Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

4b

Das Pumping-Lemma für reguläre Sprachen

Prof. Dr. Jasmin Blanchette

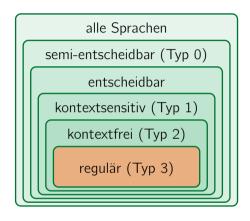
Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Hintergrund zum Pumping-Lemma

Formalismen zur Darstellung von regulären Sprachen:

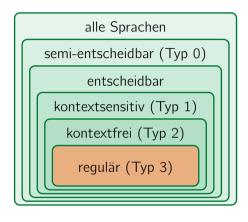
- reguläre Grammatiken
- endliche Automaten
- reguläre Ausdrücke



Hintergrund zum Pumping-Lemma

Formalismen zur Darstellung von regulären Sprachen:

- reguläre Grammatiken
- endliche Automaten
- reguläre Ausdrücke



Wie zeigt man, dass eine formale Sprache nicht regulär ist? Das Pumping-Lemma ist ein Werkzeug dafür.

Exkurs: Beweistechniken für Quantoren

Beweise für \forall und \exists variieren, je nachdem, ob die Aussage zu beweisen ist oder angenommen wird.

Auszug aus Aufgabenblatt 0:

	Um eine Aussage dieser Form zu beweisen	Wenn eine Aussage dieser Form angenommen wird
$\forall x, P(x)$	beweise, dass $P(a)$ für ein beliebiges a gilt	nimm $P(a)$ für jedes konkrete a an
$\exists x, P(x)$	beweise, dass $P(a)$ für ein beliebiges a gilt gib ein konkretes a an und beweise $P(a)$	nimm ein beliebiges a an, für das $P(a)$ gilt

Definition

Eine mit > ausgestattete Menge A hat die EGE-Eigenschaft, wenn gilt: Für jedes $a \in A$ gibt es ein $b \in A$, sodass b > a (d.h. $\forall a \in A$, $\exists b \in A$, b > a).

("EGE" steht für "exists greater element".)

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a. Wir wählen b = a + 1 und beweisen a + 1 > a, was offensichtlich gilt.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a. Wir wählen b = a + 1 und beweisen a + 1 > a, was offensichtlich gilt.

Satz

Die nicht positiven ganzen Zahlen $\mathbb{Z}_{\leq 0}$ mit > haben nicht die EGE-Eigenschaft.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a. Wir wählen b = a + 1 und beweisen a + 1 > a, was offensichtlich gilt.

Satz

Die nicht positiven ganzen Zahlen $\mathbb{Z}_{\leq 0}$ mit > haben nicht die EGE-Eigenschaft.

Beweis Durch Widerspruch. Wir nehmen an, dass $\mathbb{Z}_{\leq 0}$ die EGE-Eigenschaft hat.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a. Wir wählen b = a + 1 und beweisen a + 1 > a, was offensichtlich gilt.

Satz

Die nicht positiven ganzen Zahlen $\mathbb{Z}_{\leq 0}$ mit > haben nicht die EGE-Eigenschaft.

Beweis Durch Widerspruch. Wir nehmen an, dass $\mathbb{Z}_{\leq 0}$ die EGE-Eigenschaft hat. D.h. für jede Zahl $a \in \mathbb{Z}_{\leq 0}$ gibt es eine Zahl $b \in \mathbb{Z}_{\leq 0}$, sodass b > a.

Satz

Die natürlichen Zahlen $\mathbb N$ mit > haben die EGE-Eigenschaft.

Beweis Wir zeigen: Für jede Zahl $a \in \mathbb{N}$ gibt es eine Zahl $b \in \mathbb{N}$, sodass b > a. Sei $a \in \mathbb{N}$ beliebig. Wir müssen dann beweisen, dass es $b \in \mathbb{N}$ gibt, sodass b > a.

Wir wählen b = a + 1 und beweisen a + 1 > a, was offensichtlich gilt.

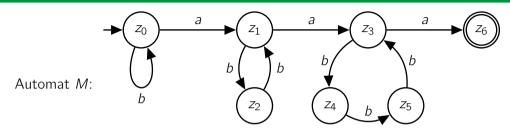
Satz

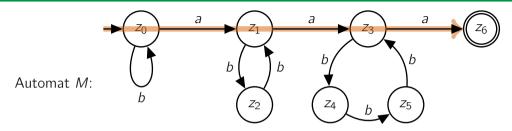
Die nicht positiven ganzen Zahlen $\mathbb{Z}_{\leq 0}$ mit > haben nicht die EGE-Eigenschaft.

Beweis Durch Widerspruch. Wir nehmen an, dass $\mathbb{Z}_{\leq 0}$ die EGE-Eigenschaft hat.

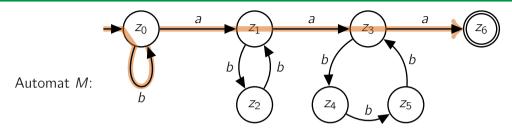
D.h. für jede Zahl $a \in \mathbb{Z}_{\leq 0}$ gibt es eine Zahl $b \in \mathbb{Z}_{\leq 0}$, sodass b > a.

Wir wählen a=0. Es gibt also eine Zahl $b\in\mathbb{Z}_{\leq 0}$, sodass b>0. Aber 0 ist die größte Zahl in $\mathbb{Z}_{\leq 0}$. Widerspruch.

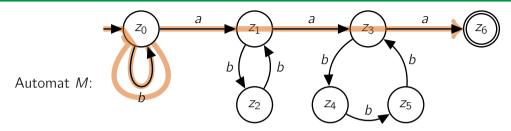




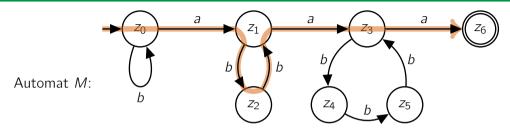
Von M erkannte Wörter der Länge 3,



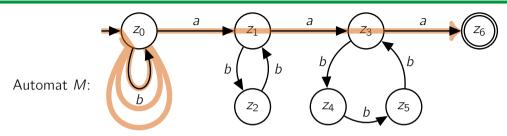
Von M erkannte Wörter der Länge 3, 4,



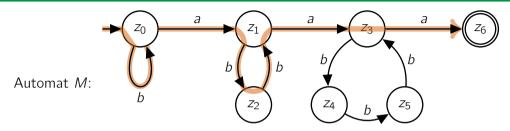
Von M erkannte Wörter der Länge 3, 4, 5,



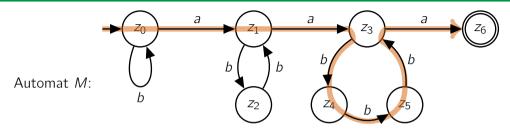
Von M erkannte Wörter der Länge 3, 4, 5,



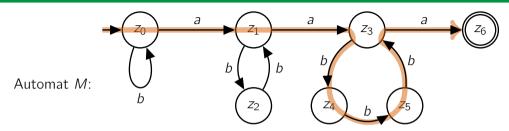
Von M erkannte Wörter der Länge 3, 4, 5, 6, ...



Von M erkannte Wörter der Länge 3, 4, 5, 6, ...



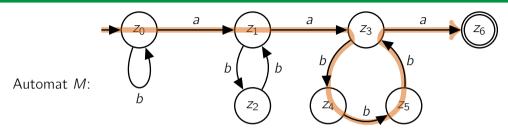
Von M erkannte Wörter der Länge 3, 4, 5, 6, ...



Von M erkannte Wörter der Länge 3, 4, 5, 6, ...

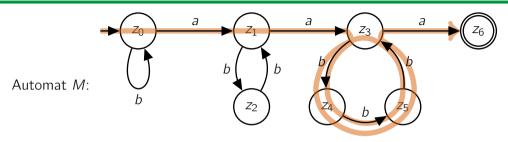
Beobachtungen:

1. Jedes Wort $z \in L(M)$ der Länge > 3 muss mindestens eine Schleife durchlaufen.



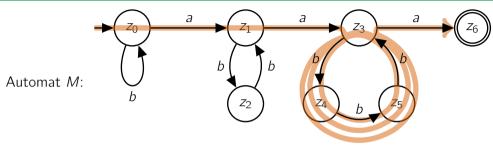
Von M erkannte Wörter der Länge 3, 4, 5, 6, ...

- 1. Jedes Wort $z \in L(M)$ der Länge > 3 muss mindestens eine Schleife durchlaufen.
- 2. Wenn die Schleife mehrfach durchgelaufen wird, wird das entsprechende Wort immer noch erkannt. D.h. Wörter in L(M) mit Länge > 3 können wir aufpumpen und verbleiben in L(M).



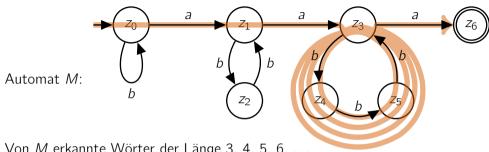
Von *M* erkannte Wörter der Länge 3, 4, 5, 6, ...

- 1. Jedes Wort $z \in L(M)$ der Länge > 3 muss mindestens eine Schleife durchlaufen.
- 2. Wenn die Schleife mehrfach durchgelaufen wird, wird das entsprechende Wort immer noch erkannt. D.h. Wörter in L(M) mit Länge > 3 können wir aufpumpen und verbleiben in L(M).



Von *M* erkannte Wörter der Länge 3, 4, 5, 6, ...

- 1. Jedes Wort $z \in L(M)$ der Länge > 3 muss mindestens eine Schleife durchlaufen.
- 2. Wenn die Schleife mehrfach durchgelaufen wird, wird das entsprechende Wort immer noch erkannt. D.h. Wörter in L(M) mit Länge > 3 können wir aufpumpen und verbleiben in L(M).

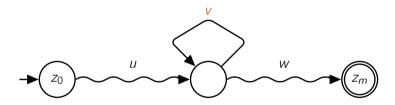


Von M erkannte Wörter der Länge 3, 4, 5, 6, ...

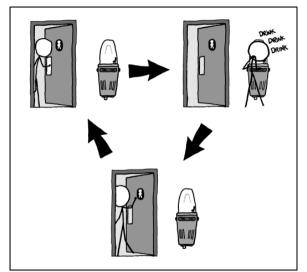
- 1. Jedes Wort $z \in L(M)$ der Länge > 3 muss mindestens eine Schleife durchlaufen.
- 2. Wenn die Schleife mehrfach durchgelaufen wird, wird das entsprechende Wort immer noch erkannt. D.h. Wörter in L(M) mit Länge > 3 können wir aufpumpen und verbleiben in L(M).

Gilt das allgemein?

Gilt das allgemein? Ja



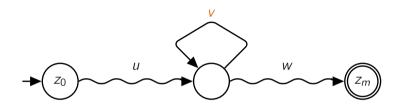
- ▶ Wenn ein DFA n Zustände hat, dann müssen akzeptierte Wörter der Länge $\geq n$ eine Schleife durchlaufen.
- Diese Wörter kann man aufpumpen: uvw, uvvw, uvvw, Man kann auch die Schleife überspringen: uw. Allgemein: uv^iw für $i \in \mathbb{N}$ liegt in der erkannten Sprache.



I AVOID DRINKING FOUNTAINS OUTSIDE BATHROOMS BECAUSE I'M AFRAID OF GETTING TRAPPED IN A LOOP.

xkcd.com/986/

Die Pumping-Eigenschaft für reguläre Sprachen



Definition

Eine Sprache L hat die Pumping-Eigenschaft (für reguläre Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat $(d.h. |z| \ge n)$, als z = uvw geschrieben werden kann, sodass gilt:

1. $|u\mathbf{v}| \leq n$

- 2. $|v| \ge 1$
- 3. für alle $i \in \mathbb{N}$: $uv^i w \in L$.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Beweis Sei L eine reguläre Sprache. Wir zeigen, dass es eine Zahl $n \in \mathbb{N}_{>0}$ gibt, sodass jedes $z \in L$ mit $|z| \ge n$ als z = uvw geschrieben werden kann, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ und für alle $i \in \mathbb{N}$.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Beweis Sei L eine reguläre Sprache. Wir zeigen, dass es eine Zahl $n \in \mathbb{N}_{>0}$ gibt, sodass jedes $z \in L$ mit $|z| \ge n$ als z = uvw geschrieben werden kann, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ und für alle $i \in \mathbb{N}$. Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA mit L(M) = L.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Beweis Sei L eine reguläre Sprache. Wir zeigen, dass es eine Zahl $n \in \mathbb{N}_{>0}$ gibt, sodass jedes $z \in L$ mit $|z| \ge n$ als z = uvw geschrieben werden kann, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ und für alle $i \in \mathbb{N}$.

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA mit L(M) = L.

Wir wählen n = |Z|. Sei $z \in L$ mit $|z| \ge n$.

Lemma (Pumping-Lemma)

Jede reguläre Sprache hat die Pumping-Eigenschaft.

Beweis Sei L eine reguläre Sprache. Wir zeigen, dass es eine Zahl $n \in \mathbb{N}_{>0}$ gibt, sodass jedes $z \in L$ mit $|z| \ge n$ als z = uvw geschrieben werden kann, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ und für alle $i \in \mathbb{N}$.

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA mit L(M) = L.

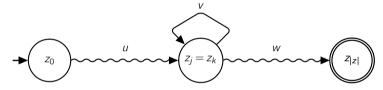
Wir wählen n = |Z|. Sei $z \in L$ mit $|z| \ge n$.

Sei $z_0, \ldots, z_{|z|}$ der Lauf für z, mit $z_{|z|} \in E$.

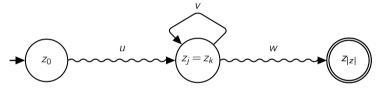
Spätestens nach Lesen von n (= |Z|) Zeichen wird einen Zustand erneut besucht.

Sei z_k (mit $k \le n$) der erste Zustand, der bereits besucht wurde.

Beweis (Fortsetzung) Daher gibt es j < k, sodass $z_k = z_j$, k ist minimal und $z = \mu \nu w$ mit

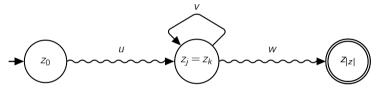


Beweis (Fortsetzung) Daher gibt es j < k, sodass $z_k = z_j$, k ist minimal und z = uvw mit



Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung:

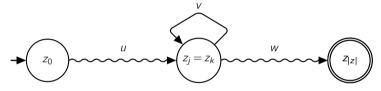
Beweis (Fortsetzung) Daher gibt es j < k, sodass $z_k = z_j$, k ist minimal und z = uvw mit



Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung:

 $|v| \ge 1$: folgt aus j < k.

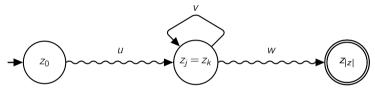
Beweis (Fortsetzung) Daher gibt es j < k, sodass $z_k = z_j$, k ist minimal und z = uvw mit



Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung:

- $|v| \ge 1$: folgt aus j < k.
- ▶ $|uv| \le n$: folgt aus $k \le n$.

Beweis (Fortsetzung) Daher gibt es j < k, sodass $z_k = z_j$, k ist minimal und z = uvw mit



Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung:

- $|v| \ge 1$: folgt aus j < k.
- ▶ $|uv| \le n$: folgt aus $k \le n$.
- $\blacktriangleright uv^iw \in L(M)$ für jedes $i \in N$: lässt sich im obigen Diagramm lesen.

Das Paradoxon der endlichen Sprachen

Endliche Sprachen sind regulär.

Warum erfüllen sie die Pumping-Eigenschaft?

Das Paradoxon der endlichen Sprachen

Endliche Sprachen sind regulär.

Warum erfüllen sie die Pumping-Eigenschaft?

Definition

Eine Sprache L hat die Pumping-Eigenschaft (für reguläre Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat (d.h. $|z| \ge n$), als z = uvw geschrieben werden kann, sodass gilt:

1. |uv| < n

- 2. $|\mathbf{v}| > 1$ 3. für alle $i \in \mathbb{N}$: $u\mathbf{v}^i w \in L$.

Das Paradoxon der endlichen Sprachen

Endliche Sprachen sind regulär.

Warum erfüllen sie die Pumping-Eigenschaft?

Definition

Eine Sprache L hat die Pumping-Eigenschaft (für reguläre Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat (d.h. $|z| \ge n$), als z = uvw geschrieben werden kann, sodass gilt:

1.
$$|uv| \leq r$$

2.
$$|v| \ge 1$$

1. $|uv| \le n$ 2. $|v| \ge 1$ 3. für alle $i \in \mathbb{N}$: $uv^i w \in L$.

Wähle *n* größer als die Länge des längsten Worts.

Dann ist die Eigenschaft trivial erfüllt.

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft \implies L ist nicht regulär

Sei L eine Sprache, die wir als nicht regulär beweisen wollen.

Pumping-Lemma:

L ist regulär $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft \implies L ist nicht regulär

Beweisstrategie für die Aussage "L ist nicht regulär":

- 1. Durch die Kontraposition reicht es zu zeigen, dass *L* die Pumping-Eigenschaft nicht hat.
- 2. Zeige dies durch Widerspruch: Nehme an, dass *L* die Pumping-Eigenschaft hat.
- 3. Leite einen Widerspruch her.
- 4. D.h. L ist nicht regulär.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Durch Widerspruch: Wir nehmen an, dass L die Pumping-Eigenschaft hat.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Durch Widerspruch: Wir nehmen an, dass L die Pumping-Eigenschaft hat.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Durch Widerspruch: Wir nehmen an, dass L die Pumping-Eigenschaft hat.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n$. Damit ist auch $|z| \ge n$ erfüllt.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Durch Widerspruch: Wir nehmen an, dass L die Pumping-Eigenschaft hat.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n$. Damit ist auch $|z| \ge n$ erfüllt.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für jedes $i \in \mathbb{N}$. Dann ist $u = a^r$, $v = a^s$ mit $r + s \le n$, $s \ge 1$ und $w = a^tb^n$ mit r + s + t = n.

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Um Nichtregularität von L zu zeigen, reicht es durch das Pumping-Lemma zu zeigen, dass L die Pumping-Eigenschaft nicht hat.

Durch Widerspruch: Wir nehmen an, dass L die Pumping-Eigenschaft hat.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n$. Damit ist auch $|z| \ge n$ erfüllt.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für jedes $i \in \mathbb{N}$. Dann ist $u = a^r$, $v = a^s$ mit $r + s \le n$, $s \ge 1$ und $w = a^tb^n$ mit r + s + t = n.

Wir betrachten das Wort uv^2w . Es gilt $uv^2w=a^ra^sa^sa^tb^n=a^{n+s}b^n\not\in L$, da $s\geq 1$. Nach Annahme gilt aber $uv^iw\in L$ für jedes $i\in \mathbb{N}$, insbesondere für i=2. Widerspruch.

Es geht kürzer:

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n$ mit $|z| \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$. Dann ist $u = a^r$, $v = a^s$ mit $r + s \le n$, $s \ge 1$ und $w = a^t b^n$ mit r + s + t = n.

Wir wählen i=2. Es gilt $uv^2w=a^ra^sa^sa^tb^n=a^{n+s}b^n\not\in L$, da $s\geq 1$. Widerspruch.

Das Pumping-Lemma als Spiel

Sei L die Sprache.

Schritte:

- 1. Der Gegner wählt die Zahl $n \in \mathbb{N}_{>0}$.
- 2. Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$.
- 4. Wir gewinnen das Spiel, wenn wir ein $i \in \mathbb{N}$ angeben können, sodass $uv^iw \notin L$.

Das Pumping-Lemma als Spiel

Sei L die Sprache.

Schritte:

- 1. Der Gegner wählt die Zahl $n \in \mathbb{N}_{>0}$.
- 2. Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvw mit $|uv| \le n$ und $|v| \ge 1$.
- 4. Wir gewinnen das Spiel, wenn wir ein $i \in \mathbb{N}$ angeben können, sodass $uv^iw \notin L$.

Wenn wir das Spiel für alle Wahlmöglichkeiten des Gegners gewinnen, dann haben wir nachgewiesen, dass L nicht regulär ist.

Das Pumping-Lemma als Spiel

Satz

Die Sprache $L = \{a^j b^j \mid j \in \mathbb{N}\}$ ist nicht regulär.

Beweis Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z \in L$ als $z = a^n b^n$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvw, sodass $|uv| \le n$ und $|v| \ge 1$. Dann ist $u = a^r$, $v = a^s$ mit $r + s \le n$, $s \ge 1$ und $w = a^t b^n$ mit r + s + t = n.
- 4. Wir wählen i=2. Es gilt $uv^2w=a^ra^sa^sa^tb^n=a^{n+s}b^n\not\in L$, da $s\geq 1$. Also gewinnen wir.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^p$, wobei p die nächste Primzahl ist, die größer gleich n ist. Wir haben $|z| = p \ge n$.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^p$, wobei p die nächste Primzahl ist, die größer gleich n ist. Wir haben $|z| = p \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$. Dann $u = a^r$, $v = a^s$ (mit $s \ge 1$) und $w = a^t$.

Satz

Die Sprache $L = \{a^p \mid p \text{ ist Primzahl}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^p$, wobei p die nächste Primzahl ist, die größer gleich n ist. Wir haben $|z| = p \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$. Dann $u = a^r$, $v = a^s$ (mit $s \ge 1$) und $w = a^t$.

Wir wählen i=p+1. Es gilt $uv^{p+1}w \not\in L$, denn $uv^{p+1}w=a^r(a^s)^{p+1}a^t=a^{r+s\cdot(p+1)+t}=a^{r+s\cdot p+s+t}=a^{s\cdot p+p}=a^{p\cdot(s+1)}$ und für $s\geq 1$ folgt, dass $p\cdot (s+1)$ keine Primzahl sein kann. Widerspruch.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^{n^2} \in L$ mit $|z| = n^2 \ge n$.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^{n^2} \in L$ mit $|z| = n^2 \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$.

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^{n^2} \in L$ mit $|z| = n^2 \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$.

Wir wählen i = 2. Wir betrachten $uv^2w = a^k$.

- ▶ $1 + n^2 \le k \text{ (denn } |v| \ge 1)$
- $ightharpoonup k \le n^2 + n \text{ (denn } |uv| \le n \text{ und daher } |v| \le n \text{)}$

Satz

Die Sprache $L = \{a^{n^2} \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^{n^2} \in L$ mit $|z| = n^2 \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$.

Wir wählen i = 2. Wir betrachten $uv^2w = a^k$.

- ▶ $1 + n^2 \le k \text{ (denn } |v| \ge 1)$
- $k \le n^2 + n$ (denn $|uv| \le n$ und daher $|v| \le n$)

D.h. wir haben $n^2 < k \le n^2 + n = (n+1) \cdot n < (n+1)^2$.

Dann kann k keine Quadratzahl sein. Daher gilt $uv^2w \notin L$. Widerspruch.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Nichtregularität zeigen mit dem Pumping-Lemma

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^n b a^n \in L$ mit $|w| = 2n + 1 \ge n$.

Nichtregularität zeigen mit dem Pumping-Lemma

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^n b a^n \in L$ mit $|w| = 2n + 1 \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^i w \in L$ für jedes $i \in \mathbb{N}$.

Nichtregularität zeigen mit dem Pumping-Lemma

Satz

Die Sprache $L = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}$ ist nicht regulär.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z = a^n b a^n \in L$ mit $|w| = 2n + 1 \ge n$.

Sei z = uvw eine beliebige Zerlegung von z, sodass $|uv| \le n$, $|v| \ge 1$ und $uv^iw \in L$ für jedes $i \in \mathbb{N}$.

Wir wählen i=0. Es gilt $uv^0w \notin L$, denn $uv^0w=a^kba^n$ mit k=n-|v|< n ist kein Palindrom. Widerspruch.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis

1. Wir zeigen, dass L die Pumping-Eigenschaft hat.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis

1. Wir zeigen, dass L die Pumping-Eigenschaft hat.

Wir wählen n = 1.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis

1. Wir zeigen, dass L die Pumping-Eigenschaft hat.

Wir wählen n = 1.

Sei $z \in L$ ein Wort mit $|z| \ge n$.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis

1. Wir zeigen, dass L die Pumping-Eigenschaft hat.

Wir wählen n = 1.

Sei $z \in L$ ein Wort mit $|z| \ge n$.

Wenn $z \in \{b, c\}^*$, zerlege z = uvw mit $u = \varepsilon$, v dem ersten Symbol von z und w dem n-1-Zeichen langen Suffix von z. Offensichtlich gilt $|v| \ge 1$, $|uv| \le n$ und $uv^iw \in \{b, c\}^* \subseteq L$ für alle $i \in \mathbb{N}$.

Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis

1. Wir zeigen, dass L die Pumping-Eigenschaft hat.

Wir wählen n = 1.

Sei $z \in L$ ein Wort mit $|z| \ge n$.

Wenn $z \in \{b, c\}^*$, zerlege z = uvw mit $u = \varepsilon$, v dem ersten Symbol von z und w dem n-1-Zeichen langen Suffix von z. Offensichtlich gilt $|v| \ge 1$, $|uv| \le n$ und $uv^iw \in \{b, c\}^* \subseteq L$ für alle $i \in \mathbb{N}$.

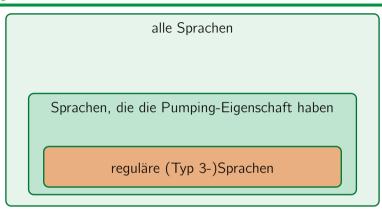
Wenn z von der Form $a^jb^kc^k$ ist und $z \notin \{b,c\}^*$, dann muss j>0 gelten und wir zerlegen z=uvw mit $u=\varepsilon$, v=a, $w=a^{j-1}b^kc^k$. Da |v|=1, $|uv|\leq n$ und $uv^iw=a^{j+i-1}b^kc^k\in L$ für alle $i\in\mathbb{N}$, hat L die Pumping-Eigenschaft.

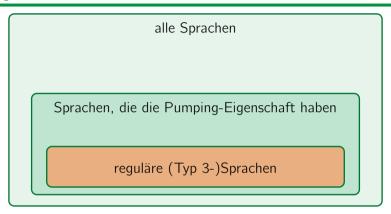
Lemma

Es gibt Sprachen, die die Pumping-Eigenschaft haben aber nicht regulär sind. Die Sprache $L = \{a^j b^k c^k \mid j, k \in \mathbb{N}\} \cup \{b, c\}^*$ ist eine solche Sprache.

Beweis (Fortsetzung)

2. Mit einer Methode, die in der nächsten Vorlesung (nur FSK) folgt, können wir beweisen, dass *L* nicht regulär ist.





Wichtige Konsequenz:

▶ Das Pumping-Lemma kann nicht verwendet werden, um zu zeigen, dass eine Sprache regulär ist.

Zusammenfassung vom Pumping-Lemma

Bezug zu Regularität:

- ▶ Das Pumping-Lemma gibt eine notwendige Bedingung für reguläre Sprachen. Sehr informell: Wörter einer regulären Sprache können an einer Stelle aufgepumpt werden, wenn sie lang genug sind.
- ▶ Das Pumping-Lemma gibt keine hinreichende Bedingung für reguläre Sprachen, d.h. Regularität kann nicht mit dem Pumping-Lemma gezeigt werden.

Anwendung:

- ightharpoonup L hat nicht die Pumping-Eigenschaft $\Longrightarrow L$ ist nicht regulär
- ▶ Dies funktioniert nicht für jede nicht reguläre Sprache.