Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

10b

Laufzeitkomplexität und die Klassen \mathcal{P} und \mathcal{NP}

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

Komplexitätstheorie

Die Komplexitätstheorie ist ein Teilgebiet der Theoretischen Informatik, das sich mit der Komplexität von entscheidbaren Problemen befasst.

Maße zum Messen des Ressourcenbedarfs von Algorithmen:

- ► Rechenzeit
- Platzbedarf
- usw.

Die Komplexität eines Problems ist die Komplexität des besten Algorithmus bezüglich des Maßes.

Das Ziel ist die Einordnung von Problemen in Komplexitätsklassen.

Teilbereiche der Komplexitätstheorie

- 1. Teilbereich: Nachweis von oberen Schranken:
 - ► Finde möglichst guten Algorithmus für konkretes Problem.
 - ► Analysiere die Laufzeit- und Platzkomplexität.
 - ► Gesucht sind möglichst genaue Schranken (bezüglich der *O*-Notation).

Teilbereiche der Komplexitätstheorie

- 2. Teilbereich: Nachweis von unteren Schranken:
 - ► Zeige, dass es keinen besseren Algorithmus gibt.
 - ► Schwieriger, da man über alle Algorithmen argumentieren muss.
 - ightharpoonup Gesucht werden möglichst genaue Schranken (bezüglich der Ω-Notation).

Teilbereiche der Komplexitätstheorie

- 3. Teilbereich: Auswirkung der Maschinenmodelle auf den Ressourcenbedarf insbesondere Determinismus vs. Nichtdeterminismus:
 - ightharpoonup Eine wichtige ungelöste Frage ist das \mathcal{P} -vs.- $\mathcal{N}\mathcal{P}$ -Problem.
 - Komplexitätsklassen sind im Allgemeinen ungenauer (größer) als in den vorher genannten Teilbereichen.
 - Wir beschäftigen uns im letzten Teil der Lehrveranstaltung hiermit.

Annahmen und Festlegungen

Turingmaschinen:

- ▶ Wir betrachten nur entscheidbare Sprachen.
- Deswegen nehmen wir an:
 Die Turingmaschinen, welche diese Sprachen entscheiden, halten auf jeder Eingabe an.
- ▶ DTMs: Wir nehmen an, dass es "Verwirf"-Zustände gibt, für die die Turingmaschine keine Nachfolgekonfiguration besitzen.
- ▶ NTMs haben solche Zustände von Haus aus.

Annahmen und Festlegungen

Mehrband- vs. Einband-Turingmaschinen:

- ▶ Wir nehmen Mehrband-TMs, da sie flexibler sind.
- ▶ Unterschied: n Schritte auf Mehrband-TM können in $O(n^2)$ Schritten auf Einband-TM ausgeführt werden.
- ▶ Der Unterschied macht sich in den Komplexitätsklassen \mathcal{P} und \mathcal{NP} nicht bemerkbar.

Die Klasse TIME(f(n))

Definition

Sei M eine stets anhaltende Mehrband-DTM mit Startzustand z_0 .

Für Eingabe w definieren wir

$$time_{M}(w) := i$$

wenn für die Startkonfiguration für z_0 und w nach i Schritten ein Endzustand oder Verwirf-Zustand erreichbar ist.

Die Klasse TIME(f(n))

Definition

Sei M eine stets anhaltende Mehrband-DTM mit Startzustand z_0 .

Für Eingabe w definieren wir

$$time_{M}(w) := i$$

wenn für die Startkonfiguration für z_0 und w nach i Schritten ein Endzustand oder Verwirf-Zustand erreichbar ist.

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse TIME(f(n)) genau die Menge der Sprachen L. für die es eine stets anhaltende Mehrband-DTM M gibt mit L(M) = Lund $time_M(w) \leq f(|w|)$ für alle $w \in \Sigma^*$.

Die Klasse TIME(f(n))

Definition

Sei M eine stets anhaltende Mehrband-DTM mit Startzustand z_0 .

Für Eingabe w definieren wir

$$time_M(w) := i$$

wenn für die Startkonfiguration für z_0 und w nach i Schritten ein Endzustand oder Verwirf-Zustand erreichbar ist.

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse TIME(f(n)) genau die Menge der Sprachen L. für die es eine stets anhaltende Mehrband-DTM M gibt mit L(M) = Lund $time_M(w) \leq f(|w|)$ für alle $w \in \Sigma^*$.

Eine Sprache ist daher in TIME(f(n)), wenn sie von einer DTM für jede Eingabe der Länge n in $\leq f(n)$ Schritten entschieden wird.

Polynome

Definition

Ein Polynom ist eine Funktion $p: \mathbb{N} \to \mathbb{N}$ von der Form

$$p(n) = \sum_{i=0}^{k} a_i \cdot n^i = a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$$

mit $a_i \in \mathbb{N}$ und $k \in \mathbb{N}$.

Die Klasse \mathcal{P}

Definition

Die Klasse \mathcal{P} ist definiert als

$$\mathcal{P} := \bigcup_{p \text{ Polynom}} TIME(p(n))$$

Die Klasse \mathcal{P}

Definition

Die Klasse \mathcal{P} ist definiert als

$$\mathcal{P} := \bigcup_{p \text{ Polynom}} TIME(p(n))$$

Sprechweise: Problem ist effizient lösbar = Problem in \mathcal{P} .

Zugehörigkeit zu ${\mathcal P}$

Sprache L ist in Klasse \mathcal{P} enthalten, wenn: Es gibt eine stets anhaltende DTM M und ein Polynom p mit

- ightharpoonup L(M) = L
- ▶ $time_M(w) \le p(|w|)$ für jedes $w \in \Sigma^*$.

Nichtdeterminismus

Auch für NTMs nehmen wir an, dass sie auf allen Berechnungspfaden anhalten.

Beachte: Ein Wort wird akzeptiert, wenn es auf einem Berechnungspfad akzeptiert wird.

Nichtdeterminismus

Auch für NTMs nehmen wir an, dass sie auf allen Berechnungspfaden anhalten.

Beachte: Ein Wort wird akzeptiert, wenn es auf einem Berechnungspfad akzeptiert wird.

Definition

Sei *M* eine stets anhaltende Mehrband-NTM, die für jede Eingabe anhält.

Dann definieren wir die Laufzeit von M als

 $ntime_M(w) := \max\{i \mid \text{für die Startkonfiguration für } z_0 \text{ und } w \text{ hält } M \text{ in } i \text{ Schritten}\}$

Nichtdeterminismus

Auch für NTMs nehmen wir an, dass sie auf allen Berechnungspfaden anhalten.

Beachte: Ein Wort wird akzeptiert, wenn es auf einem Berechnungspfad akzeptiert wird.

Definition

Sei *M* eine stets anhaltende Mehrband-NTM, die für jede Eingabe anhält. Dann definieren wir die Laufzeit von *M* als

 $ntime_M(w) := \max\{i \mid \text{für die Startkonfiguration für } z_0 \text{ und } w \text{ hält } M \text{ in } i \text{ Schritten}\}$

Beachte: Schöning verwendet eine andere Definition. Es macht für die Definition der Klasse \mathcal{NP} aber keinen Unterschied.

Die Klassen NTIME(f(n)) und \mathcal{NP}

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse NTIME(f(n)) genau die Menge der Sprachen L, für die es eine stets anhaltende Mehrband-NTM M gibt mit L(M) = L und $ntime_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$.

Die Klassen NTIME(f(n)) und \mathcal{NP}

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse NTIME(f(n)) genau die Menge der Sprachen L, für die es eine stets anhaltende Mehrband-NTM M gibt mit L(M) = L und $ntime_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$.

Definition

Die Klasse \mathcal{NP} ist definiert als

$$\mathcal{NP} := \bigcup_{p \text{ Polynom}} NTIME(p(n))$$

Lemma

Es gilt $TIME(f(n)) \subseteq NTIME(f(n))$ und damit auch $\mathcal{P} \subseteq \mathcal{NP}$.

Lemma

Es gilt $TIME(f(n)) \subseteq NTIME(f(n))$ und damit auch $\mathcal{P} \subseteq \mathcal{NP}$.

Beweis Jede DTM kann leicht als NTM aufgefasst werden, wobei es nur einen möglichen Berechnungspfad gibt.

Lemma

Es gilt $TIME(f(n)) \subseteq NTIME(f(n))$ und damit auch $\mathcal{P} \subseteq \mathcal{NP}$.

Beweis Jede DTM kann leicht als NTM aufgefasst werden, wobei es nur einen möglichen Berechnungspfad gibt.

Dieser bestimmt $ntime_M(w)$ und es gilt für diese Turingmaschine $time_M(w) = ntime_M(w)$.

Lemma

Es gilt $TIME(f(n)) \subseteq NTIME(f(n))$ und damit auch $\mathcal{P} \subseteq \mathcal{NP}$.

Beweis Jede DTM kann leicht als NTM aufgefasst werden, wobei es nur einen möglichen Berechnungspfad gibt.

Dieser bestimmt $ntime_M(w)$ und es gilt für diese Turingmaschine $time_M(w) = ntime_M(w)$.

Damit folgt, dass aus $L \in TIME(f(n))$ auch $L \in NTIME(f(n))$ folgt.

Lemma

Es gilt $TIME(f(n)) \subseteq NTIME(f(n))$ und damit auch $\mathcal{P} \subseteq \mathcal{NP}$.

Beweis Jede DTM kann leicht als NTM aufgefasst werden, wobei es nur einen möglichen Berechnungspfad gibt.

Dieser bestimmt $ntime_M(w)$ und es gilt für diese Turingmaschine $time_M(w) = ntime_M(w)$.

Damit folgt, dass aus $L \in TIME(f(n))$ auch $L \in NTIME(f(n))$ folgt.

Schließlich zeigt dies auch $\mathcal{P} \subseteq \mathcal{NP}$.

Die Frage "Gilt $\mathcal{P} = \mathcal{NP}$ oder $\mathcal{P} \neq \mathcal{NP}$?" ist bis heute ungelöst.

- ▶ Das P-vs.-NP-Problem ist eines der sieben sogenannten Millennium-Probleme, die vom Clay Mathematics Institute im Jahr 2000 als Liste ungelöster Probleme der Mathematik herausgegeben wurde.
- Für dessen Lösung wurde ein Preisgeld von einer Million US-Dollar ausgelobt.

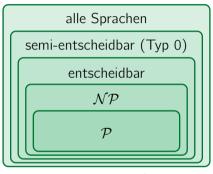
${\mathcal P}$ vs. ${\mathcal N}{\mathcal P}$

Ein wesentlicher Grund, der für $P \neq \mathcal{NP}$ spricht:

Man müsste für $\mathcal{P}=\mathcal{NP}$ einen deterministischen Polynomialzeitalgorithmus finden, für ein Problem, für das bisher nur deterministische Exponentialzeitalgorithmen bekannt sind.

Viele haben gesucht, keiner hat einen solchen Algorithmus gefunden.

Lage der Komplexitätsklasse



Dabei unklar, ob $\mathcal{NP} = \mathcal{P}$