M ′ ⊆M .

a ∈M ′ is called minimal in M ′ if there is no b ∈M ′ with a ≻ b.

a ∈M ′ is called smallest in M ′ if b ≻ a for all b ∈M ′ \ {a}.

Analogously:

a ∈M ′ is called maximal in M ′ if there is no b ∈M ′ with a ≺ b.

a ∈M ′ is called largest in M ′ if b ≺ a for all b ∈M ′ \ {a}.

Moreover:

a ∈M ′ is called strictly maximal in M ′ if there is no b ∈M ′ − {a} with a � b.

A.2. Multiset Orderings

Multiset Extensions Let (M,≻) be an abstract reduction system. The multiset exten-
sion of ≻ to multisets over M is defined by

S1 ≻mul S2 if and only if

there exist multisets X and Y over M such that

∅ 6= X ⊆ S1,

S2 = (S1 −X) ∪ Y,

∀y ∈ Y ∃x ∈ X: x ≻ y

The (Huet–Oppen) multiset extension of ≻ to multisets over M is defined by

S1 ≻
HO
mul S2 if and only if

S1 6= S2 and

∀m ∈M :
(
S2(m) > S1(m)

⇒ ∃m′ ∈M : m′ ≻ m and S1(m
′) > S2(m

′)
)

A third way to characterize the multiset extension of a binary relation ≻ is to define it
as the transitive closure of the relation ≻1

mul given by

S1 ≻
1
mul S2 if and only if

there exists x ∈ S1 and a multiset Y over M such that

S2 = (S1 − {x}) ∪ Y,

∀y ∈ Y : x ≻ y

2

A.3. CNF Transformation for Propositional Logic

We describe a (naive) algorithm to convert a formula to CNF.

Apply the following rules as long as possible (modulo commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

H[F ↔ G]p ⇒CNF H[(F → G) ∧ (G→ F)]p

Step 2: Eliminate implications:

H[F → G]p ⇒CNF H[¬F ∨G]p

Step 3: Push negations inward:

H[¬(F ∨G)]p ⇒CNF H[¬F ∧ ¬G]p

H[¬(F ∧G)]p ⇒CNF H[¬F ∨ ¬G]p

Step 4: Eliminate multiple negations:

H[¬¬F]p ⇒CNF H[F]p

Step 5: Push disjunctions inward:

H[(F ∧ F ′) ∨G]p ⇒CNF H[(F ∨G) ∧ (F ′ ∨G)]p

Step 6: Eliminate ⊤ and ⊥:

H[F ∧ ⊤]p ⇒CNF H[F]p

H[F ∧ ⊥]p ⇒CNF H[⊥]p

H[F ∨ ⊤]p ⇒CNF H[⊤]p

H[F ∨ ⊥]p ⇒CNF H[F]p

H[¬⊥]p ⇒CNF H[⊤]p

H[¬⊤]p ⇒CNF H[⊥]p

3

A.4. DPLL

boolean DPLL(literal set M , clause set N) {
if (all clauses in N are true in M) return true;
elsif (some clause in N is false in M) return false;
elsif (N contains unit literal P) return DPLL(M ∪ {P}, N);
elsif (N contains unit literal ¬P) return DPLL(M ∪ {¬P}, N);
elsif (N contains pure literal P) return DPLL(M ∪ {P}, N);
elsif (N contains pure literal ¬P) return DPLL(M ∪ {¬P}, N);
else {

let P be some undefined variable in N ;
if (DPLL(M ∪ {¬P}, N)) return true;
else return DPLL(M ∪ {P}, N);

}

}

A.5. CNF Transformation for First-Order Logic

Prenex Normal Form Computing prenex normal form by the reduction system ⇒P :

H[(F ↔ G)]p ⇒P H[(F → G) ∧ (G→ F)]p
H[¬QxF]p ⇒P H[Qx¬F]p

H[((QxF) ◦ G)]p ⇒P H[Qy (F{x 7→ y} ◦ G)]p,
◦ ∈ {∧,∨}

H[((QxF)→ G)]p ⇒P H[Qy (F{x 7→ y} → G)]p,
H[(F ◦ (QxG))]p ⇒P H[Qy (F ◦ G{x 7→ y})]p,

◦ ∈ {∧,∨,→}

Here y is always assumed to be some fresh variable and Q denotes the quantifier dual to
Q, i.e., ∀ = ∃ and ∃ = ∀.

Skolemization Transformation ⇒S

(to be applied outermost, not in subformulas):

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F{y 7→ f(x1, . . . , xn)}

where f/n is a new function symbol (Skolem function).

The Complete Picture

4

F ⇒∗
P Q1y1 . . .QnynG (G quantifier-free)

⇒∗
S ∀x1, . . . , xmH (m ≤ n, H quantifier-free)

⇒∗
CNF

∀x1, . . . , xm
︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci
︸ ︷︷ ︸

F ′

N = {C1, . . . , Ck} is called the clausal (normal) form of F .
Note: The variables in the clauses are implicitly universally quantified.

A.6. Unification

Rule-Based Naive Standard Unification

t
.
= t, E ⇒SU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒SU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒SU ⊥

if f 6= g

x
.
= t, E ⇒SU x

.
= t, E{x 7→ t}

if x ∈ var(E), x 6∈ var(t)

x
.
= t, E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x,E ⇒SU x

.
= t, E

if t 6∈ X

If E = {x1
.
= u1, . . . , xk

.
= uk}, with xi pairwise distinct, xi 6∈ var(uj), then E is called

an (equational problem in) solved form representing the solution σE = {x1 7→ u1, . . . ,
xk 7→ uk}.

Rule-Based Polynomial Unification

5

t
.
= t, E ⇒PU E

f(s1, . . . , sn)
.
= f(t1, . . . , tn), E ⇒PU s1

.
= t1, . . . , sn

.
= tn, E

f(. . .)
.
= g(. . .), E ⇒PU ⊥

if f 6= g

x
.
= y,E ⇒PU x

.
= y,E{x 7→ y}

if x ∈ var(E), x 6= y

x1
.
= t1, . . . , xn

.
= tn, E ⇒PU ⊥

if there are positions pi with
ti|pi = xi+1, tn|pn = x1
and some pi 6= ε

x
.
= t, E ⇒PU ⊥

if x 6= t, x ∈ var(t)

t
.
= x,E ⇒PU x

.
= t, E

if t 6∈ X

x
.
= t, x

.
= s,E ⇒PU x

.
= t, t

.
= s,E

if t, s 6∈ X and |t| ≤ |s|

To obtain the unifier σE′ , we have to sort the list of equality problems xi
.
= ti in such a

way that xi does not occur in tj for j < i, and then we have to compose the substitutions
{x1 7→ t1} ◦ · · · ◦ {xk 7→ tk}.

A.7. Ordered Resolution with Selection

Ground Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is total and well-
founded. (There exist many such orderings, e.g., the length-based ordering on atoms
when these are viewed as words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

A ≻L B if A ≻ B
A ≻L ¬B if A ≻ B
¬A ≻L B if A ≻ B
¬A ≻L ¬B if A ≻ B
¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:
≻C = (≻L)mul, the multiset extension of ≻L.

Notation: ≻ also for ≻L and ≻C.

6

The Inference Rules

The resolution calculus Res≻sel is parameterized by

• a selection function sel, which is a mapping

sel : C 7→ set of occurrences of negative literals in C,

• and a well-founded ordering ≻ on atoms that is total on ground atoms and stable
under substitutions.

Ordered Resolution with Selection:

D ∨B C ∨ ¬A

(D ∨C)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Bσ 6� Lσ for all L in D;

(iii) nothing is selected in D ∨B by sel;

(iv) ¬A is selected in C ∨ ¬A, or nothing is selected in C ∨ ¬A and ¬Aσ 6≺ Lσ for all
L in C.

Ordered Factorization with Selection:

C ∨A ∨B

(C ∨A)σ

if the following conditions are satisfied:

(i) σ = mgu(A,B);

(ii) Aσ 6≺ Lσ for all L in C;

(iii) nothing is selected in C ∨A ∨B by sel.

Construction of Candidate Interpretations Let N,≻ be given. We define sets IC and
∆C for all ground clauses C over the given signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=







{A}, if C ∈ N , C = C ′ ∨A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A if ∆C = {A}.

The candidate interpretation for N (w.r.t. ≻) is given as I≻N :=
⋃

C ∆C .

7

A.8. Redundancy

Let N be a set of ground clauses and C a ground clause (not necessarily in N). C is
called redundant w.r.t. N if there exist C1, . . . , Cn ∈ N , n ≥ 0, such that Ci ≺ C and
C1, . . . , Cn |= C.

Redundancy for general clauses: C is called redundant w.r.t. N if all ground instances
Cσ of C are redundant w.r.t. GΣ(N).

Notation: The set of all clauses that are redundant w.r.t. N is denoted by Red(N).

N is called saturated up to redundancy if the conclusion of every inference from clauses
in N \ Red(N) is contained in N ∪ Red(N).

A.9. Semantic Tableaux

Propositional Expansion Rules

Negation Elimination
¬¬F
F

¬⊤
⊥

¬⊥
⊤

α-Expansion

α

α1

α2

β-Expansion

β

β1 | β2

Classification of Formulas

conjunctive disjunctive

α α1 α2 β β1 β2
F ∧G F G ¬(F ∧G) ¬F ¬G
¬(F ∨G) ¬F ¬G F ∨G F G
¬(F → G) F ¬G F → G ¬F G

We assume that the binary connective ↔ has been eliminated in advance.

8

universal existential

γ γ(t) δ δ(t)

∀xF F{x 7→ t} ∃xF F{x 7→ t}
¬∃xF ¬F{x 7→ t} ¬∀xF ¬F{x 7→ t}

Expansion Rules Specific to Tableaux with Ground Instantiation

γ-expansion
γ

γ(t)
where t is some ground term

δ-expansion
δ

δ(c)
where c is a new Skolem constant

Expansion Rules Specific to Free-Variable Tableaux

γ-expansion
γ

γ(x)
where x is a new free variable

δ-expansion
δ

δ(f(x1, . . . , xn))

where f is a new Skolem function, and the xi are the free variables in δ

A.10. E-Algebras

Let E be a set of equations over TΣ(X). The following inference system allows us to
derive consequences of E:

E ⊢ t ≈ t (Reflexivity)
for every t ∈ TΣ(X)

E ⊢ t ≈ t′

E ⊢ t′ ≈ t
(Symmetry)

E ⊢ t ≈ t′ E ⊢ t′ ≈ t′′

E ⊢ t ≈ t′′
(Transitivity)

E ⊢ t1 ≈ t′1 . . . E ⊢ tn ≈ t′n
E ⊢ f(t1, . . . , tn) ≈ f(t′1, . . . , t

′
n)

(Congruence)

E ⊢ tσ ≈ t′σ (Instance)
if (t ≈ t′) ∈ E and σ : X → TΣ(X)

9

A.11. Simplification Orderings

Polynomial Orderings

Instance of the interpretation method:

The carrier set is UA = {n ∈ N | n ≥ 1}.

With every function symbol f/n we associate a polynomial Pf (X1, . . . ,Xn) ∈ N[X1,
. . . ,Xn] with coefficients in N and indeterminates X1, . . . ,Xn. Then we define fA(a1,
. . . , an) = Pf (a1, . . . , an) for ai ∈ UA.

If arity(f) = 0, then Pf is a constant ≥ 1.

If arity(f) = n ≥ 1, then Pf is a polynomial P (X1, . . . ,Xn), such that every Xi occurs

in some monomial m · Xj1
1 · · ·X

jk
k with exponent at least 1 and nonzero coefficient

m ∈ N.

The mapping from function symbols to polynomials can be extended to terms: A term t
containing the variables x1, . . . , xn yields a polynomial Pt with indeterminatesX1, . . . ,Xn.

Lexicographic Path Ordering Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict
partial ordering (“precedence”) on Ω.

The lexicographic path ordering ≻lpo on TΣ(X) induced by ≻ is defined by: s ≻lpo t if

(1) t ∈ var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(a) si �lpo t for some i, or

(b) f ≻ g and s ≻lpo tj for all j, or

(c) f = g, s ≻lpo tj for all j, and (s1, . . . , sm) (≻lpo)lex (t1, . . . , tn).

where (≻lpo)lex is the m-fold lexicographic combination of ≻lpo

(note that f = g implies m = n).

Knuth–Bendix Ordering Let Σ = (Ω,Π) be a finite signature, let ≻ be a strict partial
ordering (“precedence”) on Ω, let w : Ω ∪X → R

+
0 be a weight function, such that the

following admissibility conditions are satisfied:

w(x) = w0 ∈ R
+ for all variables x ∈ X; w(c) ≥ w0 for all constants c ∈ Ω.

If w(f) = 0 for some f/1 ∈ Ω, then f ≻ g for all g/n ∈ Ω with f 6= g.

The weight function w can be extended to terms recursively:

10

w(f(t1, . . . , tn)) = w(f) +
∑

1≤i≤n

w(ti)

or alternatively

w(t) =
∑

x∈var(t)

w(x) ·#(x, t) +
∑

f∈Ω

w(f) ·#(f, t)

where #(a, t) is the number of occurrences of a in t.

The Knuth–Bendix ordering ≻kbo on TΣ(X) induced by ≻ and w is defined by: s ≻kbo t
if

(1) #(x, s) ≥ #(x, t) for all variables x and w(s) > w(t), or

(2) #(x, s) ≥ #(x, t) for all variables x, w(s) = w(t), and

(a) t = x, s = fn(x) for some n ≥ 1, or

(b) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f ≻ g, or

(c) s = f(s1, . . . , sm), t = f(t1, . . . , tm), and (s1, . . . , sm) (≻kbo)lex (t1, . . . , tm).

A.12. Dependency Pairs

Given: finite TRS R over Σ = (Ω, ∅).

T0 := {t ∈ TΣ(X) | ∃ infinite deriv. t→R t1 →R t2 →R · · · }.

T∞ := {t ∈ T0 | ∀p > ε : t|p /∈ T0}
= minimal elements of T0 w.r.t. ⊲.

t ∈ T0 ⇒ there exists a t′ ∈ T∞ such that t D t′.

D := {root(l) | l→ r ∈ R} is called the set of defined symbols of R; C := Ω \D is called
the set of constructor symbols of R.

We introduce a new set of function symbols f ♯ that are only used for the root symbols
of this derivation:

Ω♯ := {f ♯/n | f/n ∈ Ω}.

For a term t = f(t1, . . . , tn) we define t♯ := f ♯(t1, . . . , tn); for a set of terms T we define
T ♯ := {t♯ | t ∈ T}.

The set of dependency pairs of a TRS R is then defined by

DP(R) := {l♯ → u♯ | l→ r ∈ R, r D u, u /∈ X, root(u) ∈ D, l 6⊲ u}.

11

The functions cap and ren are defined by

cap(x) = x

cap(f(t1, . . . , tn)) =

{

y if f ∈ D

f(cap(t1), . . . , cap(tn)) if f ∈ C ∪D♯

ren(x) = y, y fresh
ren(f(t1, . . . , tn)) = f(ren(t1), . . . , ren(tn))

A.13. Completion

Critical Pairs Let li → ri (i = 1, 2) be two rewrite rules in a TRS R whose variables
have been renamed such that var(l1) ∩ var(l2) = ∅.

Let p ∈ pos(l1) be a position such that l1|p is not a variable and σ is an mgu of l1|p and
l2.

Then r1σ ← l1σ → (l1σ)[r2σ]p.

〈r1σ, (l1σ)[r2σ]p〉 is called a critical pair of R.

CP(R) denotes the set of all critical pairs between rules in R.

Knuth–Bendix Completion The completion procedure is presented as a set of inference
rules working on a set of equations E and a set of rules R: E0, R0 ⊢ E1, R1 ⊢ E2, R2 ⊢ . . .

At the beginning, E = E0 is the input set and R = R0 is empty. At the end, E should
be empty; then R is the result.

For each step E,R ⊢ E′, R′, the equational theories of E ∪R and E′ ∪R′ agree: ≈E∪R =
≈E′∪R′ .

Notation: The formula s
.
≈ t denotes either s ≈ t or t ≈ s.

Orient:

E ∪ {s
.
≈ t}, R

E, R ∪ {s→ t}
if s ≻ t

Delete:

E ∪ {s ≈ s}, R

E, R

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ CP(R).

Simplify-Eq:

12

E ∪ {s
.
≈ t}, R

E ∪ {u ≈ t}, R
if s→R u.

R-Simplify-Rule:

E, R ∪ {s→ t}

E, R ∪ {s→ u}
if t→R u.

L-Simplify-Rule:

E, R ∪ {s→ t}

E ∪ {u ≈ t}, R

if s→R u using a rule l→ r ∈ R
such that s ⊐ l.

The encompassment quasi-ordering ⊐
∼ is defined by

s ⊐∼ l if s|p = lσ for some p and σ

and ⊐ = ⊐
∼ \

⊏
∼ is the strict part of ⊐∼.

Semicritical Pairs Let ui
.
≈ vi (i = 1, 2) be equations in E whose variables have been

renamed such that var(u1
.
≈ v1) ∩ var(u2

.
≈ v2) = ∅. Let p ∈ pos(u1) be a position such

that u1|p is not a variable, σ is an mgu of u1|p and u2, and uiσ 6� viσ (i = 1, 2). Then
〈v1σ, (u1σ)[v2σ]p〉 is called a semicritical pair of E with respect to ≻.

The set of all semicritical pairs of E is denoted by SP≻(E).

Unfailing Completion The “Deduce” rule now takes the following form:

Deduce:

E, R

E ∪ {s ≈ t}, R
if 〈s, t〉 ∈ SP≻(E ∪R).

A.14. Superposition

The Inference Rules

13

Pos. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ ∨ C ′ ∨ s[t′] ≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Neg. Superposition:
D′ ∨ t ≈ t′ C ′ ∨ s[u] 6≈ s′

(D′ ∨ C ′ ∨ s[t′] 6≈ s′)σ

where σ = mgu(t, u) and
u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

Equality Factoring:
C ′ ∨ s′ ≈ t′ ∨ s ≈ t

(C ′ ∨ t 6≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, s′).

Clause Orderings

Let ≻ be a reduction ordering that is total on ground terms.

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal s 6≈ t the
multiset {s, s, t, t}. The literal ordering ≻L compares these multisets using the multiset
extension of ≻.

The clause ordering ≻C compares clauses by comparing their multisets of literals using
the multiset extension of ≻L.

The Ordering Restrictions Inferences have to be computed only if the following order-
ing restrictions are satisfied (after applying the unifier to the premises):

– In superposition inferences, the left premise is not greater than or equal to the right
one.

– The last literal in each premise is maximal in the respective premise, i.e., there exists
no greater literal (strictly maximal for positive literals in superposition inferences,
i.e., there exists no greater or equal literal).

– In these literals, the lhs is neither smaller than nor equal to the rhs (except in equality
resolution inferences).

14

Construction of Candidate Interpretations Let N be a set of clauses not containing
⊥. Using induction on the clause ordering we define sets of rewrite rules EC and RC for
all C ∈ GΣ(N) as follows:

Assume that ED has already been defined for all D ∈ GΣ(N) with D ≺C C. Then
RC =

⋃

D≺CC
ED.

The set EC contains the rewrite rule s→ t if

(a) C = C ′ ∨ s ≈ t.

(b) s ≈ t is strictly maximal in C.

(c) s ≻ t.

(d) C is false in RC .

(e) C ′ is false in RC ∪ {s→ t}.

(f) s is irreducible w.r.t. RC .

In this case, C is called productive. Otherwise EC = ∅.

Finally, R∞ =
⋃

D∈GΣ(N) ED.

15

