Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

7b

Deterministische Kellerautomaten

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025
Basierend auf Folien von PD Dr. David Sabel

DPDAs und deterministisch kontextfreie Sprachen

- ▶ Deterministisch kontextfreie Sprachen sind definiert durch deterministische Kellerautomaten mit Akzeptanz durch Endzustände. (Akzeptanz durch leeren Keller wäre schwächer.)
- \triangleright ε -Übergänge sind erlaubt, aber nur wenn es keinen anderen Übergang (mit demselben Kellersymbol und einem beliebigen Terminalzeichen) gibt.

DPDAs und deterministisch kontextfreie Sprachen

- ▶ Deterministisch kontextfreie Sprachen sind definiert durch deterministische Kellerautomaten mit Akzeptanz durch Endzustände. (Akzeptanz durch leeren Keller wäre schwächer.)
- \triangleright ε -Übergänge sind erlaubt, aber nur wenn es keinen anderen Übergang (mit demselben Kellersymbol und einem beliebigen Terminalzeichen) gibt.

Definition

Ein Kellerautomat mit Endzuständen $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ ist deterministisch (ein DPDA) wenn für alle $(z, a, A) \in Z \times \Sigma \times \Gamma$ gilt

$$|\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \le 1$$

Die von DPDAs akzeptierten Sprachen heißen deterministisch kontextfrei.

Satz

Die Sprache $\{w\$\overline{w} \mid w \in \{a, b\}^*\}$ ist deterministisch kontextfrei.

Satz

Die Sprache $\{w\$\overline{w} \mid w \in \{a, b\}^*\}$ ist deterministisch kontextfrei.

Beweis Betrachte den DPDA $M = (\{z_0, z_1, z_2\}, \{a, b, \$\}, \{\#, A, B\}, \delta, z_0, \#, \{z_2\})$ mit

$$\begin{array}{ll} \delta(z_{0}, a, \#) = \{(z_{0}, A\#)\} & \delta(z_{0}, \$, \#) = \{(z_{1}, \#)\} \\ \delta(z_{0}, b, \#) = \{(z_{0}, B\#)\} & \delta(z_{0}, \$, A) = \{(z_{1}, A)\} \\ \delta(z_{0}, a, A) = \{(z_{0}, AA)\} & \delta(z_{0}, \$, B) = \{(z_{1}, B)\} \\ \delta(z_{0}, b, A) = \{(z_{0}, BA)\} & \delta(z_{1}, a, A) = \{(z_{1}, \varepsilon)\} \\ \delta(z_{0}, a, B) = \{(z_{0}, AB)\} & \delta(z_{1}, b, B) = \{(z_{1}, \varepsilon)\} \\ \delta(z_{0}, b, B) = \{(z_{0}, BB)\} & \delta(z_{1}, \varepsilon, \#) = \{(z_{2}, \varepsilon)\} \end{array}$$

und
$$\delta(z_i, c, C) = \emptyset$$
 sonst (für $c \in \{a, b, \$, \varepsilon\}$).

Satz

Die Sprache $\{w\$\overline{w} \mid w \in \{a, b\}^*\}$ ist deterministisch kontextfrei.

Beweis Betrachte den DPDA $M = (\{z_0, z_1, z_2\}, \{a, b, \$\}, \{\#, A, B\}, \delta, z_0, \#, \{z_2\})$ mit

$$\delta(z_0, a, \#) = \{(z_0, A\#)\}
\delta(z_0, b, \#) = \{(z_0, B\#)\}
\delta(z_0, a, A) = \{(z_0, AA)\}
\delta(z_0, b, A) = \{(z_0, BA)\}
\delta(z_0, a, B) = \{(z_0, BA)\}
\delta(z_0, a, B) = \{(z_0, AB)\}
\delta(z_0, b, B) = \{(z_0, BB)\}
\delta(z_1, a, A) = \{(z_1, \varepsilon)\}
\delta(z_1, b, B) = \{(z_1, \varepsilon)\}
\delta(z_1, \varepsilon, \#) = \{(z_2, \varepsilon)\}$$

und
$$\delta(z_i, c, C) = \emptyset$$
 sonst (für $c \in \{a, b, \$, \epsilon\}$).

Beachte: $\{w\overline{w} \mid w \in \{a,b\}^*\}$ ist nicht deterministisch kontextfrei aber kontextfrei.

$$(\#, a) : A\#, \quad (\#, b) : B\#,$$
 $(A, a) : AA, \quad (A, b) : BA,$
 $(B, a) : AB, \quad (B, b) : BB$

$$(\#, \$) : \#, \quad (A, \$) : A, \quad (B, \$) : B$$

$$(\#, \varepsilon) : \varepsilon$$

Weiteres Beispiel für einen DPDA

Satz

Die Sprache $\{a^i b^i \mid i \in \mathbb{N}_{>0}\}$ ist deterministisch kontextfrei.

Weiteres Beispiel für einen DPDA

Satz

Die Sprache $\{a^i b^i \mid i \in \mathbb{N}_{>0}\}$ ist deterministisch kontextfrei.

Beweis: Betrachte den DPDA $M = (\{z_0, z_1, z_2\}, \{a, b\}, \{\#, B\}, \delta, z_0, \#, \{z_2\})$ mit

$$\delta(z_0, a, \#) = \{(z_0, B\#)\}$$

$$\delta(z_0, a, B) = \{(z_0, BB)\}$$

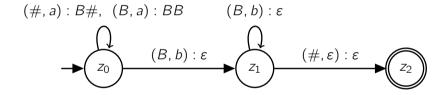
$$\delta(z_0, b, B) = \{(z_1, \varepsilon)\}$$

$$\delta(z_1, b, B) = \{(z_1, \varepsilon)\}$$

$$\delta(z_1, \varepsilon, \#) = \{(z_2, \varepsilon)\}$$

und $\delta(z_i, c, A) = \emptyset$ sonst (für $c \in \{a, b, \varepsilon\}$).

Weiteres Beispiel für einen DPDA



Theorem

- 1. Für deterministisch kontextfreie Sprachen gibt es eindeutige Grammatiken.
- 2. Deterministisch kontextfreie Sprachen sind unter Komplementbildung abgeschlossen.

Theorem

- 1. Für deterministisch kontextfreie Sprachen gibt es eindeutige Grammatiken.
- 2. Deterministisch kontextfreie Sprachen sind unter Komplementbildung abgeschlossen.

Beweis Siehe Literatur.

Satz

Die deterministischen kontextfreien Sprachen sind nicht abgeschlossen bezüglich Vereinigung und Schnitt.

Beweis

Schnitt: Die Sprachen $L_1 = \{a^nb^nc^m \mid n, m \in \mathbb{N}_{>0}\}$ und $L_2 = \{a^nb^mc^m \mid n, m \in \mathbb{N}_{>0}\}$ sind deterministisch kontextfrei.

Satz

Die deterministischen kontextfreien Sprachen sind nicht abgeschlossen bezüglich Vereinigung und Schnitt.

Beweis

Schnitt: Die Sprachen $L_1 = \{a^nb^nc^m \mid n, m \in \mathbb{N}_{>0}\}$ und $L_2 = \{a^nb^mc^m \mid n, m \in \mathbb{N}_{>0}\}$ sind deterministisch kontextfrei. $L_1 \cap L_2 = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Satz

Die deterministischen kontextfreien Sprachen sind nicht abgeschlossen bezüglich Vereinigung und Schnitt.

Beweis

► Vereinigung: Durch Widerspruch. Nehme an, die deterministischen kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung.

Satz

Die deterministischen kontextfreien Sprachen sind nicht abgeschlossen bezüglich Vereinigung und Schnitt.

Beweis

► Vereinigung: Durch Widerspruch. Nehme an, die deterministischen kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung.

Da die deterministischen kontextfreien Sprachen auch abgeschlossen bezüglich Komplement sind, folgt aus $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$, dass die deterministischen kontextfreien Sprachen abgeschlossen bezüglich Schnitt sind. Widerspruch.

Satz

Der Schnitt einer kontextfreien Sprachen L mit einer regulären Sprache L' ist kontextfrei. Wenn L deterministisch kontextfrei ist, dann ist der Schnitt das auch.

Satz

Der Schnitt einer kontextfreien Sprachen L mit einer regulären Sprache L' ist kontextfrei. Wenn L deterministisch kontextfrei ist, dann ist der Schnitt das auch.

Beweis Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ ein PDA mit Endzuständen mit L(M) = L und $M' = (Z', \Sigma, \delta', z'_0, E')$ ein DFA mit L(M') = L'. Konstruiere PDA mit Endzuständen: $M'' = (Z \times Z', \Sigma, \Gamma, \delta'', (z_0, z'_0), \#, E \times E')$ mit

- $((z_k, z_k'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), a, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, a, A) \text{ und } \delta'(z_i', a) = z_k'$
- $((z_k, z_i'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), \varepsilon, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, \varepsilon, A).$

Satz

Der Schnitt einer kontextfreien Sprachen L mit einer regulären Sprache L' ist kontextfrei. Wenn L deterministisch kontextfrei ist, dann ist der Schnitt das auch.

Beweis Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ ein PDA mit Endzuständen mit L(M) = L und $M' = (Z', \Sigma, \delta', z'_0, E')$ ein DFA mit L(M') = L'. Konstruiere PDA mit Endzuständen: $M'' = (Z \times Z', \Sigma, \Gamma, \delta'', (z_0, z'_0), \#, E \times E')$ mit

- $((z_k, z_k'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), a, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, a, A) \text{ und } \delta'(z_i', a) = z_k'$
- $((z_k, z_i'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), \varepsilon, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, \varepsilon, A).$
- 1. $L(M'') = L(M) \cap L(M')$, denn M'' simuliert M und M' gleichzeitig, und akzeptiert nur, wenn beide Automaten akzeptieren.

Satz

Der Schnitt einer kontextfreien Sprachen L mit einer regulären Sprache L' ist kontextfrei. Wenn L deterministisch kontextfrei ist, dann ist der Schnitt das auch.

Beweis Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ ein PDA mit Endzuständen mit L(M) = L und $M' = (Z', \Sigma, \delta', z'_0, E')$ ein DFA mit L(M') = L'. Konstruiere PDA mit Endzuständen: $M'' = (Z \times Z', \Sigma, \Gamma, \delta'', (z_0, z'_0), \#, E \times E')$ mit

- $((z_k, z_k'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), a, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, a, A) \text{ und } \delta'(z_i', a) = z_k'$
- $((z_k, z_i'), B_1 \cdots B_m) \in \delta''((z_i, z_i'), \varepsilon, A) \text{ falls } (z_k, B_1 \cdots B_m) \in \delta(z_i, \varepsilon, A).$
- 1. $L(M'') = L(M) \cap L(M')$, denn M'' simuliert M und M' gleichzeitig, und akzeptiert nur, wenn beide Automaten akzeptieren.
- 2. M" ist deterministisch, wenn M deterministisch ist.

Satz

Das Problem, ob eine deterministisch kontextfreie Sprache äquivalent zu einer regulären Sprache ist, ist entscheidbar.

Satz

Das Problem, ob eine deterministisch kontextfreie Sprache äquivalent zu einer regulären Sprache ist, ist entscheidbar.

Beweis Sei L_1 durch einen DPDA und L_2 durch einen DFA gegeben. Um zu zeigen, dass $L_1 = L_2$, reicht es zu zeigen, dass $L_1 \subseteq L_2$ und $L_2 \subseteq L_1$.

Satz

Das Problem, ob eine deterministisch kontextfreie Sprache äquivalent zu einer regulären Sprache ist, ist entscheidbar.

Beweis Sei L_1 durch einen DPDA und L_2 durch einen DFA gegeben. Um zu zeigen, dass $L_1 = L_2$, reicht es zu zeigen, dass $L_1 \subseteq L_2$ und $L_2 \subseteq L_1$.

Dies entspricht $L_1 \cap \overline{L_2} = \emptyset$ und $\overline{L_1} \cap L_2 = \emptyset$.

Satz

Das Problem, ob eine deterministisch kontextfreie Sprache äquivalent zu einer regulären Sprache ist, ist entscheidbar.

Beweis Sei L_1 durch einen DPDA und L_2 durch einen DFA gegeben. Um zu zeigen, dass $L_1 = L_2$, reicht es zu zeigen, dass $L_1 \subseteq L_2$ und $L_2 \subseteq L_1$.

Dies entspricht $L_1 \cap \overline{L_2} = \emptyset$ und $\overline{L_1} \cap L_2 = \emptyset$.

Beides ist entscheidbar, da

- DPDAs und DFAs abgeschlossen unter Komplementbildung sind
- die Schnittbildung zwischen einem DPDA und einem DFA durch einen DPDA konstruierbar ist
- ▶ das Leerheitsproblem für kontextfreie Grammatiken entscheidbar ist.