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Exercises 3: Propositional Logic Continued

Exercise 3.1 (∗): Let N = {C1, . . . , Cn} be a finite set of propositional clauses without
duplicated literals or complementary literals such that for every i ∈ {1, . . . , n} the clause
Ci has exactly i literals. Prove or refute: N is satisfiable.

Exercise 3.2: Let N be a set of propositional clauses. Prove or refute the following
statement: If N contains clauses Ci∨Di (i ∈ {1, . . . , n}) such that {Ci | i ∈ {1, . . . , n}} |=
⊥, then N |=

∨
i∈{1,...,n}Di.

Exercise 3.3: A partial Π-valuation A under which all clauses of a clause set N are
true is called a partial Π-model of N .

Do the following clause sets over Π = {P,Q,R} have partial Π-models that are not total
Π-models (that is, models in the sense of Sect. 2.3)? If yes, give such a partial Π-model.

(1) P

¬P ∨ Q

¬P ∨ ¬Q ∨ ¬R

(2) P

¬P ∨ Q

¬Q ∨ R

¬P ∨ ¬Q ∨ ¬R

(3) P ∨ R

¬P ∨ Q ∨ ¬R
¬Q ∨ ¬R
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(4) ¬P ∨ Q

¬Q ∨ R

P ∨ ¬R

Exercise 3.4: For any propositional formula F , let negvar (F ) be the formula obtained
from F by replacing every propositional variable by its negation. Formally:

negvar(P ) = ¬P

negvar(¬G) = ¬negvar (G)

negvar(G1 ∧G2) = negvar (G1) ∧ negvar(G2)

and so on. For example, negvar (P ∨ (¬Q → (¬P ∧⊤))) = ¬P ∨ (¬¬Q → (¬¬P ∧⊤)).

Prove or refute: If a formula F is satisfiable, then negvar(F ) is satisfiable. (It is sufficient
if you consider the boolean connectives ¬ and ∧; the others are treated analogously.)

Exercise 3.5: Let N be the following set of propositional clauses over Π = {P,Q,R}:

P ∨ ¬Q (1)

Q ∨ ¬R (2)

¬P ∨ R (3)

(a) Use the DPLL procedure to compute a (total) model of N .

(b) Use the DPLL procedure to prove that N |= R → P . Before you can invoke the
procedure, you will first need to transform the entailment into a suitable set of clauses.

Exercise 3.6 (∗): A friend asks you to proofread her bachelor thesis. On page 14 of the
thesis, she writes the following:

Definition 11. Let N be a set of propositional formulas. The set poscomb(N) of
positive combinations of formulas in N is defined inductively by
(1) N ⊆ poscomb(N);
(2) if F,F ′ ∈ poscomb(N), then F ∨ F ′ ∈ poscomb(N); and
(3) if F,F ′ ∈ poscomb(N), then F ∧ F ′ ∈ poscomb(N).

Lemma 12. If N is a satisfiable set of formulas, then every positive combination
of formulas in N is satisfiable.

Proof. The proof proceeds by induction over the formula structure. Let G ∈
poscomb(N). If G ∈ N , then it is obviously satisfiable, since N is satisfiable.
Otherwise, G must be a disjunction or a conjunction of formulas in poscomb(N).
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If G is a disjunction F ∨ F ′ with F,F ′ ∈ poscomb(N), we know by the induction
hypothesis that F is satisfiable. So F has a model. Since this is also a model of
G = F ∨F ′, the formula G is satisfiable. Analogously, if G is a conjunction F ∧F ′,
with F,F ′ ∈ poscomb(N), then both F and F ′ are satisfiable by induction, so
G = F ∧ F ′ is satisfiable as well.

(1) Is the “proof” correct?

(2) If the “proof” is not correct:

(a) Which step is incorrect?

(b) Does the “lemma” hold? If yes, give a correct proof; otherwise, give a coun-
terexample.

Exercise 3.7: The sudoku puzzle presented in the first lecture has a unique solution.

1 2 3 4 5 6 7 8 9

1 1

2 4

3 2

4 5 4 7

5 8 3

6 1 9

7 3 4 2

8 5 1

9 8 6

If we replace the 4 in column 1, row 2 by some other digit, this need no longer hold. Use
a SAT solver to find out for which values in column 1, row 2 the puzzle has no solution.

Hint: The Perl script at

https://rg1-teaching.mpi-inf.mpg.de/autrea-ws23/gensud

produces an encoding of the sudoku above in DIMACS CNF format, which is accepted
by most SAT solvers.

Exercise 3.8 (∗): Given a sudoku puzzle, briefly describe a set of propositional clauses
that is satisfiable if and only if the puzzle has more than one solution.
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Exercise 3.9: A finite graph is a pair (V,E), where V is a finite nonempty set and
E ⊆ V × V . The elements of V are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function φ : V → {0, 1, 2} such that for
every edge (v, v′) ∈ E we have φ(v) 6= φ(v′).

Give a linear-time translation from finite graphs (V,E) to propositional clause sets N

such that (V,E) has a 3-coloring if and only if N is satisfiable and such that every model
of N corresponds to a 3-coloring φ and vice versa.

Exercise 3.10 (∗): A finite graph is a pair (V,E), where V is a finite nonempty set and
E ⊆ V × V . The elements of V are called vertices or nodes; the elements of E are called
edges. A graph has a 3-coloring if there exists a function φ : V → {0, 1, 2} such that for
every edge (v, v′) ∈ E we have φ(v) 6= φ(v′). A 3-coloring is called complete if for every
pair (c, c′) ∈ {0, 1, 2} × {0, 1, 2} with c 6= c′ there exists an edge (v, v′) ∈ E such that
φ(v) = c and φ(v′) = c′ or φ(v) = c′ and φ(v′) = c.

Give a linear-time translation from finite graphs (V,E) to propositional clause sets N

such that (V,E) has a complete 3-coloring if and only if N is satisfiable and such that
every model of N corresponds to a complete 3-coloring φ and vice versa.

Exercise 3.11: Give OBDDs for the following three formulas:

(a) ¬P

(b) P ↔ Q

(c) (P ∧Q) ∨ (Q ∧R) ∨ (R ∧ P )

Consider the ordering P < Q < R.

Exercise 3.12: Let F be the propositional formula P ∧ (Q ∨R) ∧ S.

(a) Give the reduced OBDD for F w.r.t. the ordering P < Q < R < S.

(b) Find a total ordering over {P,Q,R, S} such that the reduced OBDD for F has 6
nonleaf nodes. Give the resulting reduced OBDD.

(c) For how many total orderings over {P,Q,R, S} does the reduced OBDD for F have
6 nonleaf nodes?
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Exercise 3.13: (a) Give a propositional formula F that is represented by this reduced
OBDD:

P

Q

R

1 0

(b) How many different reduced OBDDs over the propositional variables {P,Q,R} have
exactly one interior (nonleaf) node?

(c) Find a propositional formula G over the propositional variables {P,Q,R}, such that
the reduced OBDD for G has three interior nodes and the reduced OBDD for F ∨G has
one interior node. Give the reduced OBDDs for G and F ∨G.

Exercise 3.14 (∗): Let Fn be a propositional formula over {P1, . . . , Pn} such that
A(Fn) = 1 if and only if A maps exactly one of the propositional variables P1, . . . , Pn to
1 and the others to 0. How many nodes does a reduced OBDD for Fn have (including
the leaf nodes 0 and 1 )?
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