Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

3c

Nichtdeterministische endliche Automaten mit ε -Übergängen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Informelle Kurzfassung:

ightharpoonup arepsilon-Übergänge erlauben Zustandswechsel ohne Lesen eines Zeichens. Es wird sozusagen arepsilon gelesen.

Informelle Kurzfassung:

- ightharpoonup ε -Übergänge erlauben Zustandswechsel ohne Lesen eines Zeichens. Es wird sozusagen ε gelesen.
- ► Im Zustandsgraphen erlaubt:

Informelle Kurzfassung:

- \triangleright ε -Übergänge erlauben Zustandswechsel ohne Lesen eines Zeichens. Es wird sozusagen ε gelesen.
- ▶ Im Zustandsgraphen erlaubt: z_1 ε z_2
- ► Technisch:
 - ► Ein NFA ohne ε-Übergänge hat $\delta: Z \times \Sigma \to \mathcal{P}(Z)$.
 - ► Ein NFA mit ε-Übergängen hat $\delta: Z \times (\Sigma \cup {\epsilon}) \to \mathcal{P}(Z)$.

Informelle Kurzfassung:

- ightharpoonup arepsilon-Übergänge erlauben Zustandswechsel ohne Lesen eines Zeichens. Es wird sozusagen arepsilon gelesen.
- ▶ Im Zustandsgraphen erlaubt: z_1 ε z_2
- ► Technisch:
 - ► Ein NFA ohne ε-Übergänge hat $\delta: Z \times \Sigma \to \mathcal{P}(Z)$.
 - ► Ein NFA mit ε-Übergängen hat $\delta: Z \times (\Sigma \cup {\epsilon}) \to \mathcal{P}(Z)$.
- ▶ Die Ausdruckskraft ändert sich mit ε -Übergängen nicht.
- ightharpoonup arepsilon-Übergänge machen manche Konstruktionen einfacher.

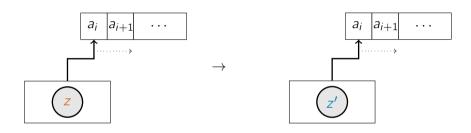
Definition eines NFA mit ε -Übergängen

Definition

Ein nichtdeterministischer endlicher Automat mit ε -Übergängen (NFA mit ε -Übergängen) ist ein 5-Tupel $M=(Z,\Sigma,\delta,S,E)$, wobei

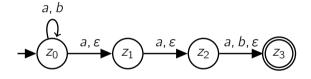
- ► Z ist eine endliche Menge von Zuständen
- ▶ Σ ist das (endliche) Eingabealphabet mit $Z \cap \Sigma = \emptyset$
- ▶ $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Z)$ ist die Überführungsfunktion
- ▶ $S \subseteq Z$ ist die Menge der Startzustände
- $ightharpoonup E \subseteq Z$ ist die Menge der Endzustände.

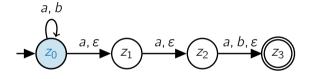
Illustration eines Zustandsübergangs mit ε

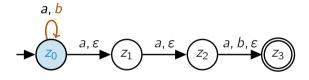


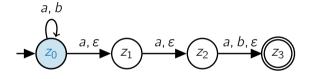
 $z' \in \delta(z, \varepsilon)$ bedeutet:

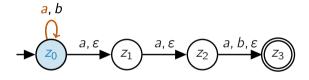
Im Zustand z darf der Automat in z' wechseln, ohne das der Lesekopf sich bewegt.

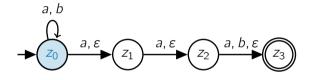


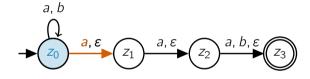


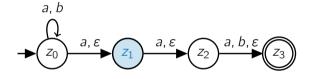


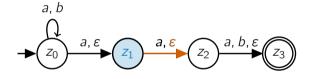


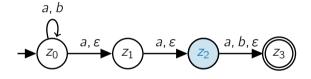


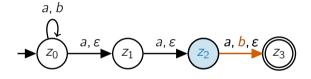


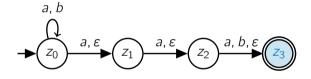


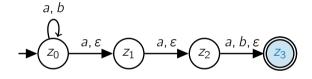












ε -Hülle

Die ε -Hülle fügt für einen Zustand alle durch ε -Übergänge erreichbaren Zustände hinzu.

Die ε -Hülle fügt für einen Zustand alle durch ε -Übergänge erreichbaren Zustände hinzu.

Definition

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε -Übergängen.

Die ε -Hülle ε -Hülle(z) eines Zustands $z \in Z$ ist definiert als die kleinste Menge von Zuständen, welche erfüllt:

- 1. $z \in \varepsilon$ -Hülle(z).
- 2. Wenn $z' \in \varepsilon$ -Hülle(z) und $z'' \in \delta(z', \varepsilon)$, dann ist auch $z'' \in \varepsilon$ -Hülle(z).

Die ε -Hülle fügt für einen Zustand alle durch ε -Übergänge erreichbaren Zustände hinzu

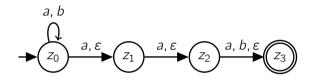
Definition

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε -Ubergängen.

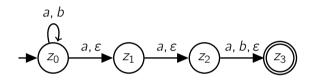
Die ε -Hülle ε -Hülle (z) eines Zustands $z \in Z$ ist definiert als die kleinste Menge von Zuständen, welche erfüllt:

- 1. $z \in \varepsilon$ -Hülle(z).
- 2. Wenn $z' \in \varepsilon$ -Hülle(z) und $z'' \in \delta(z', \varepsilon)$, dann ist auch $z'' \in \varepsilon$ -Hülle(z).

Für eine Menge $X \subseteq Z$ definieren wir ε -Hülle $(X) := \bigcup_{z \in X} \varepsilon$ -Hülle(z).



 ε -Hülle (z_0) = ? ε -Hülle (z_1) = ? ε -Hülle (z_2) = ? ε -Hülle (z_3) = ?

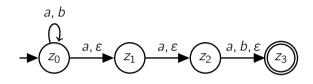


```
\varepsilon-Hülle(z_0) = \{z_0, z_1, z_2, z_3\}

\varepsilon-Hülle(z_1) = ?

\varepsilon-Hülle(z_2) = ?

\varepsilon-Hülle(z_3) = ?
```

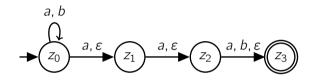


```
\varepsilon-Hülle(z_0) = {z_0, z_1, z_2, z_3}

\varepsilon-Hülle(z_1) = {z_1, z_2, z_3}

\varepsilon-Hülle(z_2) = ?

\varepsilon-Hülle(z_3) = ?
```

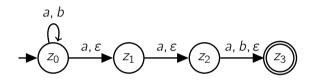


```
\varepsilon-Hülle(z_0) = {z_0, z_1, z_2, z_3}

\varepsilon-Hülle(z_1) = {z_1, z_2, z_3}

\varepsilon-Hülle(z_2) = {z_2, z_3}

\varepsilon-Hülle(z_3) = ?
```



$$\varepsilon$$
-Hülle(z_0) = { z_0 , z_1 , z_2 , z_3 }
 ε -Hülle(z_1) = { z_1 , z_2 , z_3 }
 ε -Hülle(z_2) = { z_2 , z_3 }
 ε -Hülle(z_3) = { z_3 }

Akzeptanz bei NFAs mit ε -Übergängen

Akzeptierte Sprache eines NFA mit ε -Übergängen

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε -Übergängen. Wir definieren $\widetilde{\delta}: \mathcal{P}(Z) \times \Sigma^* \to \mathcal{P}(Z)$ rekursiv durch

$$\frac{\widetilde{\delta}(X,\varepsilon) := X}{\widetilde{\delta}(X,aw) := \widetilde{\delta}(\bigcup_{z \in X} \varepsilon\text{-H\"{u}lle}(\delta(z,a)), w)}$$

8/18

Akzeptanz bei NFAs mit ε -Übergängen

Akzeptierte Sprache eines NFA mit ε -Übergängen

Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε -Übergängen. Wir definieren $\widetilde{\delta} : \mathcal{P}(Z) \times \Sigma^* \to \mathcal{P}(Z)$ rekursiv durch

$$\frac{\widetilde{\delta}(X,\varepsilon) := X}{\widetilde{\delta}(X,aw) := \widetilde{\delta}(\bigcup_{z \in X} \varepsilon\text{-H\"{u}lle}(\delta(z,a)), w)}$$

Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid \widetilde{\delta}(\varepsilon \text{-H\"{u}lle}(S), w) \cap E \neq \emptyset \}$$

Entfernen von ε -Übergängen

Intuitiver Ansatz:

1. Markiere für jeden Pfad von der Form $\downarrow z_0$ $\stackrel{\varepsilon}{\downarrow} z_1$ $\stackrel{\varepsilon}{\downarrow} \cdots$ $\stackrel{\varepsilon}{\downarrow} z_n$ den Zustand z_n als Startzustand:

Entfernen von ε -Übergängen

Intuitiver Ansatz:

- 1. Markiere für jeden Pfad von der Form → (z₀) den Zustand z_n als Startzustand:
- 2. Füge für jeden Pfad von der Form einen Übergang hinzu.

Entfernen von ε -Übergängen

Intuitiver Ansatz:

- 1. Markiere für jeden Pfad von der Form → zo den Zustand z_n als Startzustand:
- 2. Füge für jeden Pfad von der Form einen Übergang hinzu.
- 3. Entferne alle ε -Übergänge.

Sprache von NFAs mit ε -Übergängen

Satz

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Sprache von NFAs mit ε -Übergängen

Satz

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis

 \supseteq Wir zeigen zuerst, dass jede reguläre Sprache L von einem NFA mit ε -Übergängen akzeptiert wird.

Sprache von NFAs mit ε -Übergängen

Satz

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis

→ Wir zeigen zuerst, dass jede reguläre Sprache L von einem NFA mit ε -Übergängen akzeptiert wird.

L wird von einem NFA $M = (Z, \Sigma, \delta, S, E)$ ohne ε -Übergänge akzeptiert. Sei $M' = (Z, \Sigma, \delta', S, E)$ ein NFA mit ε -Übergängen, wobei

$$\delta'(z,a) := \delta(z,a) \quad \text{für } a \in \Sigma$$
$$\delta'(z,\varepsilon) := \emptyset$$

Satz

NFAs mit ε -Übergängen akzeptieren genau die regulären Sprachen.

Beweis

→ Wir zeigen zuerst, dass jede reguläre Sprache L von einem NFA mit ε -Übergängen akzeptiert wird.

L wird von einem NFA $M = (Z, \Sigma, \delta, S, E)$ ohne ε -Übergänge akzeptiert. Sei $M' = (Z, \Sigma, \delta', S, E)$ ein NFA mit ε -Übergängen, wobei

$$\delta'(z, a) := \frac{\delta(z, a)}{\delta'(z, \varepsilon)} \quad \text{für } a \in \Sigma$$
$$\delta'(z, \varepsilon) := \emptyset$$

Offensichtlich gilt L(M') = L(M) = L.

Beweis (Fortsetzung)

 \subseteq Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε-Übergängen. Wir zeigen, dass L(M) ist regulär.

Beweis (Fortsetzung)

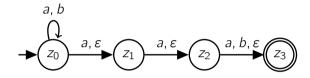
 \subseteq Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA mit ε-Übergängen. Wir zeigen, dass L(M) ist regulär.

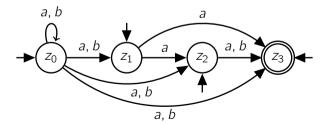
Wir konstruieren einen NFA M' ohne ε -Übergänge mit L(M') = L(M). Dann ist L(M') regulär, daher ist auch L(M) regulär.

Beweis (Fortsetzung)

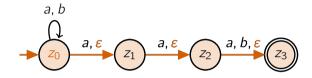
```
\subseteq Sei M = (Z, \Sigma, \delta, S, E) ein NFA mit \varepsilon-Übergängen.
    Wir zeigen, dass L(M) ist regulär.
    Wir konstruieren einen NFA M' ohne \varepsilon-Übergänge mit L(M') = L(M). Dann ist
    L(M') regulär, daher ist auch L(M) regulär.
   Sei M' = (Z, \Sigma, \delta', S', E) mit
                                              S' := \varepsilon - H \ddot{u} l l e(S)
                                       \delta'(z,a) := \varepsilon - H \ddot{u} I I e(\delta(z,a))
```

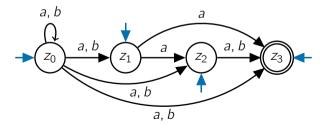
NFA M mit ε -Übergängen:



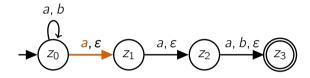


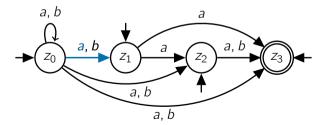
NFA M mit ε -Übergängen:



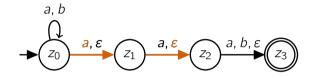


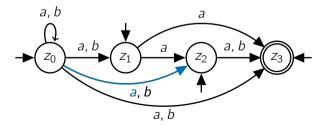
NFA M mit ε -Übergängen:



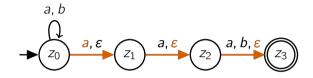


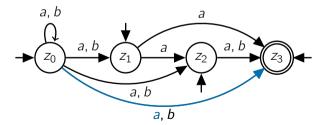
NFA M mit ε -Übergängen:





NFA M mit ε -Übergängen:





Beweis (Fortsetzung)

Wir müssen zeigen, dass L(M') = L(M), d.h. $w \in L(M')$ g.d.w. $w \in L(M)$.

```
Beweis (Fortsetzung) Wir müssen zeigen, dass L(M') = L(M), d.h. w \in L(M') g.d.w. w \in L(M') w \in L(M')
```

```
Beweis (Fortsetzung) Wir müssen zeigen, dass L(M') = L(M), d.h. w \in L(M') g.d.w. w \in L(M') g.d.w. \delta'(\varepsilon - H\ddot{u}lle(S), w) \cap E \neq \emptyset
```

```
Beweis (Fortsetzung)  \text{Wir müssen zeigen, dass } L(M') = L(M), \text{ d.h. } w \in L(M') \text{ g.d.w. } w \in L(M). \\ \frac{w \in L(M')}{\widetilde{\delta'}(\varepsilon - H \ddot{u} l l e(S), w) \cap E} \neq \emptyset \\ \frac{w \in L(M)}{\varepsilon \cdot L(M)}
```

```
Beweis (Fortsetzung)  \text{Wir müssen zeigen, dass } L(M') = L(M), \text{ d.h. } w \in L(M') \text{ g.d.w. } w \in L(M). \\ \frac{w \in L(M')}{\delta'(\varepsilon - H \ddot{u}lle(S), w) \cap E \neq \emptyset} \\ \frac{\delta(\varepsilon - H \ddot{u}lle(S), w) \cap E \neq \emptyset}{\delta(\omega - H \ddot{u}lle(S), w) \cap E \neq \emptyset} \\ \text{g.d.w. } w \in L(M)
```

Beweis (Fortsetzung)

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $\widetilde{\delta'} = \widetilde{\delta}$, d.h. $\widetilde{\delta'}(X, w) = \widetilde{\delta}(X, w)$ für alle X, w. Wir verwenden Induktion über die Wortlänge |w|.

► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.

Beweis (Fortsetzung)

- ► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- Fall w = aw': Die IH für w' ist $\widetilde{\delta}'(X, w') = \widetilde{\delta}(X, w')$.

Beweis (Fortsetzung)

- ► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- Fall w = aw': Die IH für w' ist $\widetilde{\delta}'(X, w') = \widetilde{\delta}(X, w')$.

$$\widetilde{\delta}'(X, aw')$$

Beweis (Fortsetzung)

- ► Fall $w = \varepsilon$: $\widetilde{\delta'}(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- Fall w = aw': Die IH für w' ist $\widetilde{\delta'}(X, w') = \widetilde{\delta}(X, w')$.

$$\begin{array}{ll} \widetilde{\delta'}(X,aw') \\ = \ \widetilde{\delta'}(\bigcup_{z\in X} \delta'(z,a),w') \end{array} \qquad \qquad \text{(Def. $\widetilde{\delta'}$, für NFA ohne ε-Übergänge)} \\ \end{array}$$

Beweis (Fortsetzung)

- ► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- Fall w = aw': Die IH für w' ist $\widetilde{\delta'}(X, w') = \widetilde{\delta}(X, w')$.

```
\begin{split} &\widetilde{\delta'}(X,aw')\\ &=\ \widetilde{\delta'}(\bigcup_{z\in X}\delta'(z,a),w')\\ &=\ \widetilde{\delta'}(\bigcup_{z\in X}\varepsilon\text{-H\"{\textit{ulle}}}(\delta(z,a)),w') \end{split} \tag{Def. $\widetilde{\delta'}$, für NFA ohne $\varepsilon$-Übergänge)}
```

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $\widetilde{\delta'} = \widetilde{\delta}$, d.h. $\widetilde{\delta'}(X, w) = \widetilde{\delta}(X, w)$ für alle X, w. Wir verwenden Induktion über die Wortlänge |w|.

- ► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- ► Fall w = aw': Die IH für w' ist $\delta'(X, w') = \delta(X, w')$.

$$\begin{array}{ll} \widetilde{\delta'}(X,aw') \\ = \ \widetilde{\delta'}(\bigcup_{z\in X} \delta'(z,a),w') \\ = \ \widetilde{\delta'}(\bigcup_{z\in X} \varepsilon\text{-H\"{\textit{ulle}}}(\underline{\delta(z,a)}),w') \end{array} \qquad \text{(Def. $\widetilde{\delta'}$, für NFA ohne ε-\"{Uberg\"{ange}})}$$

 $\widetilde{\delta}(X, aw')$

Beweis (Fortsetzung)

```
► Fall w = \varepsilon: \widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon).
► Fall w = aw': Die IH für w' ist \delta'(X, w') = \delta(X, w').
           \widetilde{\delta}'(X, aw')
     = \widetilde{\delta'}(\bigcup_{z \in X} \delta'(z, a), w')
                                                                            (Def. \delta', für NFA ohne \varepsilon-Übergänge)
     = \widetilde{\delta'}(\bigcup_{z \in X} \varepsilon - H\ddot{u}lle(\delta(z, a)), w')
                                                                     (Def. \delta')
           \widetilde{\delta}(\bigcup_{z \in X} \varepsilon - H \ddot{u} l l e(\delta(z, a)), w')
     = \widetilde{\delta}(X, aw')
                                                                             (Def. \delta, für NFA mit \varepsilon-Übergängen)
```

Beweis (Fortsetzung)

- ► Fall $w = \varepsilon$: $\widetilde{\delta}'(X, \varepsilon) = X = \widetilde{\delta}(X, \varepsilon)$.
- ► Fall w = aw': Die IH für w' ist $\delta'(X, w') = \delta(X, w')$.

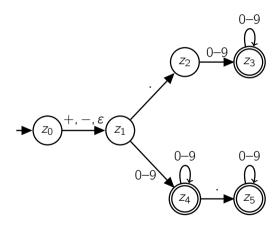
```
\widetilde{\delta}'(X, aw')
= \widetilde{\delta'}(\bigcup_{z \in X} \delta'(z, a), w')
                                                                           (Def. \delta', für NFA ohne \varepsilon-Übergänge)
= \widetilde{\delta'}(\bigcup_{z \in X} \varepsilon - H\ddot{u}lle(\delta(z, a)), w')
                                                                            (Def. \delta')
= \widetilde{\delta}(\bigcup_{z \in X} \varepsilon - H \ddot{u} l l e(\delta(z, a)), w')
                                                                            (IH)
= \widetilde{\delta}(X, aw')
                                                                            (Def. \delta. für NFA mit \varepsilon-Übergängen)
```

Beispiel für die Konstruktion eines NFA mit ε -Übergängen

Konstruiere einen NFA mit ε -Übergängen über $\{+,-,.,0,\ldots,9\}$, der alle Wörter akzeptiert, die Gleitkommazahlen darstellen (z.B. +27, -3.14, .666):

Beispiel für die Konstruktion eines NFA mit ε -Ubergängen

Konstruiere einen NFA mit ε -Übergängen über $\{+, -, ., 0, ..., 9\},\$ der alle Wörter akzeptiert, die Gleitkommazahlen darstellen (z.B. +27, -3.14, .666):



Eindeutige Start- und Endzustände

Satz

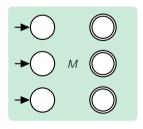
Für jeden NFA M mit ε -Übergängen gibt es einen NFA M' mit ε -Übergängen, sodass L(M') = L(M) und M' genau einen Startzustand und genau einen Endzustand hat, wobei diese beiden Zustände verschieden sind.

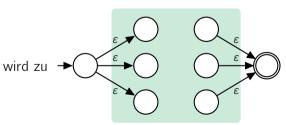
Eindeutige Start- und Endzustände

Satz

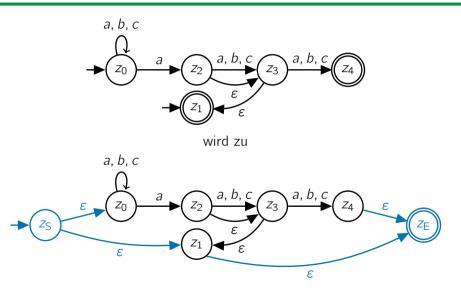
Für ieden NFA M mit ε -Übergängen gibt es einen NFA M' mit ε -Übergängen, sodass L(M') = L(M) und M' genau einen Startzustand und genau einen Endzustand hat, wobei diese beiden Zustände verschieden sind.

Beweis Konstruiere M' aus M, durch Hinzufügen eines neuen Start- und eines neuen Endzustands mit ε -Übergängen:





Beispiel für eindeutige Start- und Endzustände



Online-Tool

Christopher Schaffner hat ein Web-Tool zum Üben und Anschauen entwickelt:

chriss chaffner. github. io/graphical Interface For Grammars/