Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

9b

Unentscheidbarkeit und das spezielle Halteproblem

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Entscheidbarkeit

Definition

Eine Sprache L ist entscheidbar, wenn es einen Algorithmus gibt, der bei Eingabe eines Wortes w in endlicher Zeit feststellt, ob $w \in L$ gilt oder nicht.

Entscheidbarkeit

Definition

Eine Sprache L ist entscheidbar, wenn es einen Algorithmus gibt, der bei Eingabe eines Wortes w in endlicher Zeit feststellt, ob $w \in L$ gilt oder nicht.

Präziser:

Definition

Eine Sprache $L \subseteq \Sigma^*$ ist entscheidbar, wenn die charakteristische Funktion von L,

$$\chi_{L}:\Sigma^{*}\rightarrow\{0,1\}$$
 mit

$$\chi_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ 0 & \text{sonst} \end{cases}$$

berechenbar ist.

Der χ_I -berechnende Algorithmus terminiert in jedem Fall und liefert ein Ergebnis.

Semi-Entscheidbarkeit

Definition

Eine Sprache L ist semi-entscheidbar, falls $\chi'_{l}: \Sigma^* \to \{0,1\}$ mit

$$\chi'_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undefiniert} & \text{sonst} \end{cases}$$

berechenbar ist.

Der χ'_I -berechnende Algorithmus terminiert nur, falls $w \in L$, und läuft anderenfalls endlos.

Zusammenhang zwischen Entscheidbarkeit und Semi-Entscheidbarkeit

Satz

Eine Sprache L ist genau dann entscheidbar, wenn L und \overline{L} jeweils semi-entscheidbar sind.

Zusammenhang zwischen Entscheidbarkeit und Semi-Entscheidbarkeit

Satz

Eine Sprache L ist genau dann entscheidbar, wenn L und \overline{L} jeweils semi-entscheidbar sind.

Beweis

 \implies Konstruiere aus DTM, die χ_L berechnet, zwei DTMs, die χ_L' und χ_T' berechnen.

Zusammenhang zwischen Entscheidbarkeit und Semi-Entscheidbarkeit

Satz

Eine Sprache L ist genau dann entscheidbar, wenn L und \overline{L} jeweils semi-entscheidbar sind.

Beweis

- \implies Konstruiere aus DTM, die χ_L berechnet, zwei DTMs, die χ_L' und χ_T' berechnen.
- \leftarrow Gegeben seien DTMs M_L und $M_{\overline{L}}$, die χ'_L und $\chi'_{\overline{L}}$ berechnen.

Grundgedanke: Lasse M_L und M_T parallel laufen.

Konstruiere eine DTM, die χ_L berechnet:

- 1 Starte mit i = 1
- 2. Simuliere i Schritte von M_i .
- 3. Wenn diese akzeptiert (mit Ausgabe 1), dann akzeptiere mit Ausgabe 1.
- 4. Ansonsten simuliere i Schritte von $M_{\overline{L}}$.
- 5. Wenn diese akzeptiert (mit Ausgabe 1), dann akzeptiere mit Ausgabe 0.
- 6 Ansonsten erhöhe i um 1 und starte von neuem

Korollar

Wenn L entscheidbar ist, dann ist auch \overline{L} entscheidbar.

Korollar

Wenn L entscheidbar ist, dann ist auch \overline{L} entscheidbar.

Beweis Da L entscheidbar ist, sind L und \overline{L} semi-entscheidbar.

Korollar

Wenn L entscheidbar ist, dann ist auch \overline{L} entscheidbar.

Beweis Da L entscheidbar ist, sind L und \overline{L} semi-entscheidbar.

Daher sind $\overline{\overline{L}} = L$ und \overline{L} semi-entscheidbar.

Korollar

Wenn L entscheidbar ist, dann ist auch \overline{L} entscheidbar

Beweis Da L entscheidbar ist, sind L und \overline{L} semi-entscheidbar.

Daher sind $\overline{\overline{L}} = L$ und \overline{L} semi-entscheidbar.

Daher ist \overline{L} entscheidbar.

Rekursive Aufzählbarkeit

Definition

Eine Sprache $L \subseteq \Sigma^*$ heißt rekursiv aufzählbar, falls

- $ightharpoonup L = \emptyset$ oder
- ▶ es eine totale berechenbare Funktion $f : \mathbb{N} \to \Sigma^*$ gibt, sodass $L = \bigcup_{i \in \mathbb{N}} f(i)$. Man sagt dann "f zählt L auf".

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Konstruiere eine 2-Band-Turingmaschine M, die n in Binärzahldarstellung auf das Eingabeband erhält.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Konstruiere eine 2-Band-Turingmaschine M, die n in Binärzahldarstellung auf das Eingabeband erhält.

M erzeugt auf dem anderen Band das leere Wort.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Konstruiere eine 2-Band-Turingmaschine M, die n in Binärzahldarstellung auf das Eingabeband erhält.

M erzeugt auf dem anderen Band das leere Wort.

Anschließend zählt M die Zahl auf dem Eingabeband um 1 herunter und fügt bei jedem Herunterzählen ein a hinzu.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Konstruiere eine 2-Band-Turingmaschine M, die n in Binärzahldarstellung auf das Eingabeband erhält.

M erzeugt auf dem anderen Band das leere Wort.

Anschließend zählt M die Zahl auf dem Eingabeband um 1 herunter und fügt bei jedem Herunterzählen ein a hinzu.

Dies wird wiederholt bis auf dem Eingabeband 0 steht.

Lemma

Die Sprache Σ^* ist rekursiv aufzählbar.

Beweis Wir zeigen nur den Fall $|\Sigma| = 1$. Sei $\Sigma = \{a\}$ und $n \in \mathbb{N}$.

Konstruiere eine 2-Band-Turingmaschine M, die n in Binärzahldarstellung auf das Eingabeband erhält.

M erzeugt auf dem anderen Band das leere Wort.

Anschließend zählt M die Zahl auf dem Eingabeband um 1 herunter und fügt bei jedem Herunterzählen ein a hinzu.

Dies wird wiederholt bis auf dem Eingabeband 0 steht.

Dann steht auf dem anderen Band
$$f(n) = \underbrace{a \cdots a}_{n}$$
.

Rekursiv aufzählbar = semi-entscheidbar

Satz

Eine Sprache ist genau dann rekursiv aufzählbar, wenn sie semi-entscheidbar ist.

Rekursiv aufzählbar = semi-entscheidbar

Satz

Eine Sprache ist genau dann rekursiv aufzählbar, wenn sie semi-entscheidbar ist.

Beweis

```
\implies Sei f die totale berechenbare Funktion, die L aufzählt.
     Dann berechnet der folgende Algorithmus \chi'_{l}(w):
          für i = 0, 1, 2, 3, ... tue
            wenn f(i) = w dann
               stoppe und gib 1 aus
            Ende
```

Ende

Rekursiv aufzählbar = semi-entscheidbar

Satz

Eine Sprache ist genau dann rekursiv aufzählbar, wenn sie semi-entscheidbar ist.

Beweis

```
\implies Sei f die totale berechenbare Funktion, die L aufzählt.
    Dann berechnet der folgende Algorithmus \chi'_{l}(w):
         für i = 0, 1, 2, 3, ... tue
            wenn f(i) = w dann
              stoppe und gib 1 aus
            Ende
          Ende
Siehe Skript.
```

Die folgenden Eigenschaften sind äquivalent:

► *L* ist vom Typ 0.

- L ist vom Typ 0.
- L ist semi-entscheidbar.

- L ist vom Typ 0.
- L ist semi-entscheidbar.
- L ist rekursiv aufzählbar.

- L ist vom Typ 0.
- L ist semi-entscheidbar.
- L ist rekursiv aufzählbar.
- Es gibt eine Turingmaschine M, die L akzeptiert (d.h. L(M) = L).

- L ist vom Tvp 0.
- L ist semi-entscheidbar.
- L ist rekursiv aufzählbar.
- ▶ Es gibt eine Turingmaschine M, die L akzeptiert (d.h. L(M) = L).
- $\triangleright \chi'_i$ ist turingberechenbar.

Rekursiv aufzählbar ≠ abzählbar

Eine Sprache L ist abzählbar, wenn es eine totale Funktion $f: \mathbb{N} \to L$ gibt, sodass $\bigcup_{i \in \mathbb{N}} f(i) = L$.

Beachte: Abzählbarkeit fordert nicht, dass f berechenbar ist.

Ziel: Stelle Turingmaschinenbeschreibung als natürliche Zahl in Binärzahldarstellung dar.

Andere Turingmaschinen können die Beschreibung als Eingabe erhalten. erzeugen usw.

Sei $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine DTM mit $\Sigma = \{0, 1\}$ und

- $\Gamma = \{a_0, \ldots, a_k\}$, wobei $a_0 = \square$, $a_1 = \#$, $a_2 = 0$, $a_3 = 1$
- $ightharpoonup Z = \{z_0, ..., z_n\}$
- ► $E = \{z_n\}$

Sei $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine DTM mit $\Sigma = \{0, 1\}$ und

$$ightharpoonup \Gamma = \{a_0, \ldots, a_k\}$$
, wobei $a_0 = \square$, $a_1 = \#$, $a_2 = 0$, $a_3 = 1$

$$ightharpoonup Z = \{z_0, \ldots, z_n\}$$

►
$$E = \{z_n\}$$

Für $\delta(z_p, a_i) = (z_q, a_i, D)$ erzeuge Wort über Alphabet $\{0, 1, \#\}$:

$$##bin(p)#bin(i)#bin(q)#bin(j)#bin(D_m)$$

mit $D_m = 0$, falls D = L, $D_m = 1$, falls D = R, $D_m = 2$, falls D = N.

Sei $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine DTM mit $\Sigma = \{0, 1\}$ und

$$ightharpoonup \Gamma = \{a_0, \ldots, a_k\}$$
, wobei $a_0 = \square$, $a_1 = \#$, $a_2 = 0$, $a_3 = 1$

$$ightharpoonup Z = \{z_0, \ldots, z_n\}$$

►
$$E = \{z_n\}$$

Für $\delta(z_p, a_i) = (z_q, a_i, D)$ erzeuge Wort über Alphabet $\{0, 1, \#\}$:

$$\#\#bin(p)\#bin(i)\#bin(q)\#bin(j)\#bin(D_m)$$

mit
$$D_m = 0$$
, falls $D = L$, $D_m = 1$, falls $D = R$, $D_m = 2$, falls $D = N$.

Für δ schreibe alle δ -Wörter hintereinander.

Sei $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine DTM mit $\Sigma = \{0, 1\}$ und

$$ightharpoonup \Gamma = \{a_0, \ldots, a_k\}$$
, wobei $a_0 = \square$, $a_1 = \#$, $a_2 = 0$, $a_3 = 1$

$$ightharpoonup Z = \{z_0, \ldots, z_n\}$$

►
$$E = \{z_n\}$$

Für $\delta(z_p, a_i) = (z_q, a_j, D)$ erzeuge Wort über Alphabet $\{0, 1, \#\}$:

$$\#\#bin(p)\#bin(i)\#bin(q)\#bin(j)\#bin(D_m)$$

mit
$$D_m = 0$$
, falls $D = L$, $D_m = 1$, falls $D = R$, $D_m = 2$, falls $D = N$.

Für δ schreibe alle δ -Wörter hintereinander.

Schließlich: Kodiere Alphabet $\{0, 1, \#\}$ durch $\{0 \mapsto 00, 1 \mapsto 01, \# \mapsto 11\}$. Wende dies auf die Kodierung von δ an.

Sei $(Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine DTM mit $\Sigma = \{0, 1\}$ und

$$ightharpoonup \Gamma = \{a_0, \ldots, a_k\}$$
, wobei $a_0 = \square$, $a_1 = \#$, $a_2 = 0$, $a_3 = 1$

$$ightharpoonup Z = \{z_0, \ldots, z_n\}$$

►
$$E = \{z_n\}$$

Für $\delta(z_p, a_i) = (z_q, a_j, D)$ erzeuge Wort über Alphabet $\{0, 1, \#\}$:

$$\#\#bin(p)\#bin(i)\#bin(q)\#bin(j)\#bin(D_m)$$

mit
$$D_m = 0$$
, falls $D = L$, $D_m = 1$, falls $D = R$, $D_m = 2$, falls $D = N$.

Für δ schreibe alle δ -Wörter hintereinander.

Schließlich: Kodiere Alphabet $\{0,1,\#\}$ durch $\{0\mapsto 00,1\mapsto 01,\#\mapsto 11\}$. Wende dies auf die Kodierung von δ an.

Wir bezeichnen mit w_M die so kodierte DTM M.

- Nicht jedes Wort über {0, 1} entspricht der Kodierung einer DTM.
- ightharpoonup Sei \widehat{M} eine beliebige aber feste DTM.
- Definiere für jedes $w \in \{0, 1\}^*$ die zugehörige DTM M_w :

$$M_w := egin{cases} M & ext{falls } w = w_M \ \widehat{M} & ext{sonst} \end{cases}$$

Spezielles Halteproblem

Definition

Das spezielle Halteproblem ist die Sprache

$$K := \{ w \in \{0, 1\}^* \mid M_w \text{ hält für Eingabe } w \}$$

Satz

Das spezielle Halteproblem ist nicht entscheidbar (und damit unentscheidbar).

Satz

Das spezielle Halteproblem ist nicht entscheidbar (und damit unentscheidbar).

Beweis Durch Widerspruch. Wir nehmen an, dass K entscheidbar ist.

Satz

Das spezielle Halteproblem ist nicht entscheidbar (und damit unentscheidbar).

Beweis Durch Widerspruch. Wir nehmen an, dass K entscheidbar ist.

Dann ist χ_K berechenbar, und es gibt eine DTM M, die χ_K berechnet.

Satz

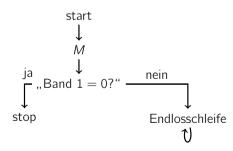
Das spezielle Halteproblem ist nicht entscheidbar (und damit unentscheidbar).

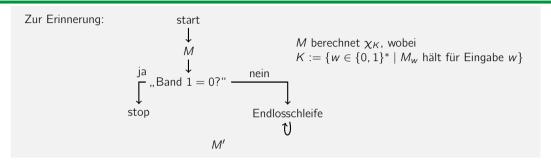
Beweis Durch Widerspruch, Wir nehmen an, dass K entscheidbar ist.

Dann ist χ_K berechenbar, und es gibt eine DTM M, die χ_K berechnet.

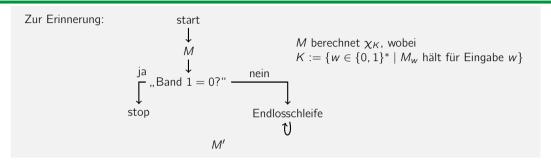
Konstruiere M' wie folgt:

- 1 M' lässt M ablaufen
- 2. Wenn M mit 0 auf dem Band endet. dann akzeptiert M'.
- 3. Wenn M mit 1 auf dem Band endet. dann läuft M' in eine Endlosschleife

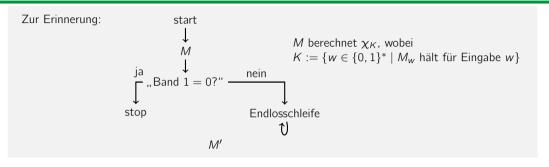




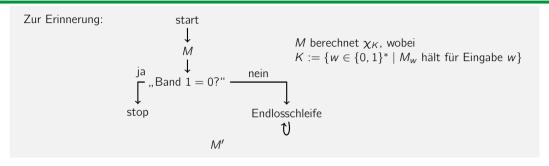
Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$:



Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$: M' hält für Eingabe $w_{M'}$

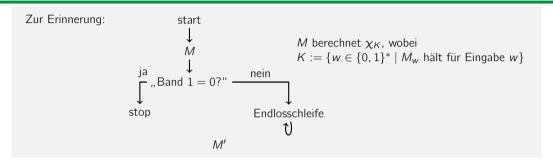


Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$: M' hält für Eingabe $w_{M'}$ g.d.w. M angesetzt auf $w_{M'}$ gibt 0 aus



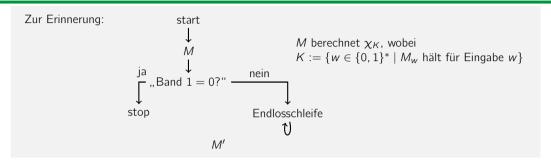
Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$:

M' hält für Eingabe $w_{M'}$ g.d.w. M angesetzt auf $w_{M'}$ gibt 0 aus $g.d.w. \chi_{K}(w_{M'}) = 0$



Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$:

M' hält für Eingabe $w_{M'}$ g.d.w. M angesetzt auf $w_{M'}$ gibt 0 aus q.d.w. $\chi_K(w_{M'}) = 0$ $a.d.w. w_{M'} \notin K$



Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$:

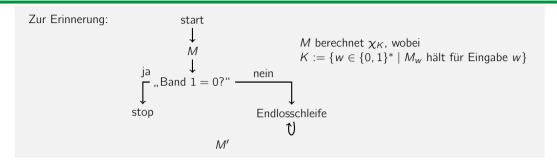
M' hält für Eingabe $w_{M'}$

g.d.w. M angesetzt auf $w_{M'}$ gibt 0 aus

q.d.w. $\chi_K(w_{M'}) = 0$

a.d.w. $w_{M'} \notin K$

g.d.w. M' hält nicht für Eingabe $w_{M'}$



Beweis (Fortsetzung) Betrachte nun M' auf der Eingabe $w_{M'}$:

M' hält für Eingabe $w_{M'}$

g.d.w. M angesetzt auf $w_{M'}$ gibt 0 aus

q.d.w. $\chi_K(w_{M'}) = 0$

 $a.d.w. w_{M'} \notin K$

q.d.w. M' hält nicht für Eingabe $w_{M'}$

Beweis (Fortsetzung) Es gilt also:

M' hält für Eingabe $w_{M'}$ q.d.w. M' hält nicht für Eingabe $w_{M'}$.

Widerspruch. K ist daher nicht entscheidbar, sondern unentscheidbar.

Beweis (Fortsetzung) Es gilt also:

M' hält für Eingabe $w_{M'}$ g.d.w. M' hält nicht für Eingabe $w_{M'}$.

Widerspruch, K ist daher nicht entscheidbar, sondern unentscheidbar.

Der Beweis, dass K unentscheidbar ist, verwendet ein Diagonalisierungsargument, das wir gleich genauer erläutern.

Alternativer Beweis

		w_1	W_2	W_3	
M_{w}	'n	ja	nein	ja	
M_w	2	nein	nein	ja	
M_w M_w	3	ја	nein	ја	

Alternativer Beweis

	w_1	W_2	W_3	
M_{w_1}	ja	nein	ja	
M_{w_2}	nein	nein	ja	
$M_{w_1} \ M_{w_2} \ M_{w_3}$	ја	nein	ja	
M_{w_D}				

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst.

Alternativer Beweis

	w_1	W_2	W_3	
M_{w_1}	ja	nein	ja	
M_{w_2}	nein	nein	ja	
$M_{w_1} \ M_{w_2} \ M_{w_3}$	ја	nein	ja	
M_{w_D}	nein			

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst. Sei $D = \overline{K} = \{w_i \mid M_{w_i} \text{ hält nicht für Eingabe } w_i\}.$

Alternativer Beweis

	w_1	W_2	W ₃	
M_{w_1}	ja	nein	ja	
M_{w_2}	nein	nein	ja	
$M_{w_1} \ M_{w_2} \ M_{w_3}$	ја	nein	ja	
M_{w_D}	nein	ja		

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst. Sei $D = \overline{K} = \{w_i \mid M_{w_i} \text{ hält nicht für Eingabe } w_i\}.$

Wir nehmen an, dass w_D die Beschreibung von DTM M_{w_D} ist, die χ_D berechnet.

Alternativer Beweis

	w_1	W_2	W_3	
M_{w_1}		nein	ja	
M_{w_2}	nein	nein	ja	
M_{w_1} M_{w_2} M_{w_3}	ja	nein	ja	
M_{w_D}	nein	ja	nein	

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst.

Sei $D = \overline{K} = \{w_i \mid M_{w_i} \text{ hält nicht für Eingabe } w_i\}.$

Wir nehmen an, dass w_D die Beschreibung von DTM M_{w_D} ist, die χ_D berechnet.

Der Eintrag in Zeile M_{w_D} und Spalte w_D ist ja g.d.w. der Eintrag nein ist. Widerspruch. $D = \overline{K}$ und K sind daher nicht entscheidbar.

Alternativer Beweis

	w_1	W_2	W_3	 W_D
M_{w_1}	ja	nein	ja	
$M_{w_1} \ M_{w_2} \ M_{w_3}$	nein	nein	ja	
M_{w_3}	ja	nein	ja	
M_{w_D}	nein	ja	nein	

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst.

Sei $D = \overline{K} = \{w_i \mid M_{w_i} \text{ hält nicht für Eingabe } w_i\}.$

Wir nehmen an, dass w_D die Beschreibung von DTM M_{w_D} ist, die χ_D berechnet.

Der Eintrag in Zeile M_{w_D} und Spalte w_D ist ja g.d.w. der Eintrag nein ist. Widerspruch. $D = \overline{K}$ und K sind daher nicht entscheidbar.

Alternativer Beweis

	w_1	W_2	W_3	 W_D
M_{w_1}	ja	nein	ja	
M_{w_2}	nein	nein	ja	
$M_{w_1} \ M_{w_2} \ M_{w_3}$	ja	nein	ja	
M_{w_D}	nein	ja	nein	 ??

Eintrag in Zeile i und Spalte j: ja, wenn M_{w_i} bei Eingabe w_i akzeptiert, nein sonst.

Sei $D = \overline{K} = \{w_i \mid M_{w_i} \text{ hält nicht für Eingabe } w_i\}.$

Wir nehmen an, dass w_D die Beschreibung von DTM M_{w_D} ist, die χ_D berechnet.

Der Eintrag in Zeile M_{w_D} und Spalte w_D ist ja g.d.w. der Eintrag nein ist. Widerspruch. $D = \overline{K}$ und K sind daher nicht entscheidbar.