#### Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

# Zentralübung 5

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 29. April 2025 Basierend auf Folien von PD Dr. David Sabel



### Plan für heute

- 1. Turingberechenbarkeit
- 2. Der CYK-Algorithmus
- 3. Der Satz von Myhill und Nerode (nur FSK)

1. Turingberechenbarkeit

#### **Definition**

Eine Funktion  $f: \Sigma^* \to \Sigma^*$  heißt turingberechenbar, falls es eine deterministische Turingmaschine  $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$  gibt, sodass für alle  $u, v \in \Sigma^*$  gilt:

$$f(u) = v$$
 g.d.w. es gibt  $z \in E$ , sodass  $Start_M(u) \vdash^* \Box \cdots \Box zv \Box \cdots \Box$ 

Wenn f(u) undefiniert ist (f ist also eine partielle Funktion), dann kann die Maschine ewig laufen.

#### **Definition**

Eine Funktion  $f: \mathbb{N}^k \to \mathbb{N}$  heißt turingberechenbar, falls es eine deterministische Turingmaschine  $M = (Z, \Sigma, \Gamma, \delta, z_0, \Box, E)$  gibt, sodass für alle  $n_1, \ldots, n_k, m \in \mathbb{N}$  gilt:

$$f(n_1,\ldots,n_k)=m$$
g.d.w.

es gibt  $z \in E$ , sodass  $z_0 bin(n_1) \# \cdots \# bin(n_k) \vdash^* \Box \cdots \Box z bin(m) \Box \cdots \Box$ 

wobei bin(n) die Binärzahldarstellung von  $n \in \mathbb{N}$  ist.

Wenn  $f(n_1, ..., n_k)$  undefiniert ist (f ist also eine partielle Funktion), dann kann die Maschine ewig laufen.

### 1. Quiz

Welche der folgenden Aussagen gelten für die von Turingmaschinen akzeptierten Sprachen L?

- a) L ist eine Typ i-Sprache (mit  $i \in \{0, 1, 2, 3\}$ ).
- b) Das Wortproblem für *L* ist entscheidbar.
- c) Es gibt eine Grammatik *G*, die *L* erzeugt.

### 1. Quiz

Welche der folgenden Aussagen gelten für die von Turingmaschinen akzeptierten Sprachen L?

- a) L ist eine Typ i-Sprache (mit  $i \in \{0, 1, 2, 3\}$ ).
- b) Das Wortproblem für *L* ist entscheidbar.
- c) Es gibt eine Grammatik G, die L erzeugt.

Antwort: a) und c).

Welche der folgenden Funktionen  $f : \mathbb{N} \to \mathbb{N}$  sind berechenbar?

- a) f(x) = 3x.
- b) f(0) = 0 und f(x) ist undefiniert für x > 0.
- c) f(x) = 1, wenn es unendlich viele Primpaarzwillinge gibt, und f(x) = 0 sonst. Primzahlzwillinge sind Paare (p, p + 2), sodass p und p + 2 prim sind, z.B. (3, 5) und (11, 13). Es ist unbekannt, ob es unendlich viele Primzahlzwillinge gibt.
- d) Alle Funktionen  $f: \mathbb{N} \to \mathbb{N}$  sind berechenbar.

Welche der folgenden Funktionen  $f: \mathbb{N} \to \mathbb{N}$  sind berechenbar?

- a) f(x) = 3x.
- b) f(0) = 0 und f(x) ist undefiniert für x > 0.
- c) f(x) = 1, wenn es unendlich viele Primpaarzwillinge gibt, und f(x) = 0 sonst. Primzahlzwillinge sind Paare (p, p + 2), sodass p und p + 2 prim sind, z.B. (3, 5) und (11, 13). Es ist unbekannt, ob es unendlich viele Primzahlzwillinge gibt.
- d) Alle Funktionen  $f: \mathbb{N} \to \mathbb{N}$  sind berechenbar.

Antwort: a), b) und c).

Sei  $B := \{ f : \mathbb{N} \to \mathbb{N} \mid f \text{ ist berechenbar} \} \text{ und } F := \{ f : \mathbb{N} \to \mathbb{N} \}.$  Dann gilt

- ▶ B ist abzählbar: Da alle Mengen im 7-Tupel endliche Mengen sind, ist klar, dass man alle Turingmaschinen nacheinander aufzählen kann (mithilfe der Gödelisierung)
- F ist überabzählbar (beweisbar durch Diagonalargument).
- ▶ Also muss es  $f \in F$  geben, mit  $f \notin B$ . Diese Funktion f ist nicht berechenbar.

2. Der CYK-Algorithmus

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow CS \mid b, A \rightarrow a, B \rightarrow b, C \rightarrow AC \mid b\}$ .

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|                  | 1 | 2 | 3 | 4 | 5 | 6 |
|------------------|---|---|---|---|---|---|
| 1                |   |   |   |   |   |   |
| 2                |   |   |   |   |   |   |
| 2<br>3<br>4<br>5 |   |   |   |   |   | ' |
| 4                |   |   |   |   |   |   |
| 5                |   |   |   |   |   |   |
| 6                |   |   |   |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|                  | а<br>1 | a<br>2 | а<br>3 | а<br>4 | а<br>5 | b<br>6 |
|------------------|--------|--------|--------|--------|--------|--------|
| 1                |        |        |        |        |        |        |
| 2                |        |        |        |        |        |        |
| 2<br>3<br>4<br>5 |        |        |        |        |        | •      |
| 4                |        |        |        |        | •      |        |
| 5                |        |        |        |        |        |        |
| 6                |        |        |        |        |        |        |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | a | a | a | a | а | b       |
|---|---|---|---|---|---|---------|
|   | 1 | 2 | 3 | 4 | 5 | 6       |
| 1 | Α | Α | Α | A | A | B, C, S |
| 2 |   |   |   |   |   |         |
| 3 |   |   |   |   |   |         |
| 4 |   |   |   |   |   |         |
| 5 |   |   |   |   |   |         |
| 6 |   |   |   |   |   |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | а<br>1 | a<br>2 | а<br>3 | a<br>4 | а<br>5 | b<br>6  |
|---|--------|--------|--------|--------|--------|---------|
| 1 | Α      | Α      | Α      | Α      | Α      | B, C, S |
| 2 |        |        |        |        | С      |         |
| 3 |        |        |        |        |        |         |
| 4 |        |        |        |        | •      |         |
| 5 |        |        |        | •      |        |         |
| 6 |        |        | •      |        |        |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | а | а | а | а | а | b       |
|---|---|---|---|---|---|---------|
|   | 1 | 2 | 3 | 4 | 5 | 6       |
| 1 | Α | Α | Α | Α | Α | B, C, S |
| 2 |   |   |   |   | С |         |
| 3 |   |   |   | С |   | '       |
| 4 |   |   |   |   |   |         |
| 5 |   |   |   |   |   |         |
| 6 |   |   |   |   |   |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | a | а | a | a | a | b       |
|---|---|---|---|---|---|---------|
|   | 1 | 2 | 3 | 4 | 5 | 6       |
| 1 | Α | Α | Α | Α | Α | B, C, S |
| 2 |   |   |   |   | С |         |
| 3 |   |   |   | С |   | '       |
| 4 |   |   | С |   | • |         |
| 5 |   |   |   |   |   |         |
| 6 |   |   |   |   |   |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | а<br>1 | а<br>2 | а<br>3 | а<br>4 | а<br>5 | b<br>6  |
|---|--------|--------|--------|--------|--------|---------|
| 1 | Α      | Α      | Α      | Α      | Α      | B, C, S |
| 2 |        |        |        |        | С      |         |
| 3 |        |        |        | С      |        |         |
| 4 |        |        | С      |        | •      |         |
| 5 |        | С      |        |        |        |         |
| 6 |        |        | •      |        |        |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

|   | а | а | а | а | а | b       |
|---|---|---|---|---|---|---------|
|   | 1 | 2 | 3 | 4 | 5 | 6       |
| 1 | Α | Α | Α | Α | Α | B, C, S |
| 2 |   |   |   |   | С |         |
| 3 |   |   |   | С |   | '       |
| 4 |   |   | С |   |   |         |
| 5 |   | С |   |   |   |         |
| 6 | С |   |   |   |   |         |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, A, B, C\}, \Sigma = \{a, b\}$  und  $P = \{S \to CS \mid b, A \to a, B \to b, C \to AC \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aaaaab aus. Liegt das Wort in L(G)?

#### Antwort:

|   | а | а | а | а | а | b       |
|---|---|---|---|---|---|---------|
|   | 1 | 2 | 3 | 4 | 5 | 6       |
| 1 | Α | Α | Α | Α | Α | B, C, S |
| 2 |   |   |   |   | С |         |
| 3 |   |   |   | С |   | '       |
| 4 |   |   | С |   |   |         |
| 5 |   | С |   | • |   |         |
| 6 | С |   | • |   |   |         |

Da unten links nicht S in der Tabelle steht, liegt das Wort nicht in L(G).

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}, \Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}.$ 

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| 1 |   |   |   |   |   |   |
| 2 |   |   |   |   |   |   |
| 3 |   |   |   |   |   | • |
| 4 |   |   |   |   | ' |   |
| 5 |   |   |   | • |   |   |
| 6 |   |   | • |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а<br>1 | a<br>2 | b<br>3 | а<br>4 | a<br>5 | а<br>6 |
|---|--------|--------|--------|--------|--------|--------|
| 1 |        |        |        |        |        |        |
| 3 |        |        |        |        |        |        |
| 3 |        |        |        |        |        | •      |
| 4 |        |        |        |        | '      |        |
| 5 |        |        |        | •      |        |        |
| 6 |        |        | -      |        |        |        |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а<br>1 | а<br>2 | b<br>3 | а<br>4 | а<br>5 | а<br>6 |
|---|--------|--------|--------|--------|--------|--------|
| 1 | T      | T      | U      | T      | T      | T      |
| 2 |        |        |        |        |        |        |
| 3 |        |        |        |        |        | •      |
| 4 |        |        |        |        | ,      |        |
| 5 |        |        |        | •      |        |        |
| 6 |        |        | •      |        |        |        |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | a<br>1 | а<br>2 | b<br>3 | a | а<br>5 | а<br>6        |
|---|--------|--------|--------|---|--------|---------------|
|   |        | _      |        | 4 | 5      | 0             |
| 1 | T      | T      | U      | T | T      | $\mid T \mid$ |
| 3 | U      | S      |        | U | U      |               |
| 3 |        |        |        |   |        | •             |
| 4 |        |        |        |   |        |               |
| 5 |        |        |        |   |        |               |
| 6 |        |        |        |   |        |               |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а | а | b | а | а | а |
|---|---|---|---|---|---|---|
|   | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | T | T | U | T | T | T |
| 2 | U | S |   | U | U |   |
| 3 |   | S |   | S |   | • |
| 4 |   |   |   |   | ' |   |
| 5 |   |   |   | , |   |   |
| 6 |   |   | • |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а | а | Ь | а | a | a |
|---|---|---|---|---|---|---|
|   | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | T | T | U | T | T | T |
| 3 | U | 5 |   | U | U |   |
| 3 |   | 5 |   | S |   | • |
| 4 |   | 5 | S |   | • |   |
| 5 |   |   |   | • |   |   |
| 6 |   |   | • |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а | а    | b | а | a | а |
|---|---|------|---|---|---|---|
|   | 1 | 2    | 3 | 4 | 5 | 6 |
| 1 | T | T    | U | T | T | T |
| 2 | U | S    |   | U | U |   |
| 3 |   | S    |   | S |   | • |
| 4 |   | S    | S |   |   |   |
| 5 |   | S, T |   | , |   |   |
| 6 |   |      | • |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

|   | а    | а    | b | a | а | а |
|---|------|------|---|---|---|---|
|   | 1    | 2    | 3 | 4 | 5 | 6 |
| 1 | T    | T    | U | T | T | T |
| 2 | U    | S    |   | U | U |   |
| 3 |      | S    |   | S |   | • |
| 4 |      | S    | S |   | ' |   |
| 5 |      | S, T |   | , |   |   |
| 6 | S, U |      |   |   |   |   |

Sei 
$$G = (V, \Sigma, P, S)$$
 mit  $V = \{S, T, U\}$ ,  $\Sigma = \{a, b\}$  und  $P = \{S \rightarrow ST \mid TU \mid US, T \rightarrow SS \mid a, U \rightarrow TT \mid b\}$ .

Führen Sie den CYK-Algorithmus für aabaaa aus. Liegt das Wort in L(G)?

#### Antwort:

|   | а    | а    | b | а | а | а |
|---|------|------|---|---|---|---|
|   | 1    | 2    | 3 | 4 | 5 | 6 |
| 1 | T    | T    | U | T | T | T |
| 2 | U    | S    |   | U | U |   |
| 3 |      | S    |   | S |   |   |
| 4 |      | S    | S |   |   |   |
| 5 |      | S, T |   | • |   |   |
| 6 | S, U |      | • |   |   |   |

Da unten links S in der Tabelle steht, liegt das Wort in L(G).

3. Der Satz von Myhill und Nerode (nur FSK)

#### **Definition**

Sei L eine Sprache über  $\Sigma$ . Die Nerode-Relation  $\sim_L \subseteq \Sigma^* \times \Sigma^*$  zu L ist definiert für alle Wörter  $u, v \in \Sigma^*$ , sodass  $u \sim_L v$  wenn

für jedes  $w \in \Sigma^*$ :  $uw \in L$  g.d.w.  $vw \in L$ 

Informell:  $u \sim_L v$ , wenn sich ihr Enthaltensein in L gleich verhält bezüglich beliebiger Erweiterung um dasselbe Suffix.

### 1. Quiz

Sei  $L=\{aaa\}$  eine Sprache über  $\Sigma=\{a\}$  und  $\sim_L$  die Nerode-Relation von L. Welche Äquivalenzen gelten?

- a)  $a \sim_L aa$
- b)  $aaa \sim_L aaa$
- c) aaaaa  $\sim_L \varepsilon$
- d)  $aaaa \sim_L aaaaaa$ .

### 1. Quiz

Sei  $L=\{aaa\}$  eine Sprache über  $\Sigma=\{a\}$  und  $\sim_L$  die Nerode-Relation von L. Welche Äguivalenzen gelten?

- a)  $a \sim_L aa$
- b)  $aaa \sim_L aaa$
- c) aaaaa  $\sim_L \varepsilon$
- d) aaaa  $\sim_L$  aaaaaa.

Antwort: b) und d).

Sei  $L=\{a^i\$b^j\mid i,j\in\mathbb{N}\}$  eine Sprache über  $\Sigma=\{a,b,\$\}$  und  $\sim_L$  die Nerode-Relation von L.

Welche Äquivalenzen gelten?

- a)  $a^5$ \$  $\sim_L a^6$ \$
- b)  $a^{i} \$ b^{i} \sim_{L} a^{j} \$ b^{j}$  für alle  $i, j \in \mathbb{N}$
- c)  $a^i$ \$  $\sim_L a^i$  für alle  $i \in \mathbb{N}$
- d)  $\varepsilon \sim_L a^i$  für alle  $i \in \mathbb{N}$ .

Sei  $L=\{a^i\$b^j\mid i,j\in\mathbb{N}\}$  eine Sprache über  $\Sigma=\{a,b,\$\}$  und  $\sim_L$  die Nerode-Relation von L.

Welche Äquivalenzen gelten?

- a)  $a^5$ \$  $\sim_L a^6$ \$
- b)  $a^{i} \$ b^{i} \sim_{L} a^{j} \$ b^{j}$  für alle  $i, j \in \mathbb{N}$
- c)  $a^i \$ \sim_L a^i$  für alle  $i \in \mathbb{N}$
- d)  $\varepsilon \sim_L a^i$  für alle  $i \in \mathbb{N}$ .

Antwort: a), b) und d).

Sei  $L=\{a^i\$b^j\mid i,j\in\mathbb{N}\}$  eine Sprache über  $\Sigma=\{a,b,\$\}$  und  $\sim_L$  die Nerode-Relation von L. Für welche Wörter u gilt  $\$\$\sim_L u$ ?

- a)  $\varepsilon$
- b) \$
- c) \$\$\$
- d)  $b^i \$ a^i$  für alle  $i \in \mathbb{N}$ .

Sei  $L=\{a^i\$b^j\mid i,j\in\mathbb{N}\}$  eine Sprache über  $\Sigma=\{a,b,\$\}$  und  $\sim_L$  die Nerode-Relation von L.

Für welche Wörter u gilt \$\$  $\sim_L u$ ?

- a)  $\varepsilon$
- b) \$
- c) \$\$\$
- d)  $b^i \$ a^i$  für alle  $i \in \mathbb{N}$ .

Antwort: c).

### Satz

Die Nerode-Relation ist eine Äquivalenzrelation.

### Zur Erinnerung:

- ▶ Die Äquivalenzklasse  $[u]_{\sim_L}$  ist definiert als  $\{v \mid u \sim_L v\}$ .
- ▶ Der Index einer Äquivalenzrelation ist die Anzahl ihrer disjunkten Äquivalenzklassen:  $\Sigma^* = [u_1]_{\sim_L} \cup [u_2]_{\sim_L} \cup \cdots$
- ▶ Der Index kann unendlich sein.

### Theorem (Satz von Myhill und Nerode)

Eine Sprache L ist genau dann regulär, wenn der Index von  $\sim_L$  endlich ist.

### Grundgedanke:

Finde unendlich viele Äquivalenzklassen  $[u_1]_{\sim_L}$ ,  $[u_2]_{\sim_L}$ , ..., die paarweise verschieden sind  $([u_i]_{\sim_L} \neq [u_j]_{\sim_L}$  für  $i \neq j)$ .

### Rezept:

Finde für i = 1, 2, ... Wörter  $u_i$  und  $w_i$ , sodass  $u_i w_i \in L$  aber  $u_j w_i \notin L$  für alle  $i \neq j$ .

Dann sind  $u_i \nsim_L u_j$  für alle  $i \neq j$ . Daher sind  $[u_1]_{\sim_L}, [u_2]_{\sim_L}, \dots$  paarweise disjunkt.

Beachte: Es ist hierfür nicht notwendig, alle Äquivalenzklassen der disjunkten Zerlegung von  $\Sigma^*$  zu finden.

Sei  $L = \{aaa\}$  eine Sprache über  $\Sigma = \{a\}$ . Bestimme Index $(\sim_L)$ .

- a) 0
- b) 1
- c) 2
- d) 3

- e) 4
- f) 5
- g) 6
- h)  $\infty$

# Quiz

Sei  $L = \{aaa\}$  eine Sprache über  $\Sigma = \{a\}$ . Bestimme Index( $\sim_I$ ).

- a) 0
- b) 1
- c) 2
- d) 3

- e) 4
- q) 6
- h)  $\infty$

Antwort: f). Es gibt 5 disjunkte Äquivalenzklassen:  $[\varepsilon]_{\sim_i}$ ,  $[a]_{\sim_i}$ ,  $[aaa]_{\sim_i}$ ,  $[aaaa]_{\sim_i}$ ,  $[aaaa]_{\sim_i}$ .

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

### Antwort:

 $[\varepsilon]_{\sim_L} = [a^i]_{\sim_L} = \text{W\"orter}$ , die um  $a^* \$ b^*$  verlängert werden k\"onnen, um in L zu bleiben

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

#### Antwort:

 $[\varepsilon]_{\sim_L} = [a^i]_{\sim_L} =$  Wörter, die um  $a^* \$ b^*$  verlängert werden können, um in L zu bleiben  $[\$]_{\sim_L} = [a^i \$]_{\sim_L} =$  Wörter, die um  $b^*$  verlängert werden können, um in L zu bleiben

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

#### Antwort:

 $[\varepsilon]_{\sim_L} = [a^i]_{\sim_L} =$  Wörter, die um  $a^*\$b^*$  verlängert werden können, um in L zu bleiben  $[\$]_{\sim_L} = [a^i\$]_{\sim_L} =$  Wörter, die um  $b^*$  verlängert werden können, um in L zu bleiben  $[ab]_{\sim_L} = [b^i]_{\sim_L} =$  Wörter, die für jede Verlängerung nicht in L liegen

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

#### Antwort:

 $[\varepsilon]_{\sim_L} = [a^i]_{\sim_L} = \text{W\"orter}$ , die um  $a^*\$b^*$  verlängert werden k\"onnen, um in L zu bleiben  $[\$]_{\sim_L} = [a^i\$]_{\sim_L} = \text{W\"orter}$ , die um  $b^*$  verlängert werden k\"onnen, um in L zu bleiben  $[ab]_{\sim_L} = [b^i]_{\sim_L} = \text{W\"orter}$ , die für jede Verlängerung nicht in L liegen  $\Sigma^* = [\varepsilon]_{\sim_L} \cup [\$]_{\sim_L} \cup [ab]_{\sim_L}$ 

Sei  $L = \{a^i \$ b^j \mid i, j \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

#### Antwort:

 $[\varepsilon]_{\sim_L} = [a^i]_{\sim_L} = \text{W\"orter}$ , die um  $a^*\$b^*$  verlängert werden k\"onnen, um in L zu bleiben  $[\$]_{\sim_L} = [a^i\$]_{\sim_L} = \text{W\"orter}$ , die um  $b^*$  verlängert werden k\"onnen, um in L zu bleiben  $[ab]_{\sim_L} = [b^i]_{\sim_L} = \text{W\"orter}$ , die für jede Verlängerung nicht in L liegen  $\Sigma^* = [\varepsilon]_{\sim_L} \cup [\$]_{\sim_L} \cup [ab]_{\sim_L}$ 

Daher Index(L) = 3 und L ist regulär.

Sei  $L = \{a^i \$ b^i \mid i \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

Sei  $L = \{a^i \$ b^i \mid i \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

### Antwort:

 $a^i \not\sim_L a^j$  für alle  $i \neq j$ , da  $a^i \$ b^i \in L$  aber  $a^j \$ b^i \not\in L$ .

Sei  $L = \{a^i \$ b^i \mid i \in \mathbb{N}\}$  eine Sprache über  $\Sigma = \{a, b, \$\}$ . Prüfe, ob L regulär ist, durch Verwendung des Satzes von Myhill und Nerode.

### Antwort:

 $a^i \not\sim_L a^j$  für alle  $i \neq j$ , da  $a^i \$ b^i \in L$  aber  $a^j \$ b^i \not\in L$ .

Daher Index $(L) = \infty$  und L ist nicht regulär.