Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

3b

Determinisierung von endlichen Automaten

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025
Basierend auf Folien von PD Dr. David Sabel

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

$$E := \{z_E\} \cup \begin{cases} \{S\} & \text{falls } S \to \varepsilon \in P \\ \emptyset & \text{sonst} \end{cases}$$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

$$E := \{z_E\} \cup \begin{cases} \{S\} & \text{falls } S \to \varepsilon \in P \\ \emptyset & \text{sonst} \end{cases}$$
$$\delta(A, a) := \{B \mid A \to aB \in P\}$$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

$$E := \{z_E\} \cup \begin{cases} \{S\} & \text{falls } S \to \varepsilon \in P \\ \emptyset & \text{sonst} \end{cases}$$
$$\delta(A, a) := \{B \mid A \to aB \in P\}$$
$$\cup \{z_E \mid A \to a \in P\}$$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis Da L regulär ist, gibt es eine reguläre Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel), sodass L(G) = L.

Wir werden einen NFA M konstruieren mit L(M) = L(G).

$$E := \{z_E\} \cup \begin{cases} \{S\} & \text{falls } S \to \varepsilon \in P \\ \emptyset & \text{sonst} \end{cases}$$
$$\delta(A, a) := \{B \mid A \to aB \in P\}$$
$$\cup \{z_E \mid A \to a \in P\}$$
$$\delta(z_E, a) := \emptyset$$

Reguläre Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$ und

$$P = \{S \rightarrow aA \mid bA \mid cA \mid aB, A \rightarrow aA \mid bA \mid cA \mid aB, B \rightarrow aC \mid bC \mid cC, C \rightarrow a \mid b \mid c\}$$

Reguläre Grammatik
$$G = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$ und

$$P = \{S \rightarrow aA \mid bA \mid cA \mid aB, A \rightarrow aA \mid bA \mid cA \mid aB, B \rightarrow aC \mid bC \mid cC, C \rightarrow a \mid b \mid c\}$$

Ableitung des Wortes baca:

$$S \Rightarrow bA \Rightarrow baB \Rightarrow bacC \Rightarrow baca \in L(G)$$

Reguläre Grammatik
$$G = (V, \Sigma, P, S)$$
 mit $V = \{S, A, B, C\}$, $\Sigma = \{a, b, c\}$ und

$$P = \{S \rightarrow aA \mid bA \mid cA \mid aB, \\ A \rightarrow aA \mid bA \mid cA \mid aB, \\ B \rightarrow aC \mid bC \mid cC, \\ C \rightarrow a \mid b \mid c\}$$

Ableitung des Wortes baca:

$$S \Rightarrow bA \Rightarrow baB \Rightarrow bacC \Rightarrow baca \in L(G)$$

NFA zu
$$G: M = (\{S, A, B, C, z_E\}, \Sigma, \delta, \{S\}, \{z_E\})$$
 mit

$$\begin{array}{lll} \delta(S,a) = \{A,B\} & \delta(A,a) = \{A,B\} & \delta(B,a) = \{C\} & \delta(C,a) = \{z_E\} & \delta(z_E,a) = \emptyset \\ \delta(S,b) = \{A\} & \delta(A,b) = \{A\} & \delta(B,b) = \{C\} & \delta(C,b) = \{z_E\} & \delta(z_E,b) = \emptyset \\ \delta(S,c) = \{A\} & \delta(A,c) = \{A\} & \delta(B,c) = \{C\} & \delta(C,c) = \{z_E\} & \delta(z_E,c) = \emptyset \end{array}$$

Reguläre Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$ und

$$P = \{S \rightarrow aA \mid bA \mid cA \mid aB, A \rightarrow aA \mid bA \mid cA \mid aB, B \rightarrow aC \mid bC \mid cC, C \rightarrow a \mid b \mid c\}$$

Ableitung des Wortes baca:

$$S \Rightarrow bA \Rightarrow baB \Rightarrow bacC \Rightarrow baca \in L(G)$$

NFA zu
$$G: M = (\{S, A, B, C, z_E\}, \Sigma, \delta, \{S\}, \{z_E\})$$
 mit

$$\begin{array}{lll} \delta(S,a) = \{A,B\} & \delta(A,a) = \{A,B\} & \delta(B,a) = \{C\} & \delta(C,a) = \{z_E\} & \delta(z_E,a) = \emptyset \\ \delta(S,b) = \{A\} & \delta(A,b) = \{A\} & \delta(B,b) = \{C\} & \delta(C,b) = \{z_E\} & \delta(z_E,b) = \emptyset \\ \delta(S,c) = \{A\} & \delta(A,c) = \{A\} & \delta(B,c) = \{C\} & \delta(C,c) = \{z_E\} & \delta(z_E,c) = \emptyset \end{array}$$

Reguläre Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, A, B, C\}, \Sigma = \{a, b, c\}$ und

$$P = \{S \rightarrow aA \mid bA \mid cA \mid aB, A \rightarrow aA \mid bA \mid cA \mid aB, B \rightarrow aC \mid bC \mid cC, C \rightarrow a \mid b \mid c\}$$

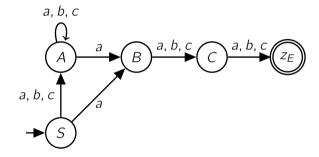
Ableitung des Wortes baca:

$$S \Rightarrow bA \Rightarrow baB \Rightarrow bacC \Rightarrow baca \in L(G)$$

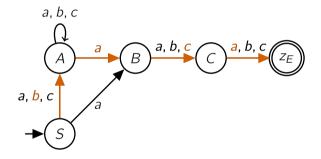
NFA zu $G: M = (\{S, A, B, C, z_F\}, \Sigma, \delta, \{S\}, \{z_F\})$ mit

$$\begin{array}{lll} \delta(S,a) = \{A,B\} & \delta(A,a) = \{A,B\} & \delta(B,a) = \{C\} & \delta(C,a) = \{z_E\} & \delta(z_E,a) = \emptyset \\ \delta(S,b) = \{A\} & \delta(A,b) = \{A\} & \delta(B,b) = \{C\} & \delta(C,b) = \{z_E\} & \delta(z_E,b) = \emptyset \\ \delta(S,c) = \{A\} & \delta(A,c) = \{A\} & \delta(B,c) = \{C\} & \delta(C,c) = \{z_E\} & \delta(z_E,c) = \emptyset \end{array}$$

Zustandsgraph zu *M*:



Zustandsgraph zu M:



Eingabe: baca $\in L(M)$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis (Fortsetzung) Wir zeigen, dass L(M) = L(G), d.h. $w \in L(M)$ g.d.w. $w \in L(G)$ für ein beliebiges w.

► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- ightharpoonup Fall $w = a_1 \cdots a_n$ mit n > 0:

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis (Fortsetzung) Wir zeigen, dass L(M) = L(G), d.h. $w \in L(M)$ g.d.w. $w \in L(G)$ für ein beliebiges w.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ q.d.w. $S \in E$ q.d.w. $S \to \varepsilon \in P$ q.d.w. $\varepsilon \in L(G)$.
- ightharpoonup Fall $w = a_1 \cdots a_n$ mit n > 0: $a_1 \cdots a_n \in L(M)$

5/16

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: $a_1 \cdots a_n \in L(M)$ g.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} Z_n$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: $a_1 \cdots a_n \in L(M)$ g.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} z_E$ g.d.w. es gibt Zustände $A_1, \ldots, A_{n-1} \text{ mit } A_1 \in \delta(S, a_1), A_i \in \delta(A_{i-1}, a_i)$ für $i \in \{2, \ldots, n-1\}$ und $z_F \in \delta(A_{n-1}, a_n)$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: $a_1 \cdots a_n \in L(M)$ g.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} z_E$ g.d.w. es gibt Zustände $A_1, \ldots, A_{n-1} \text{ mit } A_1 \in \delta(S, a_1), A_i \in \delta(A_{i-1}, a_i)$ für $i \in \{2, \ldots, n-1\}$ und $z_F \in \delta(A_{n-1}, a_n)$

$$a_1 \cdots a_n \in L(G)$$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: $a_1 \cdots a_n \in L(M)$ g.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} z_E$ g.d.w. es gibt Zustände $A_1, \ldots, A_{n-1} \text{ mit } A_1 \in \delta(S, a_1), A_i \in \delta(A_{i-1}, a_i)$ für $i \in \{2, \ldots, n-1\}$ und $z_E \in \delta(A_{n-1}, a_n)$ $S \Rightarrow_G a_1 A_1 \Rightarrow_G \cdots \Rightarrow_G a_1 \cdots a_{n-1} A_{n-1} \Rightarrow_G a_1 \cdots a_n$ g.d.w. $a_1 \cdots a_n \in L(G)$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

- ▶ Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \in E$ g.d.w. $S \to \varepsilon \in P$ g.d.w. $\varepsilon \in L(G)$.
- ightharpoonup Fall $w = a_1 \cdots a_n$ mit n > 0: $a_1 \cdots a_n \in L(M)$
 - q.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} Z_E$
 - g.d.w. es gibt Zustände A_1, \ldots, A_{n-1} mit $A_1 \in \delta(S, a_1), A_i \in \delta(A_{i-1}, a_i)$ für $i \in \{2, \ldots, n-1\}$ und $z_{E} \in \delta(A_{n-1}, a_{n})$
 - $q.d.w. S \Rightarrow_G a_1 A_1 \Rightarrow_G \cdots \Rightarrow_G a_1 \cdots a_{n-1} A_{n-1} \Rightarrow_G a_1 \cdots a_n$ $a.d.w. a_1 \cdots a_n \in L(G)$

Theorem

Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.

Beweis (Fortsetzung) Wir zeigen, dass L(M) = L(G). d.h. $w \in L(M)$ g.d.w. $w \in L(G)$ für ein beliebiges w.

- ► Fall $w = \varepsilon$: $\varepsilon \in L(M)$ q.d.w. $S \in E$ q.d.w. $S \to \varepsilon \in P$ q.d.w. $\varepsilon \in L(G)$.
- ightharpoonup Fall $w = a_1 \cdots a_n$ mit n > 0:

$$a_1 \cdots a_n \in L(M)$$

q.d.w. es gibt einen Lauf $S \xrightarrow{a_1} A_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} A_{n-1} \xrightarrow{a_n} Z_E$

g.d.w. es gibt Zustände A_1, \ldots, A_{n-1} mit $A_1 \in \delta(S, a_1), A_i \in \delta(A_{i-1}, a_i)$ für $i \in \{2, \ldots, n-1\}$ und $z_F \in \delta(A_{n-1}, a_n)$

 $q.d.w. S \Rightarrow_G a_1 A_1 \Rightarrow_G \cdots \Rightarrow_G a_1 \cdots a_{n-1} A_{n-1} \Rightarrow_G a_1 \cdots a_n$

 $a.d.w. a_1 \cdots a_n \in L(G)$

Daher gibt es einen NFA M mit L(M) = L(G) = L.

NFAs in DFAs transformieren

Theorem (Rabin und Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

6/16

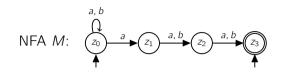
NFAs in DFAs transformieren

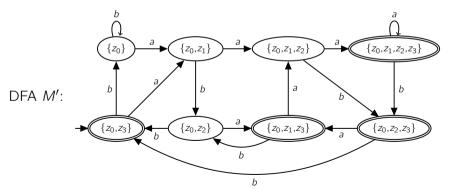
Theorem (Rabin und Scott 1959)

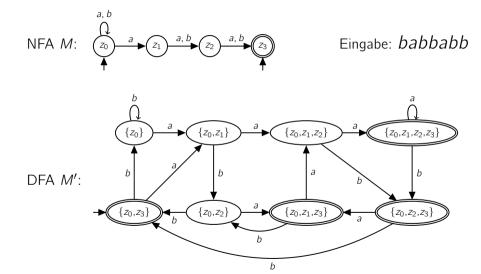
Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Der Beweis basiert auf der Potenzmengenkonstruktion:

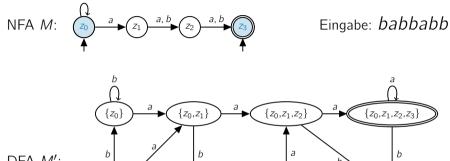
- ► Konstruiere für einen gegebenen NFA *M* einen DFA *M'*, sodass sich der DFA alle Zustände merkt, in denen der NFA sein könnte.
- Jede Teilmenge von Zuständen des NFA wird zu einem Zustand des DFA.
- ▶ Da Z endlich ist, gibt es nur endlich viele Teilmengen.



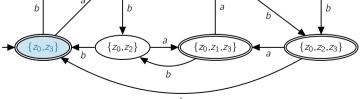


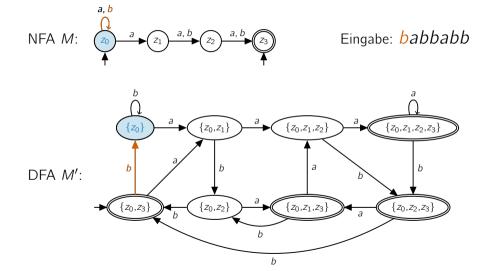


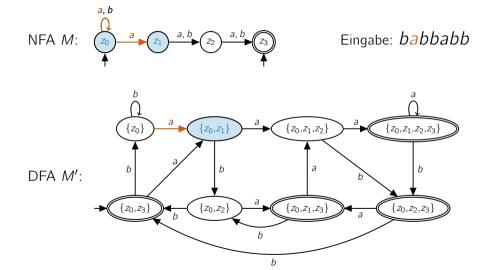
a, b

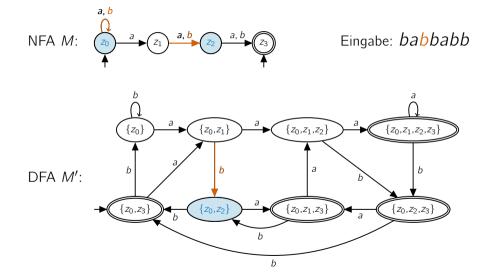


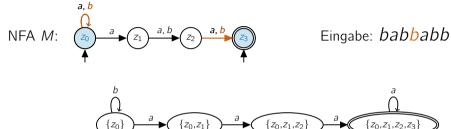
DFA M':

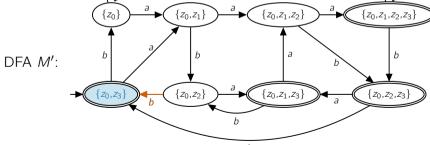


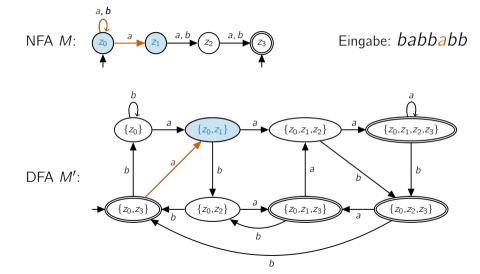




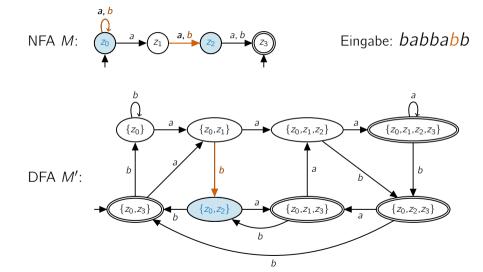




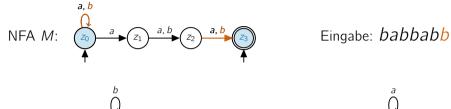


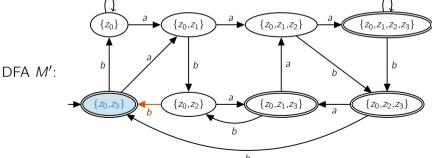


Beispiel für die Potenzmengenkonstruktion

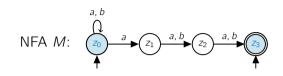


Beispiel für die Potenzmengenkonstruktion

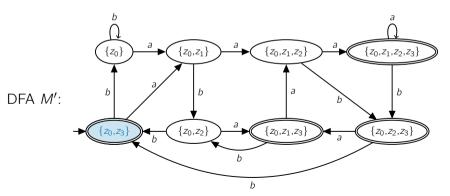




Beispiel für die Potenzmengenkonstruktion



Eingabe: $babbabb \in L(M)$ $\in L(M')$



Potenzmengenkonstruktion

Für den NFA $M = (Z, \Sigma, \delta, S, E)$ definieren wir den DFA $M' = (Z', \Sigma, \delta', S', E')$ mit

- $ightharpoonup Z' := \mathcal{P}(Z)$
- \triangleright S' := S

Potenzmengenkonstruktion

Für den NFA $M = (Z, \Sigma, \delta, S, E)$ definieren wir den DFA $M' = (Z', \Sigma, \delta', S', E')$ mit

- $ightharpoonup Z' := \mathcal{P}(Z)$ Die Zustandsmenge ist die Potenzmenge von Z.
- ightharpoonup S' := SDer Startzustand ist die Menge S aller Startzustände von M.
- ▶ $E' := \{X \in Z' \mid E \cap X \neq \emptyset\}$ Jede Menge, die mindestens einen Endzustand von M enthält, ist Endzustand.
- ▶ $\delta'(X, a) := (\bigcup_{z \in X} \delta(z, a)) = \tilde{\delta}(X, a)$ Die Übergangsfunktion berechnet alle von einem Zustand in X aus über a erreichbaren Zustände.

Theorem (Rabin und Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Theorem (Rabin und Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweis Wir zeigen, dass L(M') = L(M), d.h. $w \in L(M)$ g.d.w. $w \in L(M')$ für ein beliebiges w.

Theorem (Rabin und Scott 1959)

Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Beweis Wir zeigen, dass L(M') = L(M), d.h. $w \in L(M)$ g.d.w. $w \in L(M')$ für ein beliebiges w.

▶ Fall $w = \varepsilon$: $\varepsilon \in L(M)$ g.d.w. $S \cap E \neq \emptyset$ g.d.w. $S \in E'$ g.d.w. $\varepsilon \in L(M')$.

Beweis (Fortsetzung)

Fall $w = a_1 \cdots a_n$ mit n > 0: Zu zeigen: $a_1 \cdots a_n \in L(M)$ g.d.w. $a_1 \cdots a_n \in L(M')$.

```
Fall w = a_1 \cdots a_n mit n > 0:
Zu zeigen: a_1 \cdots a_n \in L(M) g.d.w. a_1 \cdots a_n \in L(M').
a_1 \cdots a_n \in L(M)
```

```
Fall w = a_1 \cdots a_n mit n > 0:

Zu zeigen: a_1 \cdots a_n \in L(M) g.d.w. a_1 \cdots a_n \in L(M').

a_1 \cdots a_n \in L(M)

g.d.w. \widetilde{\delta}(S, a_1 \cdots a_n) \cap E \neq \emptyset
```

```
Fall w = a_1 \cdots a_n \text{ mit } n > 0:

Zu zeigen: a_1 \cdots a_n \in L(M) g.d.w. a_1 \cdots a_n \in L(M').

a_1 \cdots a_n \in L(M)

g.d.w. \widetilde{\delta}(S, a_1 \cdots a_n) \cap E \neq \emptyset

g.d.w. es gibt Z_1, \ldots, Z_n \subseteq Z mit \left(\bigcup_{z \in S} \delta(z, a_1)\right) = Z_1,

\left(\bigcup_{z \in Z_{i-1}} \delta(z, a_i)\right) = Z_i für i \in \{2, \ldots, n\} und Z_n \cap E \neq \emptyset
```

Beweis (Fortsetzung)

Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: Zu zeigen: $a_1 \cdots a_n \in L(M)$ g.d.w. $a_1 \cdots a_n \in L(M')$. $a_1 \cdots a_n \in L(M)$ g.d.w. $\widetilde{\delta}(S, a_1 \cdots a_n) \cap E \neq \emptyset$ g.d.w. es gibt $Z_1, \ldots, Z_n \subseteq Z$ mit $\left(\bigcup_{z \in S} \delta(z, a_1)\right) = Z_1$, $\left(\bigcup_{z \in Z_{i-1}} \delta(z, a_i)\right) = Z_i$ für $i \in \{2, \ldots, n\}$ und $Z_n \cap E \neq \emptyset$

$$a_1 \cdots a_n \in L(M')$$

Beweis (Fortsetzung)

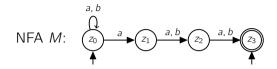
Fall $w = a_1 \cdots a_n \text{ mit } n > 0$: Zu zeigen: $a_1 \cdots a_n \in L(M)$ g.d.w. $a_1 \cdots a_n \in L(M')$. $a_1 \cdots a_n \in L(M)$ g.d.w. $\widetilde{\delta}(S, a_1 \cdots a_n) \cap E \neq \emptyset$ g.d.w. es gibt $Z_1, \ldots, Z_n \subseteq Z \text{ mit } (\bigcup_{z \in S} \delta(z, a_1)) = Z_1,$ $(\bigcup_{z \in Z_{i-1}} \delta(z, a_i)) = Z_i \text{ für } i \in \{2, \ldots, n\} \text{ und } Z_n \cap E \neq \emptyset$

$$\widetilde{\delta}'(S', a_1 \cdots a_n) \in E'$$

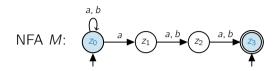
g.d.w. $a_1 \cdots a_n \in L(M')$

```
ightharpoonup Fall w = a_1 \cdots a_n \text{ mit } n > 0:
    Zu zeigen: a_1 \cdots a_n \in L(M) g.d.w. a_1 \cdots a_n \in L(M').
              a_1 \cdots a_n \in L(M)
    g.d.w. \delta(S, a_1 \cdots a_n) \cap E \neq \emptyset
    g.d.w. es gibt Z_1, \ldots, Z_n \subseteq Z mit (\bigcup_{z \in S} \delta(z, a_1)) = Z_1,
               (\bigcup_{z \in Z_{i-1}} \delta(z, a_i)) = Z_i für i \in \{2, ..., n\} und Z_n \cap E \neq \emptyset
              es gibt Z_1, \ldots, Z_n \subseteq Z mit \delta'(S, a_1) = Z_1.
              \delta'(Z_{i-1}, a_i) = Z_i für i \in \{2, \dots, n\} und Z_n \cap E \neq \emptyset
    g.d.w. \delta'(S', a_1 \cdots a_n) \in E'
    q.d.w. a_1 \cdots a_n \in L(M')
```

```
ightharpoonup Fall w = a_1 \cdots a_n \text{ mit } n > 0:
    Zu zeigen: a_1 \cdots a_n \in L(M) g.d.w. a_1 \cdots a_n \in L(M').
              a_1 \cdots a_n \in L(M)
    g.d.w. \delta(S, a_1 \cdots a_n) \cap E \neq \emptyset
    g.d.w. es gibt Z_1, \ldots, Z_n \subseteq Z mit (\bigcup_{z \in S} \delta(z, a_1)) = Z_1,
               (\bigcup_{z \in Z_{i-1}} \delta(z, a_i)) = Z_i für i \in \{2, ..., n\} und Z_n \cap E \neq \emptyset
    a.d.w. es aibt Z_1, \ldots, Z_n \subseteq Z mit \delta'(S, a_1) = Z_1.
              \delta'(Z_{i-1}, a_i) = Z_i für i \in \{2, \dots, n\} und Z_n \cap E \neq \emptyset
    g.d.w. \delta'(S', a_1 \cdots a_n) \in E'
    q.d.w. a_1 \cdots a_n \in L(M')
```

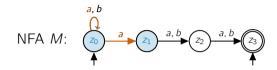


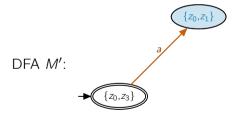
DFA M':

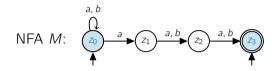


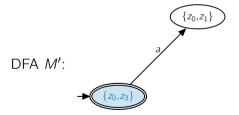
DFA M':

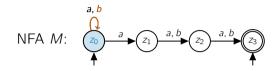
11/16

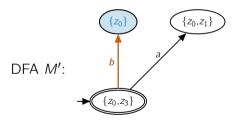


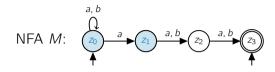


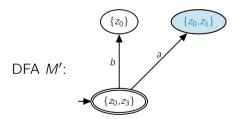


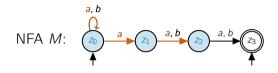


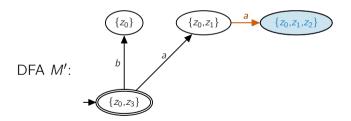


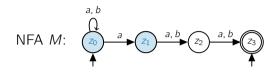


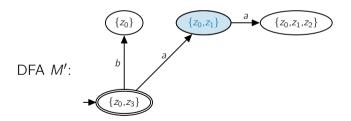


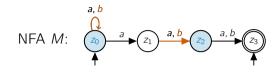


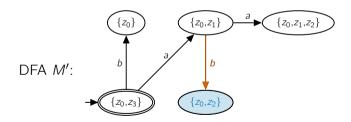


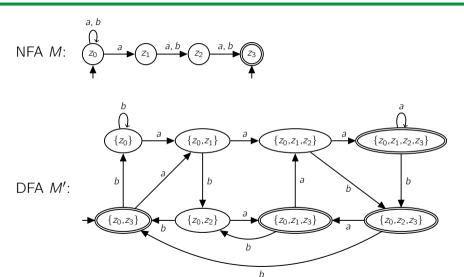












Äquivalenz von regulären Sprachen und von DFAs bzw. NFAs

Theorem

DFAs und NFAs akzeptieren genau die regulären Sprachen.

Äquivalenz von regulären Sprachen und von DFAs bzw. NFAs

Theorem

DFAs und NFAs akzeptieren genau die regulären Sprachen.

Beweis

- ⊇ Für jede reguläre Sprache gibt es einen DFA bzw. NFA, der sie erkennt.
 Das folgt aus:
 - Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.
 - ▶ Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.

Äquivalenz von regulären Sprachen und von DFAs bzw. NFAs

Theorem

DFAs und NFAs akzeptieren genau die regulären Sprachen.

Beweis

- ⊇ Für jede reguläre Sprache gibt es einen DFA bzw. NFA, der sie erkennt.
 Das folgt aus:
 - Für jede reguläre Sprache L gibt es einen NFA M mit L(M) = L.
 - ▶ Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.
- ⊆ Die akzeptierte Sprache eines DFA bzw. NFA ist regulär. Das folgt aus:
 - ▶ Jede von einem NFA akzeptierte Sprache ist auch durch einen DFA akzeptierbar.
 - ightharpoonup Sei M ein DFA. Dann ist L(M) regulär.

- ► Sei ein NFA mit *n* Zuständen.
- ▶ Der durch die Potenzmengenkonstruktion erstellte DFA hat 2ⁿ Zustände. Der Platz explodiert uns.
- ► Geht es besser?

- ► Sei ein NFA mit *n* Zuständen.
- ▶ Der durch die Potenzmengenkonstruktion erstellte DFA hat 2ⁿ Zustände. Der Platz explodiert uns.
- ► Geht es besser? Nicht wirklich.

Lemma

Sei $L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\}$ für $\Sigma = \{a, b\}$ und $n \in \mathbb{N}_{>0}$ (d.h. die Sprache aller Wörter aus Σ^* , die an n-letzter Stelle ein a haben).

- 1. Es gibt einen NFA M mit L(M) = L und M hat n + 1 Zustände.
- 2. Jeder DFA M' mit L(M') = L hat mindestens 2^n Zustände.

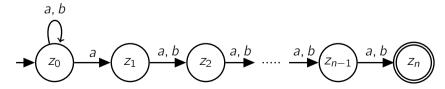
Lemma

Sei $L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\}$ für $\Sigma = \{a, b\}$ und $n \in \mathbb{N}_{>0}$ (d.h. die Sprache aller Wörter aus Σ^* , die an n-letzter Stelle ein a haben).

- 1. Es gibt einen NFA M mit L(M) = L und M hat n + 1 Zustände.
- 2. Jeder DFA M' mit L(M') = L hat mindestens 2^n Zustände.

Beweis

1. Sei *M* der folgende NFA:



Beweis (Fortsetzung)

2. Durch Widerspruch.

Beweis (Fortsetzung)

2. Durch Widerspruch.

Wir nehmen an, es gibt einen DFA $M' = (Z, \Sigma, \delta, z_0, E)$ mit $L(M') = L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\}$ und $|Z| < 2^n$.

Beweis (Fortsetzung)

2. Durch Widerspruch.

Wir nehmen an, es gibt einen DFA $M' = (Z, \Sigma, \delta, z_0, E)$ mit $L(M') = L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\}$ und $|Z| < 2^n$.

Die Menge Σ^n enthält 2^n Wörter der Länge n und da $|Z| < 2^n$, muss es $w, w' \in \Sigma^n$ geben mit $w \neq w'$ und $\widetilde{\delta}(z_0, w) = \widetilde{\delta}(z_0, w') = z$.

Beweis (Fortsetzung)

2. Durch Widerspruch.

Wir nehmen an, es gibt einen DFA $M' = (Z, \Sigma, \delta, z_0, E)$ mit $L(M') = L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\}$ und $|Z| < 2^n$.

Die Menge Σ^n enthält 2^n Wörter der Länge n und da $|Z| < 2^n$, muss es $w, w' \in \Sigma^n$ geben mit $w \neq w'$ und $\widetilde{\delta}(z_0, w) = \widetilde{\delta}(z_0, w') = z$.

Sei $j \in \{1, ..., n\}$ die erste Position, an der sich w und w' unterscheiden.

Beweis (Fortsetzung)

2. Durch Widerspruch.

```
Wir nehmen an, es gibt einen DFA M'=(Z,\Sigma,\delta,z_0,E) mit L(M')=L=\{uav\mid u\in\Sigma^*,v\in\Sigma^{n-1}\} und |Z|<2^n. Die Menge \Sigma^n enthält 2^n Wörter der Länge n und da |Z|<2^n, muss es w,w'\in\Sigma^n geben mit w\neq w' und \widetilde{\delta}(z_0,w)=\widetilde{\delta}(z_0,w')=z. Sei j\in\{1,\ldots,n\} die erste Position, an der sich w und w' unterscheiden. w ist von der Form uav und w' ist von der Form ubv' (oder umgekehrt) mit |v|=|v'|=n-j. Da \widetilde{\delta}(z_0,uav)=\widetilde{\delta}(z_0,ubv')=z, muss dann gelten \widetilde{\delta}(z_0,uav)^{j-1}=\widetilde{\delta}(z_0,ubv')=z' für einen Zustand z'.
```

Beweis (Fortsetzung)

2. Durch Widerspruch.

```
Wir nehmen an, es gibt einen DFA M' = (Z, \Sigma, \delta, z_0, E) mit L(M') = L = \{uav \mid u \in \Sigma^*, v \in \Sigma^{n-1}\} und |Z| < 2^n.
```

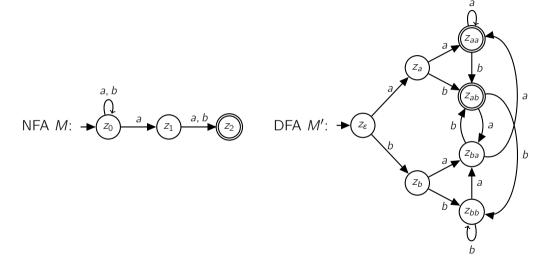
Die Menge Σ^n enthält 2^n Wörter der Länge n und da $|Z| < 2^n$, muss es $w, w' \in \Sigma^n$ geben mit $w \neq w'$ und $\widetilde{\delta}(z_0, w) = \widetilde{\delta}(z_0, w') = z$.

Sei $j \in \{1, ..., n\}$ die erste Position, an der sich w und w' unterscheiden.

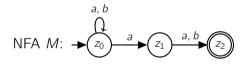
w ist von der Form uav und w' ist von der Form ubv' (oder umgekehrt) mit |v|=|v'|=n-j. Da $\widetilde{\delta}(z_0,uav)=\widetilde{\delta}(z_0,ubv')=z$, muss dann gelten $\widetilde{\delta}(z_0,uavb^{j-1})=\widetilde{\delta}(z_0,ubv'b^{j-1})=z'$ für einen Zustand z'.

Aber $uavb^{j-1} \in L$ und $ubv'b^{j-1} \not\in L$, daher $z' \in E$ und $z' \notin E$. Widerspruch.

Beispiel wenn n = 2



Beispiel wenn n = 2



DFA M' (minimiert):

