Automated Theorem Proving

Prof. Dr. Jasmin Blanchette, Yiming Xu, PhD,
Tanguy Bozec, and Lydia Kondylidou
based on exercises by Dr. Uwe Waldmann

Winter Term 2025/26

Exercises 3: Propositional Logic Continued

Exercise 3.1 (x): Let N = {C},...,Cy} be a finite set of propositional clauses without
duplicated literals or complementary literals such that for every i € {1,...,n} the clause
C; has exactly 14 literals. Prove or refute: IV is satisfiable.

Exercise 3.2: Let N be a set of propositional clauses. Prove or refute the following
statement: If N contains clauses C;VD; (i € {1,...,n})such that {C; |i € {1,...,n}} E

Exercise 3.3: A partial [I-valuation A under which all clauses of a clause set N are
true is called a partial II-model of N.

Do the following clause sets over IT = {P, @, R} have partial II-models that are not total
IT-models (that is, models in the sense of Sect. 2.3)7 If yes, give such a partial II-model.
1 P
-P Vv Q
-P VvV -Q V -R

(2) P
-P Vv Q

-P V -Q V -R

3 P V R
-P V. Q V -R

-Q vV R
P vV -R

Exercise 3.4: For any propositional formula F', let negvar(F) be the formula obtained
from F' by replacing every propositional variable by its negation. Formally:

negvar(P) = =P
negvar(—G) = —negvar(G)
neguar(G1 A G2) = negvar(Gy) A negvar(Ga)
and so on. For example, negvar(PV (-Q — (wPAT))) =—-PV (—-=Q — (——P A T)).

Prove or refute: If a formula F' is satisfiable, then negvar(F) is satisfiable. (It is sufficient
if you consider the boolean connectives — and A; the others are treated analogously.)

Exercise 3.5: Let N be the following set of propositional clauses over II = {P, @, R}:

P Vv -Q (1)
Q vV -R (2)
-P V. R (3)

(a) Use the DPLL procedure to compute a (total) model of N.

(b) Use the DPLL procedure to prove that N = R — P. Before you can invoke the
procedure, you will first need to transform the entailment into a suitable set of clauses.

Exercise 3.6 (x): A friend asks you to proofread her bachelor thesis. On page 14 of the
thesis, she writes the following:

Definition 11. Let N be a set of propositional formulas. The set poscomb(N) of
positive combinations of formulas in NV is defined inductively by

(1) N C poscomb(N);

(2) if F, F’ € poscomb(N), then F'V F" € poscomb(N); and

(3) if F,F’ € poscomb(N), then F A F" € poscomb(N).

Lemma 12. If N is a satisfiable set of formulas, then every positive combination

of formulas in N is satisfiable.

Proof. The proof proceeds by induction over the formula structure. Let G €
poscomb(N). If G € N, then it is obviously satisfiable, since N is satisfiable.
Otherwise, G must be a disjunction or a conjunction of formulas in poscomb(N).

If G is a disjunction F' V F’' with F, F’ € poscomb(N), we know by the induction
hypothesis that F' is satisfiable. So F' has a model. Since this is also a model of
G = FV F’, the formula G is satisfiable. Analogously, if G is a conjunction F'A F’,
with F, F’ € poscomb(N), then both F and F’ are satisfiable by induction, so
G = F A F' is satisfiable as well.

(1) Is the “proof” correct?
(2) If the “proof” is not correct:
(a) Which step is incorrect?

(b) Does the “lemma” hold? If yes, give a correct proof; otherwise, give a coun-
terexample.

Exercise 3.7: The sudoku puzzle presented in the first lecture has a unique solution.

112|314 (5]61| 7|89
1 1
2| 4

3 2

4) 4 7
5) 8 3

6 1 9

T 3 4 2

8) 1

9 8 6

If we replace the 4 in column 1, row 2 by some other digit, this need no longer hold. Use
a SAT solver to find out for which values in column 1, row 2 the puzzle has no solution.

Hint: The Perl script at
https://rgl-teaching.mpi-inf .mpg.de/autrea-ws23/gensud

produces an encoding of the sudoku above in DIMACS CNF format, which is accepted
by most SAT solvers.

Exercise 3.8 (x): Given a sudoku puzzle, briefly describe a set of propositional clauses
that is satisfiable if and only if the puzzle has more than one solution.

Exercise 3.9: A finite graph is a pair (V, E), where V is a finite nonempty set and
E CV x V. The elements of V' are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function ¢ : V' — {0, 1,2} such that for
every edge (v,v') € E we have ¢(v) # ¢(v').

Give a linear-time translation from finite graphs (V| E) to propositional clause sets N
such that (V, E') has a 3-coloring if and only if N is satisfiable and such that every model
of N corresponds to a 3-coloring ¢ and vice versa.

Exercise 3.10 (x): A finite graph is a pair (V, E), where V is a finite nonempty set and
E CV x V. The elements of V' are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function ¢ : V' — {0, 1,2} such that for
every edge (v,v’) € E we have ¢(v) # ¢(v'). A 3-coloring is called complete if for every
pair (¢,d) € {0,1,2} x {0,1,2} with ¢ # ¢ there exists an edge (v,v’) € E such that
¢(v) =cand ¢(v') = or ¢(v) = and ¢(v') = c.

Give a linear-time translation from finite graphs (V, E) to propositional clause sets N
such that (V, E) has a complete 3-coloring if and only if N is satisfiable and such that
every model of N corresponds to a complete 3-coloring ¢ and vice versa.

Exercise 3.11: Give OBDDs for the following three formulas:
(a) =P
(b) P+ Q
() (PAQ)V(QAR)V(RAP)

Consider the ordering P < @ < R.

Exercise 3.12: Let F' be the propositional formula P A (Q V R) A S.
(a) Give the reduced OBDD for F' w.r.t. the ordering P < Q < R < S.

(b) Find a total ordering over {P,Q, R, S} such that the reduced OBDD for F' has 6
nonleaf nodes. Give the resulting reduced OBDD.

(c) For how many total orderings over {P, @, R, S} does the reduced OBDD for F' have
6 nonleaf nodes?

Exercise 3.13: (a) Give a propositional formula F' that is represented by this reduced
OBDD:

(b) How many different reduced OBDDs over the propositional variables { P, Q, R} have
exactly one interior (nonleaf) node?

(c) Find a propositional formula G over the propositional variables {P, @, R}, such that
the reduced OBDD for G has three interior nodes and the reduced OBDD for F'V G has
one interior node. Give the reduced OBDDs for G and F'V G.

Exercise 3.14 (x): Let F, be a propositional formula over {Pj,...,P,} such that
A(F,) = 1 if and only if A maps exactly one of the propositional variables Py, ..., P, to
1 and the others to 0. How many nodes does a reduced OBDD for F,, have (including

the leaf nodes [0] and [1])?

