Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

Zentralübung 3

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Plan für heute

- 1. Reguläre Ausdrücke
- 2. Abschlusseigenschaften von regulären Sprachen
- 3. Das Pumping-Lemma für reguläre Sprachen
- 4. Das Pumping-Lemma für kontextfreie Sprachen (nur FSK)

1. Reguläre Ausdrücke

Übersicht über reguläre Ausdrücke

Syntax	Semantik
Ø	Ø
ε	$\{arepsilon\}$
$a \text{ (mit } a \in \Sigma)$	{ <i>a</i> }
$lpha_1lpha_2$	$L(\alpha_1)L(\alpha_2)$ $L(\alpha_1) \cup L(\alpha_2)$ $L(\alpha)^*$
$(\alpha_1 \mid \alpha_2)$	$L(\alpha_1) \cup L(\alpha_2)$
$(lpha)^*$	$L(lpha)^*$

wobei α , α_1 , α_2 reguläre Ausdrücke sind.

Übersicht über reguläre Ausdrücke

Syntax	Semantik
Ø	Ø
ε	$\{arepsilon\}$
$a \text{ (mit } a \in \Sigma)$	{a}
$lpha_1lpha_2$	$L(\alpha_1)L(\alpha_2)$ $L(\alpha_1) \cup L(\alpha_2)$
$(\alpha_1 \mid \alpha_2)$	$L(\alpha_1) \cup L(\alpha_2)$
$(lpha)^*$	$L(\alpha)^*$

wobei α , α_1 , α_2 reguläre Ausdrücke sind.

Beachte:

- Es gibt verschiedene Notationen. Manchmal wird $(\alpha_1 + \alpha_2)$ oder $(\alpha_1 \cup \alpha_2)$ geschrieben statt $(\alpha_1 \mid \alpha_2)$.
- ► Ein Konstrukt ist eigentlich überflüssig.

Welches Konstrukt ist eigentlich überflüssig für die regulären Ausdrücke, da es mit den anderen Konstrukten dargestellt werden kann?

- a) Ø
- b) ε
- c) $(\alpha)^*$
- d) $\alpha_1\alpha_2$
- e) $(\alpha_1|\alpha_2)$

Welches Konstrukt ist eigentlich überflüssig für die regulären Ausdrücke, da es mit den anderen Konstrukten dargestellt werden kann?

- a) Ø
- b) ε
- c) $(\alpha)^*$
- d) $\alpha_1\alpha_2$
- e) $(\alpha_1|\alpha_2)$

Antwort: b), da ε durch $(\emptyset)^*$ dargestellt werden kann: $L((\emptyset)^*) = \emptyset^* = \emptyset^0 \cup \emptyset^1 \cup \cdots = \{\varepsilon\} \cup \emptyset \cup \cdots = \{\varepsilon\}.$

Welcher reguläre Ausdruck erzeugt die Sprache $\{u \in \{a, b\}^* \mid |u| = 4\}$?

- a) $(ab)^*(ab)^*(ab)^*(ab)^*$
- b) (a|b)(a|b)(a|b)(a|b)
- c) (aaaa|bbbb)
- d) (ab|ab|ab|ab)
- e) (aa|ab|ba|bb)(aa|ab|ba|bb)

Welcher reguläre Ausdruck erzeugt die Sprache $\{u \in \{a, b\}^* \mid |u| = 4\}$?

- a) $(ab)^*(ab)^*(ab)^*(ab)^*$
- b) (a|b)(a|b)(a|b)(a|b)
- c) (aaaa|bbbb)
- d) (ab|ab|ab|ab)
- e) (aa|ab|ba|bb)(aa|ab|ba|bb)

Antwort: b) und e) sind beide richtig.

Geben Sie einen regulären Ausdruck an, der

$${u \in {a, b}^* \mid |u| \le 4}$$

erzeugt.

Geben Sie einen regulären Ausdruck an, der

$${u \in {a, b}^* \mid |u| \le 4}$$

erzeugt.

Antwort:
$$(\varepsilon|a|b)(\varepsilon|a|b)(\varepsilon|a|b)(\varepsilon|a|b)$$
 oder $(\varepsilon \mid (a|b) \mid (a|b)(a|b) \mid (a|b)(a|b) \mid (a|b)(a|b)(a|b)(a|b)$.

Geben Sie einen regulären Ausdruck an, der

$${u \in {a, b}^* \mid |u| \ge 4}$$

erzeugt.

Geben Sie einen regulären Ausdruck an, der

$${u \in {a, b}^* \mid |u| \ge 4}$$

erzeugt.

Antwort: $(a|b)(a|b)(a|b)(a|b)(a|b)^*$.

Komplement von regulären Ausdrücken

Es gibt keinen "Komplementoperator" für reguläre Ausdrücke.

Komplement von regulären Ausdrücken

Es gibt keinen "Komplementoperator" für reguläre Ausdrücke.

► Schwere Methode:

Regulärer Ausdruck

- $\rightarrow NFA$
- \rightarrow DFA
- → DFA für das Komplement
- → regulärer Ausdruck

Komplement von regulären Ausdrücken

Es gibt keinen "Komplementoperator" für reguläre Ausdrücke.

► Schwere Methode:

Regulärer Ausdruck

- \rightarrow NFA
- \rightarrow DFA
- → DFA für das Komplement
- → regulärer Ausdruck

► Einfachere Methode:

Regulärer Ausdruck

- → einfache Beschreibung der erzeugten Sprache
- → einfache Beschreibung des Komplements
- → regulärer Ausdruck

Finde regulären Ausdruck für das Komplement der von 0*10* erzeugten Sprache.

Finde regulären Ausdruck für das Komplement der von 0*10* erzeugten Sprache.

Antwort:

Schritte:

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?
- 2. Was ist eine einfache Beschreibung des Komplements davon?
- 3. Was ist ein regulärer Ausdruck dazu?

1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?

1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache? L(0*10*) = W"orter über $\{0,1\}$, die genau eine 1 enthalten.

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache? $L(0*10*) = \text{W\"orter}\ \ddot{u}\text{ber}\ \{0,1\}$, die genau eine 1 enthalten.
- 2. Was ist eine einfache Beschreibung des Komplements davon?

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?
 - $L(0*10*) = \text{W\"orter \"uber } \{0,1\}, \text{ die genau eine } 1 \text{ enthalten.}$
- 2. Was ist eine einfache Beschreibung des Komplements davon?
 - $\overline{L(0^*10^*)}$ = Wörter über $\{0,1\}$, die keine oder mindestens 2 1en enthalten
 - = Wörter, die keine 1en enthalten
 - ∪ Wörter, die mindestens 2 1en enthalten

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?
 - $L(0*10*) = \text{W\"orter \"uber } \{0,1\}, \text{ die genau eine } 1 \text{ enthalten.}$
- 2. Was ist eine einfache Beschreibung des Komplements davon?

```
\overline{L(0^*10^*)} = \text{W\"{o}}rter über \{0,1\}, die keine oder mindestens 2 1en enthalten = \text{W\"{o}}rter, die keine 1en enthalten \cup \text{W\"{o}}rter, die mindestens 2 1en enthalten
```

- 3. Was ist ein regulärer Ausdruck dazu?
 - ▶ Regulärer Ausdruck, der alle Wörter über {0, 1} erzeugt, die keine 1en enthalten:

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?
 - $L(0*10*) = \text{W\"orter \"uber } \{0,1\}, \text{ die genau eine } 1 \text{ enthalten.}$
- 2. Was ist eine einfache Beschreibung des Komplements davon?

```
\overline{L(0^*10^*)} = \text{W\"{o}}rter über \{0,1\}, die keine oder mindestens 2 1en enthalten = \text{W\"{o}}rter, die keine 1en enthalten \cup \text{W\"{o}}rter, die mindestens 2 1en enthalten
```

- 3. Was ist ein regulärer Ausdruck dazu?
 - ► Regulärer Ausdruck, der alle Wörter über {0,1} erzeugt, die keine 1en enthalten: 0*
 - ► Regulärer Ausdruck, der alle Wörter über {0, 1} erzeugt, die mindesten 2 1en enthalten:

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache?
 - $L(0*10*) = \text{W\"orter \"uber } \{0,1\}, \text{ die genau eine } 1 \text{ enthalten.}$
- 2. Was ist eine einfache Beschreibung des Komplements davon?

```
\overline{L(0^*10^*)} = Wörter über {0, 1}, die keine oder mindestens 2 1en enthalten = Wörter, die keine 1en enthalten U Wörter, die mindestens 2 1en enthalten
```

- 3. Was ist ein regulärer Ausdruck dazu?
 - ► Regulärer Ausdruck, der alle Wörter über {0,1} erzeugt, die keine 1en enthalten: 0*
 - ▶ Regulärer Ausdruck, der alle Wörter über {0,1} erzeugt, die mindesten 2 1en enthalten: (0|1)*1(0|1)*1(0|1)*
 - Zusammen:

- 1. Was ist eine einfache Beschreibung der von 0*10* erzeugten Sprache? L(0*10*) = W"orter über $\{0,1\}$, die genau eine 1 enthalten.
- 2. Was ist eine einfache Beschreibung des Komplements davon?

```
\overline{L(0^*10^*)} = \text{W\"{o}}rter \text{\"{u}}ber \{0,1\}, die keine oder mindestens 2 1en enthalten = \text{W\"{o}}rter, die keine 1en enthalten \cup \text{W\"{o}}rter, die mindestens 2 1en enthalten
```

- 3. Was ist ein regulärer Ausdruck dazu?
 - ► Regulärer Ausdruck, der alle Wörter über {0, 1} erzeugt, die keine 1en enthalten: 0*
 - ▶ Regulärer Ausdruck, der alle Wörter über {0,1} erzeugt, die mindesten 2 1en enthalten: (0|1)*1(0|1)*1(0|1)*
 - Zusammen: (0*|(0|1)*1(0|1)*1(0|1)*)

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

 $ba(b|c)^*$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

 $ba(b|c)^*$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

12/34

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

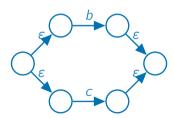
$$ba(b|c)^*$$

erzeugte Sprache akzeptiert.

Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

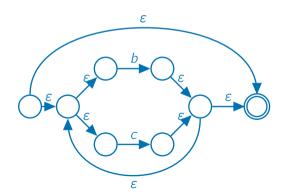
erzeugte Sprache akzeptiert.



Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

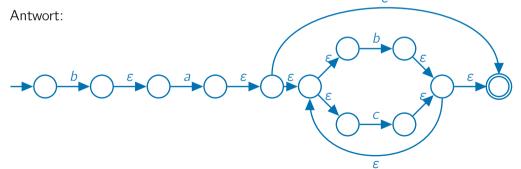
erzeugte Sprache akzeptiert.



Konstruieren Sie mit dem Verfahren aus der Vorlesung einen NFA mit ε -Übergängen und eindeutigen Start- und Endzuständen, der als Sprache genau die durch den regulären Ausdruck

$$ba(b|c)^*$$

erzeugte Sprache akzeptiert.



2. Abschlusseigenschaften von regulären Sprachen

Abschlusseigenschaften von regulären Sprachen

Satz

Seien L_1, L_2 regulär. Dann sind $L_1 \cup L_2, L_1 \cap L_2, L_1^*, \overline{L_1}, L_1L_2$ auch regulär.

Aus dem Aufgabenblatt 3 für FSK:

▶ Wenn L regulär ist, dann ist auch $\{\overline{w} \mid w \in L\}$ regulär.

Abschlusseigenschaft für Schnitt:

 L_1 regulär und L_2 regulär $\Longrightarrow L_1 \cap L_2$ regulär

Welche Folgerungen sind korrekt?

- a) Wenn $L_1 \cap L_2$ nicht regulär ist, dann ist weder L_1 noch L_2 regulär.
- b) Wenn $L_1 \cap L_2$ regulär ist, dann sind L_1 und L_2 regulär.
- c) Wenn $L_1 \cap L_2$ nicht regulär ist und L_1 regulär ist, dann ist L_2 nicht regulär.
- d) Wenn L_1 und L_2 jeweils nicht regulär sind, dann ist $L_1 \cap L_2$ ebenfalls nicht regulär.

Abschlusseigenschaft für Schnitt:

 L_1 regulär und L_2 regulär $\Longrightarrow L_1 \cap L_2$ regulär

Welche Folgerungen sind korrekt?

- a) Wenn $L_1 \cap L_2$ nicht regulär ist, dann ist weder L_1 noch L_2 regulär.
- b) Wenn $L_1 \cap L_2$ regulär ist, dann sind L_1 und L_2 regulär.
- c) Wenn $L_1 \cap L_2$ nicht regulär ist und L_1 regulär ist, dann ist L_2 nicht regulär.
- d) Wenn L_1 und L_2 jeweils nicht regulär sind, dann ist $L_1 \cap L_2$ ebenfalls nicht regulär.

Antwort: c).

Anleitung zum Widerlegen der Regularität von L mit Abschlusseigenschaften:

- 1. Nehme an, dass L regulär ist.
- 2. Operiere auf *L* unter Erhaltung der Regularität: vereinige, schneide, komplementiere, multipliziere *L* mit bekannt regulärer Sprache, bilde Kleeneschen Abschluss, drehe Sprache um.
- 3. Kommt dabei eine bekannt nicht reguläre Sprache heraus, dann hat man einen Widerspruch und die Annahme war falsch. Daher ist *L* dann nicht regulär.

Satz

 $S = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}$ ist nicht regulär.

Satz

$$S = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}$$
 ist nicht regulär.

Beweis Durch Widerspruch. Nehme an, S ist regulär.

Da $L_1 = L(a^*b^*)$ regulär ist, muss (aufgrund der Abschlusseigenschaft für reguläre Sprachen) auch $L_1 \cap S$ regulär sein.

Aber $L_1 \cap S = \{a^n b^n \mid n \in \mathbb{N}\}$ ist nicht regulär. Widerspruch.

Satz

 $T = \{a^i b^j \mid i, j \in \mathbb{N}, i \neq j\}$ ist nicht regulär.

Satz

 $T = \{a^i b^j \mid i, j \in \mathbb{N}, i \neq j\}$ ist nicht regulär.

Beweis Durch Widerspruch. Nehme an, T ist regulär.

Dann ist aufgrund der Abschlusseigenschaft für das Komplement auch \overline{T} regulär.

Da $L(a^*b^*)$ regulär ist, gilt mit der Abschlusseigenschaft für den Schnitt auch, dass $\overline{T} \cap L(a^*b^*)$ regulär ist.

Aber $\overline{T} \cap L(a^*b^*) = \{a^nb^n \mid n \in \mathbb{N}\}$ ist nicht regulär. Widerspruch.

Aufpassen, dass man die Eigenschaften nicht falsch anwendet:

Die folgenden Beweise sind alle falsch:

Aufpassen, dass man die Eigenschaften nicht falsch anwendet:

Die folgenden Beweise sind alle falsch:

▶ $L_x = \{x^n \mid n \in \mathbb{N}\}$ ist regulär, reguläre Sprachen sind abgeschlossen unter Produktbildung, also ist $L_aL_b = \{a^nb^n \mid n \in \mathbb{N}\}$ regulär.

Aufpassen, dass man die Eigenschaften nicht falsch anwendet:

Die folgenden Beweise sind alle falsch:

- ▶ $L_x = \{x^n \mid n \in \mathbb{N}\}$ ist regulär, reguläre Sprachen sind abgeschlossen unter Produktbildung, also ist $L_aL_b = \{a^nb^n \mid n \in \mathbb{N}\}$ regulär.
- ▶ $L_{<} = \{a^n b^m \mid n < m\}$ ist nicht regulär, $L_{\geq} = \{a^n b^m \mid n \geq m\}$ ist nicht regulär, also ist $L_{<} \cup L_{\geq} = \{a^n b^m \mid n < m \text{ oder } n \geq m\}$ nicht regulär.

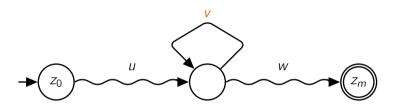
Aufpassen, dass man die Eigenschaften nicht falsch anwendet:

Die folgenden Beweise sind alle falsch:

- ▶ $L_x = \{x^n \mid n \in \mathbb{N}\}$ ist regulär, reguläre Sprachen sind abgeschlossen unter Produktbildung, also ist $L_aL_b = \{a^nb^n \mid n \in \mathbb{N}\}$ regulär.
- ▶ $L_{<} = \{a^n b^m \mid n < m\}$ ist nicht regulär, $L_{\geq} = \{a^n b^m \mid n \geq m\}$ ist nicht regulär, also ist $L_{<} \cup L_{\geq} = \{a^n b^m \mid n < m \text{ oder } n \geq m\}$ nicht regulär.
- ▶ $L_1 = \{\varepsilon, c\}$ ist regulär, $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$ ist nicht regulär, also ist $L = \{c^i a^n b^n \mid n \in \mathbb{N}, i \in \{0, 1\}\}$ nicht regulär.

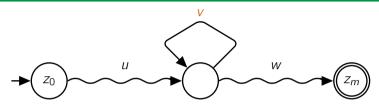
3. Das Pumping-Lemma für reguläre Sprachen

Intuition hinter dem Pumping-Lemma



- Wenn ein DFA n Zustände hat, dann müssen akzeptierte Wörter der Länge $\geq n$ eine Schleife durchlaufen.
- ▶ Diese Wörter kann man aufpumpen: uvw, uvvw, uvvw, Man kann auch die Schleife überspringen: uw. Allgemein: uv^iw für $i \in \mathbb{N}$ liegt in der erkannten Sprache.

Das Pumping-Lemma für reguläre Sprachen



Definition

Eine Sprache L hat die Pumping-Eigenschaft (für reguläre Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uv geschrieben werden kann, sodass gilt:

1.
$$|uv| \leq n$$

2.
$$|v| \ge 1$$

3. für alle $i \in \mathbb{N}$: $uv^i w \in L$.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Quiz

Welche der folgenden Aussagen sind korrekte Formulierungen des Pumping-Lemmas?

- a) Sei L eine reguläre Sprache. Dann gilt für jede natürliche Zahl $n \ge 1$: Es gibt ein Wort z aus L, welches Mindestlänge n hat, sodass es für jede Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$ ein $i \ge 0$ gibt mit uv^iw liegt nicht in L.
- b) Sei L eine Sprache. Dann ist L regulär g.d.w. es eine natürliche Zahl $n \ge 1$ gibt, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw in L liegt für alle $i \ge 0$.
- c) Sei L eine Sprache. Dann ist L keinesfalls regulär, falls für jede natürliche Zahl $n \ge 1$ gilt: Es gibt ein Wort z aus L, welches Mindestlänge n hat, sodass es für jede Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$ ein $i \ge 0$ gibt mit uv^iw liegt nicht in L.
- d) Sei L eine reguläre Sprache. Dann gibt es eine natürliche Zahl $n \ge 1$, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw liegt in L für alle $i \ge 0$.
- e) Sei L eine Sprache und es gibt eine natürliche Zahl $n \ge 1$, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw liegt in L für alle $i \ge 0$. Dann ist L regulär.

Quiz

Welche der folgenden Aussagen sind korrekte Formulierungen des Pumping-Lemmas?

- a) Sei L eine reguläre Sprache. Dann gilt für jede natürliche Zahl $n \ge 1$: Es gibt ein Wort z aus L, welches Mindestlänge n hat, sodass es für jede Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$ ein $i \ge 0$ gibt mit uv^iw liegt nicht in L.
- b) Sei L eine Sprache. Dann ist L regulär g.d.w. es eine natürliche Zahl $n \ge 1$ gibt, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw in L liegt für alle $i \ge 0$.
- c) Sei L eine Sprache. Dann ist L keinesfalls regulär, falls für jede natürliche Zahl $n \ge 1$ gilt: Es gibt ein Wort z aus L, welches Mindestlänge n hat, sodass es für jede Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$ ein $i \ge 0$ gibt mit uv^iw liegt nicht in L.
- d) Sei L eine reguläre Sprache. Dann gibt es eine natürliche Zahl $n \ge 1$, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw liegt in L für alle $i \ge 0$.
- e) Sei L eine Sprache und es gibt eine natürliche Zahl $n \ge 1$, sodass jedes Wort z aus L, welches Mindestlänge n hat, als z = uvw geschrieben werden kann, mit $|uv| \le n$, $|v| \ge 1$, und uv^iw liegt in L für alle $i \ge 0$. Dann ist L regulär.

Antwort: c) und d).

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft \implies L ist nicht regulär

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft \implies L ist nicht regulär

Beweisstrategie für die Aussage "L ist nicht regulär":

- 1. Durch die Kontraposition reicht es zu zeigen, dass *L* die Pumping-Eigenschaft nicht hat.
- 2. Zeige dies durch Widerspruch: Nehme an, dass *L* die Pumping-Eigenschaft hat.
- 3. Leite einen Widerspruch her.
- 4. D.h. L ist nicht regulär.

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner").
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei n = 100 vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- Die Zahl n∈ N_{>0} sei beliebig gewählt ("vom Gegner").
 Sei n = 100 vom Gegner gewählt.
 Nein: Wir müssen für alle Wahlmöglichkeiten des Gegners argumentieren.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^2b^2 \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^2b^2 \in L$. Nein: $|z| \ge n$ gilt nicht.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n$. Nein: $z \in L$ gilt nicht.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus).
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").

 Der Gegner zerlegt z in z = uvw mit $u = a^{n-1}$, v = a und $w = b^n$ (damit ist $|uv| \le n$ und $|v| \ge 1$ erfüllt).
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").

 Der Gegner zerlegt z in z = uvw mit $u = a^{n-1}$, v = a und $w = b^n$ (damit ist $|uv| \le n$ und $|v| \ge 1$ erfüllt).

 Nein: Wir müssen für alle Wahlmöglichkeiten des Gegners argumentieren.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner").
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus).

Beispiel mit vielen Fehlern

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner"). Sei z zerlegt in z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^i w \notin L$ (wir suchen aus).

Beispiel mit vielen Fehlern

Zeigen Sie: $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt ("vom Gegner"). Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wähle ein Wort $z \in L$ mit $|z| \ge n$ (wir suchen aus). Wir wählen $z = a^n b^n \in L$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$ ("vom Gegner"). Sei z zerlegt in z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für alle $i \in \mathbb{N}$.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L$ (wir suchen aus). Dann ist $u = a^d$, $v = a^e$ und $w = a^{n-d-e}b^n$ mit $e \ge 1$ und damit für i = 0: $uv^iw = a^{n-e}b^n \notin L$. Widerspruch.

Sei
$$L = \{a^n a^n \mid n \in \mathbb{N}\}.$$

Behauptung

L ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wir wählen $z = a^n a^n \in L$.
- 3. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und uv^iw für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Dann ist $u=a^d$, $v=a^e$, und $w=a^{n+n-d-e}$ und $e\geq 1$, $d+e\leq n$. Dann ist $uv^0w=a^{n-e}a^n\not\in L$. Widerspruch.

Sei
$$L = \{a^n a^n \mid n \in \mathbb{N}\}.$$

Behauptung

L ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wir wählen $z = a^n a^n \in L$.
- 3. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und uv^iw für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Dann ist $u=a^d$, $v=a^e$, und $w=a^{n+n-d-e}$ und $e\geq 1$, $d+e\leq n$. Dann ist $uv^0w=a^{n-e}a^n\not\in L$. Widerspruch.

Sei
$$L = \{a^n a^n \mid n \in \mathbb{N}\}.$$

Behauptung

L ist nicht regulär.

- 1. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wir wählen $z = a^n a^n \in L$.
- 3. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und uv^iw für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Dann ist $u=a^d$, $v=a^e$, und $w=a^{n+n-d-e}$ und $e\geq 1$, $d+e\leq n$. Dann ist $uv^0w=a^{n-e}a^n\not\in L$. Widerspruch.

Sei
$$L = \{a^n a^n \mid n \in \mathbb{N}\}.$$

Behauptung

L ist nicht regulär.

Beweis Mit dem Pumping-Lemma:

- 1. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wir wählen $z = a^n a^n \in L$.
- 3. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und uv^iw für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Dann ist $u=a^d$, $v=a^e$, und $w=a^{n+n-d-e}$ und $e\geq 1$, $d+e\leq n$. Dann ist $uv^0w=a^{n-e}a^n\not\in L$. Widerspruch.

Beachte: L ist regulär, z.B. wird L durch den regulären Ausdruck $(aa)^*$ erzeugt.

L erfüllt die Pumping-Eigenschaft

Satz

 $L = \{a^n a^n \mid n \in \mathbb{N}\}$ erfüllt die Pumping-Eigenschaft.

L erfüllt die Pumping-Eigenschaft

Satz

 $L = \{a^n a^n \mid n \in \mathbb{N}\}$ erfüllt die Pumping-Eigenschaft.

Beweis

- 1. Wir wählen n = 2.
- 2. Sei $z \in L$ mit $|z| \ge n$.
- 3. Wir zerlegen z = uvw mit $u = \varepsilon$, v = z[1]z[2] und w das Suffix von z ohne die ersten beiden Buchstaben.
- 4. Da $z \in L$, ist $z = a^j a^j$ und dann gilt: v = aa, $w = a^{j-1} a^{j-1}$. Daher gilt auch: $uv^i w = a^i a^i a^{j-1} a^{j-1} = a^{i+j-1} a^{i+j-1} \in L$ für alle $i \in \mathbb{N}$.

Zeigen Sie mit dem Pumping-Lemma, dass die folgenden Sprachen nicht regulär sind:

$$L_1 = \{ w \in \{ a, b \}^* \mid \#_a(w) = \#_b(w) \}$$

$$L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$$

$$L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}.$$

Satz

$$L_1 = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt.
- 2. Wähle ein Wort $z \in L_1$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_1$.

Satz

$$L_1 = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_1$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_1$.

Satz

$$L_1 = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_1$ mit $|z| \ge n$. Sei $z = a^n b^n$. (Dann gilt $z \in L_1$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_1$.

Satz

$$L_1 = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$
 ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_1$ mit $|z| \ge n$. Sei $z = a^n b^n$. (Dann gilt $z \in L_1$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_1$.

Satz

$$L_1 = \{ w \in \{a, b\}^* \mid \#_a(w) = \#_b(w) \}$$
 ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_1$ mit $|z| \ge n$. Sei $z = a^n b^n$. (Dann gilt $z \in L_1$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_1$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_1$.

 Da $|uv| \le n$ und |v| > 0 gilt $v = a^k$ mit k > 0 und daher $uv^0w = a^{n-k}b^n \notin L_1$ (d.h. für i = 0 gilt $uv^iw \notin L_1$). Widerspruch.

Satz

 $L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$ ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt.
- 2. Wähle ein Wort $z \in L_2$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_2$.

Satz

$$L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_2$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_2$.

Satz

$$L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_2$ mit $|z| \ge n$. Sei $z = a^n bbc^{n+1}$. (Dann gilt $z \in L_2$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_2$.

Satz

 $L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_2$ mit $|z| \ge n$. Sei $z = a^n bbc^{n+1}$. (Dann gilt $z \in L_2$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_2$.

Satz

 $L_2 = \{a^n bbc^m \mid n, m \in \mathbb{N}, m > n\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_2$ mit $|z| \ge n$. Sei $z = a^n bbc^{n+1}$. (Dann gilt $z \in L_2$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_2$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_2$. Da $|uv| \le n$ und |v| > 0 gilt $v = a^k$ mit k > 0 und daher $uv^3w = a^{n+2k}bbc^{n+1} \notin L_2$ (d.h. für i = 3 gilt $uv^iw \notin L_2$). Widerspruch.

Satz

 $L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt.
- 2. Wähle ein Wort $z \in L_3$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_3$.

Satz

$$L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}$$
 ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_3$ mit $|z| \ge n$.
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_3$.

Satz

 $L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweisschritte:

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_3$ mit $|z| \ge n$. Sei $z = a^n \$ a^n$. (Dann gilt $z \in L_3$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$.

4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_3$.

Satz

 $L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_3$ mit $|z| \ge n$. Sei $z = a^n \$ a^n$. (Dann gilt $z \in L_3$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_3$.

Satz

 $L_3 = \{a^n \$ a^n \mid n \in \mathbb{N}\}$ ist nicht regulär.

- 1. Die Zahl $n \in \mathbb{N}_{>0}$ sei beliebig gewählt. Sei $n \in \mathbb{N}_{>0}$ beliebig.
- 2. Wähle ein Wort $z \in L_3$ mit $|z| \ge n$. Sei $z = a^n \$ a^n$. (Dann gilt $z \in L_3$ und $|z| \ge n$.)
- 3. Sei z = uvw eine beliebige Zerlegung mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$. Sei z = uvw mit $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L_3$ für alle $i \in \mathbb{N}$ eine Zerlegung von z.
- 4. Für jede solche Zerlegung gib ein $i \in \mathbb{N}$ an mit $uv^iw \notin L_3$. $Da |uv| \le n \ und \ |v| > 0 \ gilt \ v = a^k \ mit \ k > 0 \ und \ daher \ uv^0w = a^{n-k}\$a^n \notin L_3$. Widerspruch.

4. Das Pumping-Lemma für kontextfreie Sprachen (nur FSK)

Das Pumping-Lemma für kontextfreie Sprachen

Definition

Eine Sprache L hat die Pumping-Eigenschaft (für kontextfreie Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat (d.h. |z| > n), als z = uvwxv geschrieben werden kann, sodass gilt:

- 1. |vx| > 1 2. |vwx| < n 3. für alle $i \in \mathbb{N}$: $uv^i wx^i v \in L$.

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

Beweis Mit dem Pumping-Lemma:

► Sei *n* beliebig.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

- ► Sei *n* beliebig.
- ▶ Wir wählen $z = a^n b a^n b a^n$. (Dann gilt $z \in L_4$ und $|z| \ge n$.)

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

- ► Sei *n* beliebig.
- ▶ Wir wählen $z = a^n b a^n b a^n$. (Dann gilt $z \in L_4$ und $|z| \ge n$.)
- ▶ Sei z = uvwxy mit $|vwx| \le n$, $|vx| \ge 1$ und $uv^iwx^iy \in L_4$ für alle $i \in \mathbb{N}$.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

- ► Sei *n* beliebig.
- ▶ Wir wählen $z = a^n b a^n b a^n$. (Dann gilt $z \in L_4$ und $|z| \ge n$.)
- ▶ Sei z = uvwxy mit $|vwx| \le n$, $|vx| \ge 1$ und $uv^iwx^iy \in L_4$ für alle $i \in \mathbb{N}$.
- ▶ Dann kann vwx nicht zwei b's enthalten.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

- ► Sei *n* beliebig.
- ▶ Wir wählen $z = a^n b a^n b a^n$. (Dann gilt $z \in L_4$ und $|z| \ge n$.)
- ▶ Sei z = uvwxy mit $|vwx| \le n$, $|vx| \ge 1$ und $uv^iwx^iy \in L_4$ für alle $i \in \mathbb{N}$.
- ▶ Dann kann vwx nicht zwei b's enthalten.
- ► Fall vx enthält ein b: Dann $uv^0wx^0y \notin L_4$, da das b entfernt wurde. Widerspruch.

Aufgabe

Zeige, dass $L_4 = \{a^mba^mba^m \mid m \in \mathbb{N}\}$ nicht kontextfrei ist.

- ► Sei *n* beliebig.
- ▶ Wir wählen $z = a^n b a^n b a^n$. (Dann gilt $z \in L_4$ und $|z| \ge n$.)
- ▶ Sei z = uvwxy mit $|vwx| \le n$, $|vx| \ge 1$ und $uv^iwx^iy \in L_4$ für alle $i \in \mathbb{N}$.
- ▶ Dann kann vwx nicht zwei b's enthalten.
- ► Fall vx enthält ein b: Dann $uv^0wx^0y \notin L_4$, da das b entfernt wurde. Widerspruch.
- Fall vx enthält kein b: Dann $uv^2wx^2y \notin L_4$, da maximal zwei a-Folgen aufgepumpt wurden, die dritte a-Folge aber noch aus n vielen a's besteht (und die Trennung durch b noch vorhanden ist). Widerspruch.