Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

9c

Reduktion und der Satz von Rice

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Reduktion

- ▶ Reduktion ist ein Hilfsmittel, um Unentscheidbarkeit nachzuweisen.
- Statt Unentscheidbarkeit von Sprache L von Grund auf neu zu beweisen, zeige: Wenn man L entscheiden könnte, dann könnte man auch K (d.h. das spezielle Halteproblem) entscheiden.
- ▶ Da K bereits als unentscheidbar gezeigt wurde, folgt L ist unentscheidbar.
- ► Statt *K* können wir eine beliebige Sprache nehmen, die bereits als unentscheidbar bewiesen ist.

Definition von Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 reduzierbar (geschrieben $L_1 \leq L_2$), falls es eine totale berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$.

Die Funktion f nennt man Reduktion.

Definition von Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 reduzierbar (geschrieben $L_1 \leq L_2$), falls es eine totale berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$.

Die Funktion f nennt man Reduktion.

Eselsbrücke:

$$L_1 \le L_2$$

"kleines" "großes"

Problem Problem

Definition von Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 reduzierbar (geschrieben $L_1 \leq L_2$), falls es eine totale berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$.

Die Funktion f nennt man Reduktion.

Eselsbrücke:



- ► ≤ sagt die Wahrheit.
- "Reduktion" täuscht.Man reduziert das "kleine" Problem auf das "große".

Satz

Wenn $L_1 \leq L_2$ und L_2 entscheidbar ist, dann ist auch L_1 entscheidbar.

4/18

Satz

Wenn $L_1 \leq L_2$ und L_2 entscheidbar ist, dann ist auch L_1 entscheidbar.

Beweis Sei f die $L_1 \le L_2$ bezeugende Funktion. Da L_2 entscheidbar ist, ist χ_{L_2} berechenbar. Es gilt

$$\chi_{L_1}(w) = 1$$
 g.d.w. $w \in L_1$ g.d.w. $f(w) \in L_2$ g.d.w. $\chi_{L_2}(f(w)) = 1$

Damit ist
$$\chi_{L_1}(w) = \chi_{L_2}(f(w))$$
 berechenbar.

Satz

Wenn $L_1 \le L_2$ und L_2 entscheidbar ist, dann ist auch L_1 entscheidbar.

Beweis Sei f die $L_1 \le L_2$ bezeugende Funktion. Da L_2 entscheidbar ist, ist χ_{L_2} berechenbar. Es gilt

$$\chi_{L_1}(w) = 1$$
 g.d.w. $w \in L_1$ g.d.w. $f(w) \in L_2$ g.d.w. $\chi_{L_2}(f(w)) = 1$

Damit ist $\chi_{L_1}(w) = \chi_{L_2}(f(w))$ berechenbar.

Satz

Wenn $L_1 \le L_2$ und L_2 semi-entscheidbar ist, dann ist auch L_1 semi-entscheidbar.

Satz

Wenn $L_1 \leq L_2$ und L_2 entscheidbar ist, dann ist auch L_1 entscheidbar.

Beweis Sei f die $L_1 \le L_2$ bezeugende Funktion. Da L_2 entscheidbar ist, ist χ_{L_2} berechenbar. Es gilt

$$\chi_{L_1}(w) = 1$$
 g.d.w. $w \in L_1$ g.d.w. $f(w) \in L_2$ g.d.w. $\chi_{L_2}(f(w)) = 1$

Damit ist $\chi_{L_1}(w) = \chi_{L_2}(f(w))$ berechenbar.

Satz

Wenn $L_1 \le L_2$ und L_2 semi-entscheidbar ist, dann ist auch L_1 semi-entscheidbar.

Beweis Analog.

Nachweis der Unentscheidbarkeit

Mit Kontraposition folgt:

Lemma

Wenn $L_1 \leq L_2$ und L_1 unentscheidbar ist, dann ist auch L_2 unentscheidbar.

Das ist die Richtung, die wir meistens brauchen:

- 1. L_1 sei eine bekannt unentscheidbare Sprache (z.B. K).
- 2. Reduziere L_1 auf L_2 durch Angabe einer totalen berechenbaren Funktion f mit $w \in L_1$ g.d.w. $f(w) \in L_2$.
- 3. Damit folgt, dass L_2 unentscheidbar ist.

Halteproblem

Definition

Das (allgemeine) Halteproblem ist die Sprache $H := \{w \# x \mid TM \ M_w \ hält \ für \ Eingabe \ x\}.$

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

Dann gilt

 $w \in K$

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

Dann gilt

 $w \in K$ g.d.w. M_w hält für Eingabe w

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

$$w \in K$$

g.d.w. M_w hält für Eingabe w

$$f(w) \in H$$

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

```
w \in K
g.d.w. M_w hält für Eingabe w
w\#w \in H
g.d.w. f(w) \in H
```

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

```
w \in K
g.d.w. M_w hält für Eingabe w
g.d.w. w \# w \in H
g.d.w. f(w) \in H
```

Satz

Das allgemeine Halteproblem ist unentscheidbar.

Beweis Wir reduzieren das spezielle Halteproblem auf das allgemeine Halteproblem, und zeigen daher $K \le H$. Sei f(w) = w # w.

Dann gilt

$$w \in K$$

g.d.w. M_w hält für Eingabe w
g.d.w. $w \# w \in H$
g.d.w. $f(w) \in H$

f kann durch eine DTM berechnet werden. Daher gilt $K \leq H$. Da K unentscheidbar ist, ist H unentscheidbar.

Halteproblem auf leerem Band

Definition

Das Halteproblem auf leerem Band ist die Sprache

 $H_0 := \{ w \mid M_w \text{ hält für die leere Eingabe} \}.$

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

$$w_M \# x \in H$$

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

Dann gilt

 $w_M \# x \in H$ g.d.w. M hält für Eingabe x

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

$$w_M \# x \in H$$

g.d.w. M hält für Eingabe x

$$f(w_M \# x) \in H_0$$

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

$$w_M \# x \in H$$

g.d.w. M hält für Eingabe x

$$w_{M_x} \in H_0$$

g.d.w. $f(w_M \# x) \in H_0$

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

```
w_M\#x\in H
g.d.w. M hält für Eingabe x
M_x hält für die leere Eingabe
g.d.w. w_{M_x}\in H_0
g.d.w. f(w_M\#x)\in H_0
```

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

```
w_M\#x\in H
g.d.w. M hält für Eingabe x
g.d.w. M_x hält für die leere Eingabe
g.d.w. w_{M_x}\in H_0
g.d.w. f(w_M\#x)\in H_0
```

Satz

Das Halteproblem auf leerem Band ist unentscheidbar.

Beweis Wir reduzieren H auf H_0 : Sei $f(w_M \# x) = w_{M_x}$, wobei die DTM M_x erst x auf das Band schreibt, sich dann wie M verhält.

Dann gilt

$$w_M \# x \in H$$

g.d.w. M hält für Eingabe x
g.d.w. M_x hält für die leere Eingabe
g.d.w. $w_{M_x} \in H_0$
g.d.w. $f(w_M \# x) \in H_0$

f kann durch eine Turingmaschine berechnet werden. Daher gilt $H \le H_0$. Da H unentscheidbar ist, ist H_0 unentscheidbar.

Satz von Rice

Sei $\mathcal R$ die Klasse aller turingberechenbaren Funktionen. Sei $\mathcal S$ eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal S \subset \mathcal R$. Dann ist folgende Sprache unentscheidbar:

 $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$

Satz von Rice

Sei \mathcal{R} die Klasse aller turingberechenbaren Funktionen. Sei \mathcal{S} eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal{S} \subset \mathcal{R}$. Dann ist folgende Sprache unentscheidbar:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

Der Satz wurde von Henry Gordon Rice 1953 veröffentlicht. Er zeigt:

- ► Fast alle interessanten Eigenschaften von Turingmaschinen sind algorithmisch nicht entscheidbar.
- ▶ Z.B. folgt, dass die Sprache $L = \{w \mid M_w \text{ berechnet eine konstante Funktion}\}$ nicht entscheidbar ist.

Satz von Rice

Sei $\mathcal R$ die Klasse aller turingberechenbaren Funktionen. Sei $\mathcal S$ eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal S \subset \mathcal R$. Dann ist folgende Sprache unentscheidbar:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

Beweis Sei $\Omega(x)$ = undefiniert für alle x.

Satz von Rice

Sei $\mathcal R$ die Klasse aller turingberechenbaren Funktionen. Sei $\mathcal S$ eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal S \subset \mathcal R$. Dann ist folgende Sprache unentscheidbar:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

Beweis Sei $\Omega(x)$ = undefiniert für alle x.

Zeige:

- 1. $H_0 \leq C(S)$, falls $\Omega \notin S$.
- 2. $H_0 \leq C(S)$, falls $\Omega \in S$.

Satz von Rice

Sei \mathcal{R} die Klasse aller turingberechenbaren Funktionen. Sei \mathcal{S} eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal{S} \subset \mathcal{R}$. Dann ist folgende Sprache unentscheidbar:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

Beweis Sei $\Omega(x)$ = undefiniert für alle x.

Zeige:

- 1. $H_0 \leq C(S)$, falls $\Omega \notin S$.
- 2. $H_0 \leq C(S)$, falls $\Omega \in S$.

Wir beweisen nur Punkt 1, da Punkt 2 analog geht (siehe Skript).

► Fall $\Omega \not\in \mathcal{S}$: Da $\emptyset \subset \mathcal{S}$, gibt es eine Funktion $q \in \mathcal{S}$, die von einer DTM Q berechnet wird.

12/18

▶ Fall $\Omega \notin S$: Da $\emptyset \subset S$, gibt es eine Funktion $q \in S$, die von einer DTM Q berechnet wird.

Wir konstruieren eine DTM M^* . Für DTM M und Eingabe y:

- 1. M^* simuliert M auf leerer Eingabe.
- 2. Wenn M anhält, dann simuliert M^* die DTM Q mit Eingabe y.

▶ Fall $\Omega \notin S$: Da $\emptyset \subset S$, gibt es eine Funktion $q \in S$, die von einer DTM Q berechnet wird.

Wir konstruieren eine DTM M^* . Für DTM M und Eingabe y:

- 1. M^* simuliert M auf leerer Eingabe.
- 2. Wenn M anhält, dann simuliert M^* die DTM Q mit Eingabe y.

Sei f die Funktion, die aus der Beschreibung w für DTM M_w die Beschreibung f(w) von M_w^* erstellt. Diese Funktion ist total und berechenbar.

▶ Fall $\Omega \notin S$: Da $\emptyset \subset S$, gibt es eine Funktion $q \in S$, die von einer DTM Q berechnet wird.

Wir konstruieren eine DTM M^* . Für DTM M und Eingabe y:

- 1. M^* simuliert M auf leerer Eingabe.
- 2. Wenn M anhält, dann simuliert M^* die DTM Q mit Eingabe y.

Sei f die Funktion, die aus der Beschreibung w für DTM M_w die Beschreibung f(w) von M_w^* erstellt. Diese Funktion ist total und berechenbar.

Wir müssen noch zeigen, dass $w \in H_0$ g.d.w. $f(w) \in C(S)$.

⇒ Dann gilt

 $w \in H_0$

 \implies Dann gilt

 $w \in H_0 \Longrightarrow M_w$ hält auf leerer Eingabe

→ Dann gilt

 $w \in H_0 \Longrightarrow M_w$ hält auf leerer Eingabe $\Longrightarrow M_w^*$ berechnet q

→ Dann gilt

 $w \in H_0 \Longrightarrow M_w$ hält auf leerer Eingabe $\Longrightarrow M_w^*$ berechnet q \Longrightarrow die von M_w^* berechnete Funktion liegt in $\mathcal S$

⇒ Dann gilt

 $w \in H_0 \Longrightarrow M_w$ hält auf leerer Eingabe $\Longrightarrow M_w^*$ berechnet q \Longrightarrow die von M_w^* berechnete Funktion liegt in \mathcal{S} $\Longrightarrow f(w) \in C(\mathcal{S})$

```
w \in H_0 \Longrightarrow M_w hält auf leerer Eingabe \Longrightarrow M_w^* berechnet q \Longrightarrow die von M_w^* berechnete Funktion liegt in \mathcal{S} \Longrightarrow f(w) \in \mathcal{C}(\mathcal{S}) \Longrightarrow w \in H_0 beweisen wir die Kontraposition w \notin H_0 \Longrightarrow f(w) \notin \mathcal{C}(\mathcal{S}).
```

```
w \in H_0 \Longrightarrow M_w \text{ hält auf leerer Eingabe}
\Longrightarrow M_w^* \text{ berechnet } q
\Longrightarrow \text{ die von } M_w^* \text{ berechnete Funktion liegt in } \mathcal{S}
\Longrightarrow f(w) \in C(\mathcal{S})
\iff \text{Statt } f(w) \in C(\mathcal{S}) \Longrightarrow w \in H_0 \text{ beweisen wir die Kontraposition}
w \notin H_0 \Longrightarrow f(w) \notin C(\mathcal{S}).
w \notin H_0
```

```
w \in H_0 \Longrightarrow M_w \text{ hält auf leerer Eingabe}
\Longrightarrow M_w^* \text{ berechnet } q
\Longrightarrow \text{ die von } M_w^* \text{ berechnete Funktion liegt in } \mathcal{S}
\Longrightarrow f(w) \in C(\mathcal{S})
\iff \text{Statt } f(w) \in C(\mathcal{S}) \Longrightarrow w \in H_0 \text{ beweisen wir die Kontraposition}
w \notin H_0 \Longrightarrow f(w) \notin C(\mathcal{S}).
w \notin H_0 \Longrightarrow M_w \text{ hält nicht auf leerer Eingabe}
```

```
w \in H_0 \Longrightarrow M_w hält auf leerer Eingabe
                                     \implies M_{W}^{*} berechnet q
                                     \Longrightarrow die von M_w^* berechnete Funktion liegt in \mathcal{S}
                                     \implies f(w) \in C(S)
\iff Statt f(w) \in C(S) \Longrightarrow w \in H_0 beweisen wir die Kontraposition
       w \notin H_0 \Longrightarrow f(w) \notin C(S).
                      w \notin H_0 \Longrightarrow M_w hält nicht auf leerer Eingabe
                                 \Longrightarrow M_{**}^* berechnet \Omega
```

```
w \in H_0 \Longrightarrow M_w hält auf leerer Eingabe
                                    \implies M_{W}^{*} berechnet q
                                    \implies die von M_{W}^{*} berechnete Funktion liegt in S
                                    \implies f(w) \in C(S)
\iff Statt f(w) \in C(S) \Longrightarrow w \in H_0 beweisen wir die Kontraposition
       w \notin H_0 \Longrightarrow f(w) \notin C(S).
                     w \notin H_0 \Longrightarrow M_w hält nicht auf leerer Eingabe
                                \Longrightarrow M_{**}^* berechnet \Omega
                                 \implies die von M_{**}^* berechnete Funktion liegt nicht in \mathcal{S}
```

```
w \in H_0 \Longrightarrow M_w hält auf leerer Eingabe
                                     \Longrightarrow M_{W}^{*} berechnet q
                                     \implies die von M_{W}^{*} berechnete Funktion liegt in S
                                     \implies f(w) \in C(S)
\iff Statt f(w) \in C(S) \Longrightarrow w \in H_0 beweisen wir die Kontraposition
       w \notin H_0 \Longrightarrow f(w) \notin C(S).
                      w \notin H_0 \Longrightarrow M_w hält nicht auf leerer Eingabe
                                 \Longrightarrow M_{**}^* berechnet \Omega
                                 \Longrightarrow die von M_w^* berechnete Funktion liegt nicht in \mathcal{S}
                                 \implies f(w) \notin C(S)
```

⇒ Dann gilt

$$w \in H_0 \Longrightarrow M_w \text{ h\"{a}lt auf leerer Eingabe}$$

$$\Longrightarrow M_w^* \text{ berechnet } q$$

$$\Longrightarrow \text{ die von } M_w^* \text{ berechnete Funktion liegt in } \mathcal{S}$$

$$\Longrightarrow f(w) \in C(\mathcal{S})$$

$$\iff \text{Statt } f(w) \in C(\mathcal{S}) \Longrightarrow w \in H_0 \text{ beweisen wir die Kontraposition}$$

$$w \notin H_0 \Longrightarrow f(w) \notin C(\mathcal{S}).$$

$$w \notin H_0 \Longrightarrow M_w \text{ h\"{a}lt nicht auf leerer Eingabe}$$

$$\Longrightarrow M_w^* \text{ berechnet } \Omega$$

$$\Longrightarrow \text{ die von } M_w^* \text{ berechnete Funktion liegt nicht in } \mathcal{S}$$

$$\Longrightarrow f(w) \notin C(\mathcal{S})$$

Daher $H_0 \leq C(S)$. Da H_0 unentscheidbar ist, ist damit auch C(S) unentscheidbar.

Anwendung des Satzes von Rice

Sei L eine Sprache, die als unentscheidbar zu beweisen ist.

Schritte:

- 1. Definiere Menge *S* von Funktionen.
- 2. Zeige Nichttrivialität von S.
- 3. Begründe, dass S richtig gewählt, d.h. C(S) = L.
- 4. Der Satz von Rice zeigt dann das Resultat.

Satz

Es ist unentscheidbar, ob eine Turingmaschine für jede Eingabe $i \in \mathbb{N}$ die Zahl $i+1 \in \mathbb{N}$ berechnet.

Beweis Sei succ(i) = i + 1. Sei $S := \{succ\}$.

Satz

Es ist unentscheidbar, ob eine Turingmaschine für jede Eingabe $i \in \mathbb{N}$ die Zahl $i+1 \in \mathbb{N}$ berechnet.

Beweis Sei succ(i) = i + 1. Sei $S := \{succ\}$.

S ist nicht trivial:

- \triangleright $\emptyset \subset S$: klar
- \triangleright $S \subset \mathcal{R}$: f mit f(i) = i + 2 ist berechenbar, aber $f \notin S$.

Satz

Es ist unentscheidbar, ob eine Turingmaschine für jede Eingabe $i \in \mathbb{N}$ die Zahl $i+1 \in \mathbb{N}$ berechnet.

Beweis Sei succ(i) = i + 1. Sei $S := \{succ\}$.

S ist nicht trivial:

- ▶ $\emptyset \subset S$: klar
- $ightharpoonup \mathcal{S} \subset \mathcal{R}$: f mit f(i) = i + 2 ist berechenbar, aber $f \notin \mathcal{S}$.

Mit Satz von Rice:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion ist } succ \}$$

ist nicht entscheidbar.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass $L(M) = \emptyset$.

Beweis Sei $S := \{\Omega\}$.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass $L(M) = \emptyset$.

Beweis Sei $S := \{\Omega\}$.

S ist nicht trivial:

- ▶ $\emptyset \subset S$: klar
- $ightharpoonup \mathcal{S} \subset \mathcal{R}$: f mit f(x) = x ist berechenbar, aber $f \not\in \mathcal{S}$.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass $L(M) = \emptyset$.

Beweis Sei $S := \{\Omega\}$.

 \mathcal{S} ist nicht trivial:

- \triangleright $\emptyset \subset S$: klar
- \triangleright $\mathcal{S} \subset \mathcal{R}$: f mit f(x) = x ist berechenbar, aber $f \notin \mathcal{S}$.

Mit Satz von Rice:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

= $\{ w \mid M_w \text{ akzeptiert nie} \}$
= $\{ w \mid L(M_w) = \emptyset \}$

ist nicht entscheidbar.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass M für alle Eingaben hält.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass M für alle Eingaben hält.

Beweis Sei $S := \{f \mid f(x) \text{ ist total und berechenbar}\}.$

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass M für alle Eingaben hält.

Beweis Sei $S := \{ f \mid f(x) \text{ ist total und berechenbar} \}.$

S ist nicht trivial:

- ▶ $\emptyset \subset S$: Z.B. qilt $id \in S$ mit id(x) = x für alle $x \in \mathbb{N}$.
- $ightharpoonup \mathcal{S} \subset \mathcal{R}$: $f(1) = \text{undefiniert und } f(x) = 0 \text{ für } x \neq 1$, ist berechenbar und $f \notin \mathcal{S}$.

Satz

Es ist unentscheidbar, ob für die Turingmaschine M gilt, dass M für alle Eingaben hält.

Beweis Sei $S := \{ f \mid f(x) \text{ ist total und berechenbar} \}.$

S ist nicht trivial:

- $\triangleright \emptyset \subset \mathcal{S}$: Z.B. gilt $id \in \mathcal{S}$ mit id(x) = x für alle $x \in \mathbb{N}$.
- \triangleright $\mathcal{S} \subset \mathcal{R}$: f(1) = undefiniert und f(x) = 0 für $x \neq 1$, ist berechenbar und $f \notin \mathcal{S}$.

Mit Satz von Rice:

$$C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$$

= $\{ w \mid M_w \text{ akzeptiert für jede Eingabe} \}$

ist nicht entscheidbar.

Der Satz von Rice lässt sich auf Eigenschaften von L(M) bzw. der von M berechneten Funktion anwenden, aber er macht keine Aussage über Eigenschaften von M.

Der Satz von Rice lässt sich auf Eigenschaften von L(M) bzw. der von M berechneten Funktion anwenden, aber er macht keine Aussage über Eigenschaften von M.

Beispiele:

▶ Ist es entscheidbar, ob *M* höchstens 100 Zustände hat?

Der Satz von Rice ist hier **nicht** anwendbar.

(Das Problem ist sogar entscheidbar.)

Der Satz von Rice lässt sich auf Eigenschaften von L(M) bzw. der von M berechneten Funktion anwenden, aber er macht keine Aussage über Eigenschaften von M.

Beispiele:

- ▶ Ist es entscheidbar, ob M höchstens 100 Zustände hat?
 - Der Satz von Rice ist hier nicht anwendbar
 - (Das Problem ist sogar entscheidbar.)
- ▶ Ist es entscheidbar, ob M für jede Eingabe nach 1000 Schritten anhält?
 - Ir Der Satz von Rice ist hier **nicht** anwendbar.
 - (Das Problem ist sogar entscheidbar.)

Der Satz von Rice lässt sich auf Eigenschaften von L(M) bzw. der von M berechneten Funktion anwenden, aber er macht keine Aussage über Eigenschaften von M.

Beispiele:

- ▶ Ist es entscheidbar, ob M höchstens 100 Zustände hat?
 - Der Satz von Rice ist hier nicht anwendbar
 - (Das Problem ist sogar entscheidbar.)
- ▶ Ist es entscheidbar, ob M für jede Eingabe nach 1000 Schritten anhält?
 - Ir Der Satz von Rice ist hier **nicht** anwendbar.
 - (Das Problem ist sogar entscheidbar.)
- ▶ Ist es entscheidbar, ob M für höchstens 50 verschiedene Eingaben anhält?
 - per Satz von Rice ist anwendbar, da die Eigenschaft auch etwas über die berechnete Funktion aussagt (sie soll für höchstens 50 Eingaben definiert sein). (Das Problem ist dann unentscheidbar.)