Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

11a

\mathcal{NP} -Vollständigkeit von SAT

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel und Dr. Jan Johannsen

Wiederholung: \mathcal{NP} -Vollständigkeit

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

Wiederholung: \mathcal{NP} -Vollständigkeit

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

Beweistechnik für \mathcal{NP} -Vollständigkeit von L:

- 1. Zeige $L \in \mathcal{NP}$.
- 2. Zeige $L_0 \leq_p L$ für ein bekanntes \mathcal{NP} -vollständiges Problem L_0 . Dann folgt die \mathcal{NP} -Schwere von L.

SAT-Problem

Wir brauchen ein erstes Problem, dessen \mathcal{NP} -Vollständigkeit wir von Hand nachweisen müssen.

Dafür nehmen wir das Erfüllbarkeitsproblem der Aussagenlogik (kurz SAT).

Die aussagenlogischen Formeln über einer Menge X von Variablen sind durch folgende Regeln definiert:

- ightharpoonup Jede Variable $x \in X$ ist eine Formel.
- ▶ Ist F eine Formel, dann auch $\neg F$.
- ▶ Sind F und G Formeln, dann auch $(F \land G)$, $(F \lor G)$, $(F \Longrightarrow G)$ und $(F \Longleftrightarrow G)$.

Semantik der Aussagenlogik

Definition

Sei $I: X \to \{0, 1\}$ eine Belegung der Variablen X mit den Wahrheitswerten 0 ("falsch") und 1 ("wahr").

Sei $I: X \to \{0, 1\}$ eine Belegung der Variablen X mit den Wahrheitswerten 0 ("falsch") und 1 ("wahr").

Der Wert I(F) einer gegebenen Formel F wird durch folgende Regeln definiert:

- \triangleright I(x) ist durch I gegeben.
- $\blacktriangleright I(F \land G) := \min\{I(F), I(G)\}.$
- ▶ $I(F \lor G) := \max\{I(F), I(G)\}.$
- \blacktriangleright $I(F \Longrightarrow G) := I(\neg F \lor G).$
- $I(F \longleftrightarrow G) := I((F \Longrightarrow G) \land (G \Longrightarrow F)).$

Sei $I: X \to \{0, 1\}$ eine Belegung der Variablen X mit den Wahrheitswerten 0 ("falsch") und 1 ("wahr").

Der Wert I(F) einer gegebenen Formel F wird durch folgende Regeln definiert:

- \blacktriangleright I(x) ist durch I gegeben.
- $ightharpoonup I(\neg F) := 1 I(F).$
- $I(F \wedge G) := \min \{ I(F), I(G) \}.$
- $ightharpoonup I(F \lor G) := \max\{I(F), I(G)\}.$
- \blacktriangleright $I(F \Longrightarrow G) := I(\neg F \lor G).$

I erfüllt F, wenn I(F) = 1.

F ist erfüllbar, wenn es eine Belegung I gibt mit I(F) = 1.

Das Erfüllbarkeitsproblem der Aussagenlogik (kurz SAT) lässt sich wie folgt formulieren.

gegeben: eine aussagenlogische Formel F

gefragt: Ist *F* erfüllbar, d.h. gibt es eine erfüllende Belegung der Variablen, sodass *F* den Wert 1 erhält?

Das Erfüllbarkeitsproblem der Aussagenlogik (kurz SAT) lässt sich wie folgt formulieren.

gegeben: eine aussagenlogische Formel F

gefragt: Ist *F* erfüllbar, d.h. gibt es eine erfüllende Belegung der Variablen, sodass *F* den Wert 1 erhält?

Als formale Sprache:

 $SAT = \{code(F) \in \Sigma^* \mid F \text{ ist eine erfüllbare Formel der Aussagenlogik}\}$

Lemma

SAT $\in \mathcal{NP}$.

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

M verwendet Nichtdeterminismus, um eine Belegung $I: X \to \{0, 1\}$ zu "raten".

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

M verwendet Nichtdeterminismus, um eine Belegung $I: X \to \{0, 1\}$ zu "raten".

Jede der 2^n nichtdeterministischen Berechnungen berechnet einen Wert von I(F).

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

M verwendet Nichtdeterminismus, um eine Belegung $I: X \to \{0,1\}$ zu "raten".

Jede der 2^n nichtdeterministischen Berechnungen berechnet einen Wert von I(F).

Akzeptanz, wenn I(F) = 1, sonst verwerfen.

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

M verwendet Nichtdeterminismus, um eine Belegung $I: X \to \{0, 1\}$ zu "raten".

Jede der 2^n nichtdeterministischen Berechnungen berechnet einen Wert von I(F).

Akzeptanz, wenn I(F) = 1, sonst verwerfen.

Da jede Belegung geprüft wird, gilt:

M akzeptiert eine Formel F g.d.w. $code(F) \in SAT$.

Lemma

SAT $\in \mathcal{NP}$.

Beweis Konstruiere eine NTM M mit code(F) als Eingabe.

M berechnet, welche Variablen in F vorkommen. Seien diese $X = \{x_1, \ldots, x_n\}$.

M verwendet Nichtdeterminismus, um eine Belegung $I: X \to \{0, 1\}$ zu "raten".

Jede der 2^n nichtdeterministischen Berechnungen berechnet einen Wert von I(F).

Akzeptanz, wenn I(F) = 1, sonst verwerfen.

Da jede Belegung geprüft wird, gilt:

M akzeptiert eine Formel F g.d.w. $code(F) \in SAT$.

Jeder Berechnungspfad von M läuft in Polynomialzeit in |code(F)|, da die Anzahl der Variablen durch die Eingabegröße beschränkt ist.

Polynomielle Verifizierbarkeit als Beweistechnik

Der Nachweis, dass eine Sprache in \mathcal{NP} liegt, geht oft so wie bei SAT:

- 1. Verwende Nichtdeterminismus, um potentielle Lösung zu raten.
- 2. Zeige, dass eine Lösung in Polynomialzeit verifiziert werden kann.

Wir müssen zeigen:

 $L \leq_p \mathsf{SAT}$ für alle $L \in \mathcal{NP}$

Wir müssen zeigen:

$$L \leq_{p} SAT$$
 für alle $L \in \mathcal{NP}$

Da $L \in \mathcal{NP}$, gibt es eine polynomiell zeitbeschränkte NTM M, die L akzeptiert.

Wir müssen zeigen:

$$L \leq_{p} \mathsf{SAT}$$
 für alle $L \in \mathcal{NP}$

Da $L \in \mathcal{NP}$, gibt es eine polynomiell zeitbeschränkte NTM M, die L akzeptiert.

Für Wort w erstelle Formel f(w) = F (in deterministischer Polynomialzeit), sodass gilt:

F ist erfüllbar g.d.w. M akzeptiert w

Wir müssen zeigen:

$$L \leq_{\mathcal{D}} \mathsf{SAT}$$
 für alle $L \in \mathcal{NP}$

Da $L \in \mathcal{NP}$, gibt es eine polynomiell zeitbeschränkte NTM M, die L akzeptiert.

Für Wort w erstelle Formel f(w) = F (in deterministischer Polynomialzeit), sodass gilt:

F ist erfüllbar g.d.w. M akzeptiert w

In den nächsten Folien werden wir F definieren und zeigen, dass sie die erwünschte Eigenschaft hat.

Wir müssen zeigen:

$$L \leq_{p} SAT$$
 für alle $L \in \mathcal{NP}$

Da $L \in \mathcal{NP}$, gibt es eine polynomiell zeitbeschränkte NTM M, die L akzeptiert.

Für Wort w erstelle Formel f(w) = F (in deterministischer Polynomialzeit), sodass gilt:

F ist erfüllbar g.d.w. M akzeptiert w

In den nächsten Folien werden wir F definieren und zeigen, dass sie die erwünschte Eigenschaft hat.

F wird das Verhalten von M auf w kodieren. Aus einer erfüllende Belegung I für F wird sich einen akzeptierenden Lauf von M ablesen lassen und umgekehrt.

Hilfssatz für den \mathcal{NP} -Schwere-Beweis von SAT

Lemma

Für aussagenlogische Variablen $\{x_1, \ldots, x_n\}$ gibt es eine aussagenlogische Formel $exactlyOne(x_1, \ldots, x_n)$, sodass

 $I(exactlyOne(x_1,...,x_n)) = 1$ g.d.w. I setzt genau eine der Variablen x_i auf 1 und alle anderen auf 0

Dabei ist die Größe der Formel $exactlyOne(x_1, ..., x_n)$ in $O(n^2)$.

Lemma

Für aussagenlogische Variablen $\{x_1, \ldots, x_n\}$ gibt es eine aussagenlogische Formel $exactlyOne(x_1, \ldots, x_n)$, sodass

 $I(exactlyOne(x_1,...,x_n)) = 1$ g.d.w. I setzt genau eine der Variablen x_i auf 1 und alle anderen auf 0

Dabei ist die Größe der Formel $exactlyOne(x_1, ..., x_n)$ in $O(n^2)$.

Beweis Wir nehmen

exactlyOne
$$(x_1, ..., x_n) := (x_1 \lor \cdots \lor x_n) \land \bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j)$$

Hilfssatz für den \mathcal{NP} -Schwere-Beweis von SAT

Lemma

Für aussagenlogische Variablen $\{x_1, \ldots, x_n\}$ gibt es eine aussagenlogische Formel $exactlyOne(x_1, \ldots, x_n)$, sodass

 $I(exactlyOne(x_1,...,x_n)) = 1$ g.d.w. I setzt genau eine der Variablen x_i auf 1 und alle anderen auf 0

Dabei ist die Größe der Formel $exactlyOne(x_1, ..., x_n)$ in $O(n^2)$.

Beweis Wir nehmen

exactlyOne
$$(x_1, ..., x_n) := (x_1 \lor \cdots \lor x_n) \land \bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j)$$

- \blacktriangleright $(x_1 \lor \cdots \lor x_n)$ sichert "mindestens 1" zu.
- $\bigwedge_{1 \le i < j \le n} \neg (x_i \land x_j) \text{ sichert "höchstens 1" zu. }$

Lemma

SAT ist \mathcal{NP} -schwer.

Lemma

SAT ist \mathcal{NP} -schwer.

Beweis Sei $L \in \mathcal{NP}$ beliebig. Wir müssen zeigen: $L \leq_p SAT$.

Lemma

SAT ist \mathcal{NP} -schwer.

Beweis Sei $L \in \mathcal{NP}$ beliebig. Wir müssen zeigen: $L \leq_p SAT$.

Sei M eine NTM mit L(M) = L, w eine Eingabe für M und $ntime_M(w) \le p(|w|)$.

Lemma

SAT ist \mathcal{NP} -schwer.

Beweis Sei $L \in \mathcal{NP}$ beliebig. Wir müssen zeigen: $L \leq_p SAT$.

Sei M eine NTM mit L(M) = L, w eine Eingabe für M und $ntime_M(w) \le p(|w|)$.

Wir werden eine aussagenlogische Formel F konstruieren, sodass gilt

F ist erfüllbar g.d.w. M akzeptiert w

Dabei muss F in Polynomialzeit konstruierbar sein.

Lemma

SAT ist \mathcal{NP} -schwer.

Beweis Sei $L \in \mathcal{NP}$ beliebig. Wir müssen zeigen: $L \leq_p SAT$.

Sei M eine NTM mit L(M) = L, w eine Eingabe für M und $ntime_M(w) \le p(|w|)$.

Wir werden eine aussagenlogische Formel F konstruieren, sodass gilt

F ist erfüllbar g.d.w. M akzeptiert w

Dabei muss F in Polynomialzeit konstruierbar sein.

D.h. wir geben eine in Polynomialzeit berechenbare Funktion f(w) an, sodass $f(w) \in SAT$ g.d.w. M akzeptiert w.

Notationen:

Eingabe: $w = a_1 \cdots a_n \in \Sigma^*$ Zustände: $Z = \{z_0, \dots, z_k\}$ Bandalphabet: $\Gamma = \{b_1, \dots, b_\ell\}$ Startzustand: z_0

Notationen:

Eingabe: $w = a_1 \cdots a_n \in \Sigma^*$ Zustände: $Z = \{z_0, \dots, z_k\}$ Bandalphabet: $\Gamma = \{b_1, \dots, b_\ell\}$ Startzustand: z_0

Aussagenlogische Variablen in der Formel F:

Variable	Index-Bereich	Bedeutung
State _{t,z}	$t=0,1,\ldots,p(n)$	$State_{t,z} = 1$ g.d.w.
	$z=z_0,\ldots,z_k$	nach t Schritten ist M im Zustand z .
$Pos_{t,i}$	$t=0,1,\ldots,p(n)$	$Pos_{t,i} = 1$ g.d.w. nach t Schritten
	$i=-p(n),\ldots,p(n)$	ist der Schreib-Lesekopf auf Position i
Tape _{t,i,b}	$t=0,1,\ldots,p(n)$	$Tape_{t,i,b} = 1$ g.d.w. nach t Schritten
	$i=-p(n),\ldots,p(n)$	steht in Position i das Zeichen b
	$b=b_1,\ldots,b_\ell$	

Notationen:

```
Eingabe: w = a_1 \cdots a_n \in \Sigma^* Zustände: Z = \{z_0, \dots, z_k\}
Bandalphabet: \Gamma = \{b_1, \dots, b_\ell\} Startzustand: z_0
```

Aussagenlogische Variablen in der Formel *F*:

Variable	Index-Bereich	Bedeutung
State _{t,z}	$t=0,1,\ldots,p(n)$	$State_{t,z} = 1 \text{ g.d.w.}$
	$z=z_0,\ldots,z_k$	nach t Schritten ist M im Zustand z .
$Pos_{t,i}$	$t=0,1,\ldots,p(n)$	$Pos_{t,i} = 1$ g.d.w. nach t Schritten
	$i=-p(n),\ldots,p(n)$	ist der Schreib-Lesekopf auf Position i
$Tape_{t,i,b}$	$t=0,1,\ldots,p(n)$	$Tape_{t,i,b} = 1$ g.d.w. nach t Schritten
	$i=-p(n),\ldots,p(n)$	steht in Position i das Zeichen b
	$b=b_1,\ldots,b_\ell$	

Die Bereiche reichen aus, da die TM nicht mehr als p(n) Schritte macht.

Aufbau der Formel F:

 $F = Rand \land Anfang \land Übergang \land Ende$

Rand: Randbedingungen

► *Anfang*: Anfangsbedingungen

► Übergang: Bedingungen für den Zustandsübergang

► *Ende*: Endbedingung

Zu jedem Zeitpunkt t

Zu jedem Zeitpunkt t

ightharpoonup . . . ist M in genau einem Zustand z:

$$\bigwedge_{t \in \{0, \dots, p(n)\}} exactlyOne(State_{t, z_0}, \dots, State_{t, z_k})$$

Zu jedem Zeitpunkt t

▶ ... ist *M* in genau einem Zustand *z*:

$$\bigwedge_{t \in \{0, \dots, p(n)\}} exactlyOne(State_{t, z_0}, \dots, State_{t, z_k})$$

▶ ... ist der Schreib-Lesekopf von *M* in genau einer Position auf dem Band:

$$\bigwedge_{t \in \{0, \dots, p(n)\}} exactlyOne(Pos_{t, -p(n)}, \dots, Pos_{t, p(n)})$$

Zu jedem Zeitpunkt t

▶ ... ist *M* in genau einem Zustand *z*:

$$\bigwedge_{t \in \{0, \dots, p(n)\}} exactlyOne(State_{t, z_0}, \dots, State_{t, z_k})$$

▶ ... ist der Schreib-Lesekopf von *M* in genau einer Position auf dem Band:

$$\bigwedge_{t \in \{0, \dots, p(n)\}} exactlyOne(Pos_{t, -p(n)}, \dots, Pos_{t, p(n)})$$

befindet sich in jeder Bandzelle genau ein Symbol aus Γ:

$$\bigwedge_{t \in \{0,\dots,p(n)\}} \bigwedge_{i \in \{-p(n),\dots,p(n)\}} exactlyOne(Tape_{t,i,b_1},\dots,Tape_{t,i,b_\ell})$$

Daher:

$$Rand := \bigwedge_{t \in \{0, \dots, p(n)\}} \left(\begin{array}{l} exactlyOne(State_{t, z_0}, \dots, State_{t, z_k}) \\ \land \ exactlyOne(Pos_{t, -p(n)}, \dots, Pos_{t, p(n)}) \\ \land \bigwedge_{i \in \{-p(n), \dots, p(n)\}} exactlyOne(Tape_{t, i, b_1}, \dots, Tape_{t, i, b_\ell}) \end{array} \right)$$

Die Bedingungen zum Zeitpunkt t = 0:

Die Bedingungen zum Zeitpunkt t = 0:

► *M* ist im Startzustand: *State*_{0,z0}

Die Bedingungen zum Zeitpunkt t = 0:

- \blacktriangleright *M* ist im Startzustand: *State*_{0,z₀}
- ▶ Der Schreib-Lesekopf ist auf Position 0: Pos_{0,0}

Die Bedingungen zum Zeitpunkt t = 0:

- ightharpoonup M ist im Startzustand: $State_{0,z_0}$
- ▶ Der Schreib-Lesekopf ist auf Position 0: Pos_{0,0}
- ▶ Die Eingabe $w = a_1 \dots a_n$ steht auf dem Band und alle anderen Zellen enthalten das Blank-Symbol:

$$(\bigwedge_{i \in \{0,\dots,n-1\}} Tape_{0,i,a_{i+1}}) \wedge (\bigwedge_{i \in \{-p(n),\dots,-1\}} Tape_{0,i,\square}) \wedge (\bigwedge_{i \in \{n,\dots,p(n)\}} Tape_{0,i,\square})$$

Daher:

$$Anfang := State_{0,z_0} \land Pos_{0,0} \land \\ (\bigwedge_{i \in \{0,...,n-1\}} Tape_{0,i,a_{i+1}}) \land (\bigwedge_{i \in \{-p(n),...,-1\}} Tape_{0,i,\square}) \land (\bigwedge_{i \in \{n,...,p(n)\}} Tape_{0,i,\square})$$

Übergangsbedingungen

Für Übergang von t zu t + 1:

Übergangsbedingungen

Für Übergang von t zu t + 1:

► Zustand, Bandinhalt, Position ändern.

Sei
$$dir(N) = 0$$
, $dir(L) = -1$, $dir(R) = 1$:

$$\bigwedge_{\substack{t \in \{0, \dots, p(n)-1\}, z \in Z, \\ j \in \{-p(n)+1, \dots, p(n)-1\}, b \in \Gamma}} \begin{pmatrix} \left(State_{t,z} \land Pos_{t,i} \land Tape_{t,i,b}\right) \\ \Longrightarrow \bigvee_{(z',b',y) \in \delta(z,b)} \left(State_{t+1,z'} \land Pos_{t+1,i+dir(y)} \land Tape_{t+1,i,b'}\right) \end{pmatrix}$$

Übergangsbedingungen

Für Übergang von t zu t + 1:

► Zustand, Bandinhalt, Position ändern. Sei dir(N) = 0, dir(L) = -1, dir(R) = 1:

$$\bigwedge_{\substack{t \in \{0, \dots, p(n)-1\}, z \in Z, \\ i \in \{-p(n)+1, \dots, p(n)-1\}, b \in \Gamma}} \begin{pmatrix} \left(State_{t,z} \land Pos_{t,i} \land Tape_{t,i,b}\right) \\ \Longrightarrow \bigvee_{(z',b',y) \in \delta(z,b)} \left(State_{t+1,z'} \land Pos_{t+1,i+dir(y)} \land Tape_{t+1,i,b'}\right) \end{pmatrix}$$

► Zellen auf denen der Schreib-Lesekopf nicht steht, bleiben unverändert:

$$\bigwedge_{\substack{t \in \{0, \dots, p(n)-1\}, \\ i \in \{-p(n), \dots, p(n)\}, \\ b \in \Gamma}} \left(\left(\neg Pos_{t,i} \wedge Tape_{t,i,b} \right) \Longrightarrow Tape_{t+1,i,b} \right)$$

Daher:

Endbedingung

Ein Endzustand wird erreicht:

Ende :=
$$\bigvee_{z \in E, t \in \{0, \dots, p(n)\}} State_{t,z}$$

$\mathcal{NP} ext{-Schwere von SAT}$

Wenn es eine Belegung I der Variablen von F gibt mit I(F) = 1, dann kann daraus ein akzeptierender Lauf für M auf Eingabe w konstruiert werden.

\mathcal{NP} -Schwere von SAT

Wenn es eine Belegung I der Variablen von F gibt mit I(F) = 1, dann kann daraus ein akzeptierender Lauf für M auf Eingabe w konstruiert werden.

Umgekehrt: Wenn M die Eingabe w akzeptiert, dann $z_0w \vdash_M^r uz_ev$ mit $z_e \in E$ und $r \leq p(n)$. Der Lauf liefert eine Belegung I mit I(F) = 1.

\mathcal{NP} -Schwere von SAT

Wenn es eine Belegung I der Variablen von F gibt mit I(F) = 1, dann kann daraus ein akzeptierender Lauf für M auf Eingabe w konstruiert werden.

Umgekehrt: Wenn M die Eingabe w akzeptiert, dann $z_0w \vdash_M^r uz_ev$ mit $z_e \in E$ und $r \leq p(n)$. Der Lauf liefert eine Belegung I mit I(F) = 1.

Damit gilt: F ist erfüllbar g.d.w. M akzeptiert w.

\mathcal{NP} -Schwere von SAT

Wenn es eine Belegung I der Variablen von F gibt mit I(F) = 1, dann kann daraus ein akzeptierender Lauf für M auf Eingabe w konstruiert werden.

Umgekehrt: Wenn M die Eingabe w akzeptiert, dann $z_0w \vdash_M^r uz_ev$ mit $z_e \in E$ und $r \leq p(n)$. Der Lauf liefert eine Belegung I mit I(F) = 1.

Damit gilt: F ist erfüllbar g.d.w. M akzeptiert w.

F kann in (deterministischer) Polynomialzeit berechnet werden:

Teilformel	Größe (Anzahl an Variablenvorkommen)
Rand	$O(p(n)^3)$
Anfang	O(p(n))
Übergang	$O(p(n)^2)$
Ende	O(p(n))
F	$O(p(n)^3)$

Daher: $L \leq_{p} SAT$ für alle $L \in \mathcal{NP}$. D.h. SAT ist \mathcal{NP} -schwer.

Satz von Cook

Insgesamt haben wir gezeigt:

Satz (Satz von Cook)

Das Erfüllbarkeitsproblem der Aussagenlogik (SAT) ist \mathcal{NP} -vollständig.