Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

2c

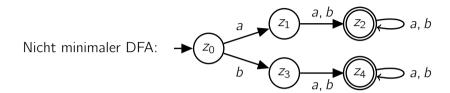
Minimierung von deterministischen endlichen Automaten

Prof. Dr. Jasmin Blanchette

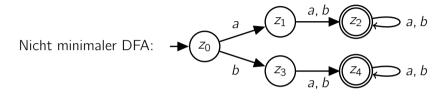
Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

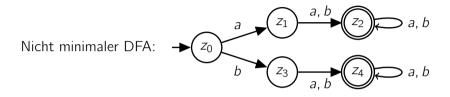
Beispiel für Minimalität



Beispiel für Minimalität



Beispiel für Minimalität



Beide DFAs akzeptieren die gleiche Sprache, aber der zweite hat weniger Zustände.

Vorteile der Minimierung von DFAs

- Minimale DFAs sind effizienter zu implementieren.
- Minimale DFAs sind oft einfacher zu verstehen oder zu analysieren.
- ▶ Da minimale DFAs (bis auf Umbenennung der Zustände) eindeutig sind, können sie Sprachen exakt darstellen.

Grundgedanke der Minimierung von DFAs

Schritte:

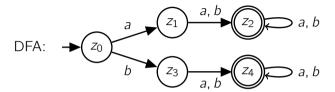
- 1. Entferne alle nicht erreichbaren Zustände.
- 2. Bilde eine Partition (d.h. disjunkte Zerlegung), indem jeweils alle Endzustände und alle Nicht-Endzustände verschmolzen werden.
- 3. Verfeinere diese Partition schrittweise, bis sie sich nicht mehr verändert.

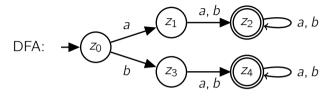
Grundgedanke der Minimierung von DFAs

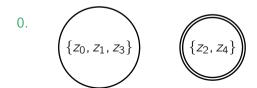
Schritte:

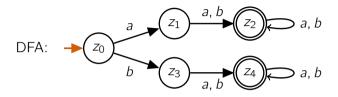
- 1. Entferne alle nicht erreichbaren Zustände.
- 2. Bilde eine Partition (d.h. disjunkte Zerlegung), indem jeweils alle Endzustände und alle Nicht-Endzustände verschmolzen werden.
- 3. Verfeinere diese Partition schrittweise, bis sie sich nicht mehr verändert.

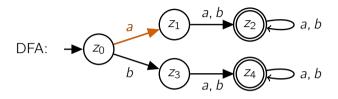
Zwei Ansätze: graphisch und tabellarisch.

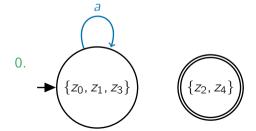


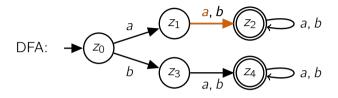


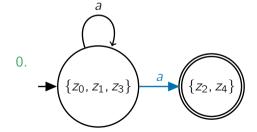


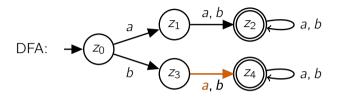


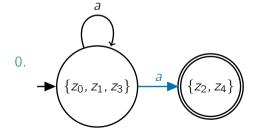


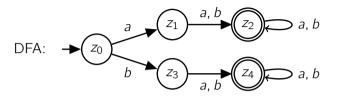


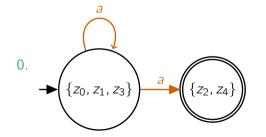






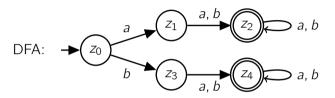


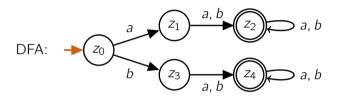


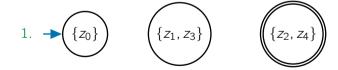


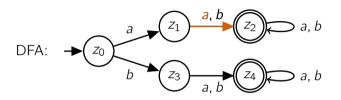
Wird kein DFA

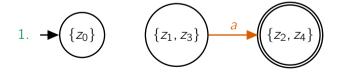
 $\{z_0, z_1, z_3\}$ muss gespalten werden, damit ein DFA entsteht.

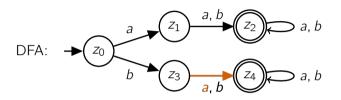


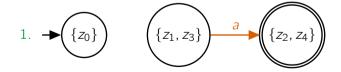




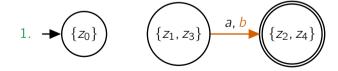


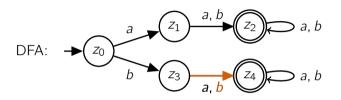


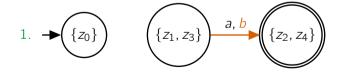


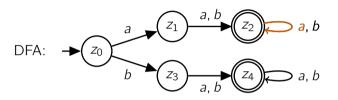


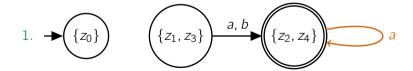


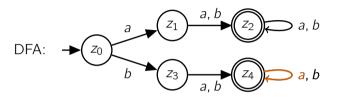


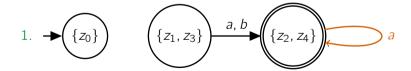


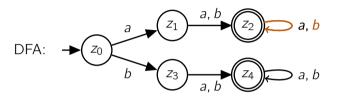


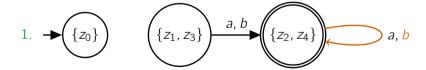


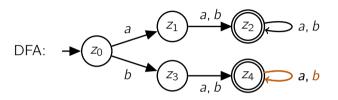


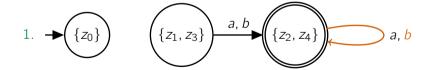


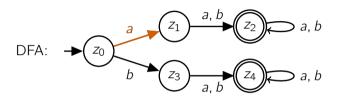


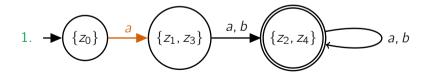


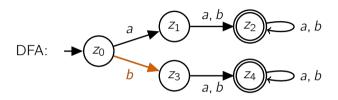


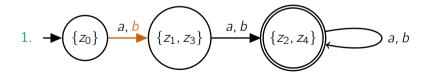


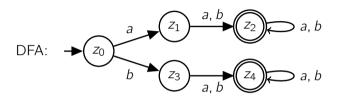


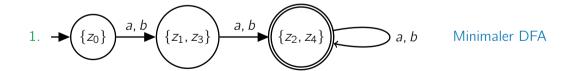












Minimierung eines DFAs mit dem tabellarischen Ansatz

Sei M ein DFA.

Intuitiver Ansatz:

- 1. Entferne alle nicht erreichbaren Zustände von M.
- 2. Konstruiere die Partitionstabelle.
- 3. Bilde den minimalen DFA M', indem Zustände derselben Klasse verschmolzen werden, basiert auf der letzten Reihe der Partitionstabelle.

DFA
$$M = (Z, \Sigma, z_0, E)$$

DFA
$$M = (Z, \Sigma, z_0, E)$$

Schritte:

2.1 Bilde eine Partition \mathcal{P} von Z mit folgenden Klassen: Endzustände E (falls nicht leer) und Nicht-Endzustände $Z \setminus E$ (falls nicht leer).

DFA
$$M = (Z, \Sigma, z_0, E)$$

Schritte:

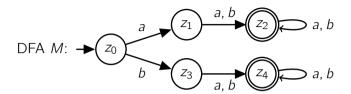
- 2.1 Bilde eine Partition \mathcal{P} von Z mit folgenden Klassen: Endzustände E (falls nicht leer) und Nicht-Endzustände $Z \setminus E$ (falls nicht leer).
- 2.2 Wiederhole bis \mathcal{P} sich nicht mehr verändert:
 - 2.2.1 Für jede Klasse $K \in \mathcal{P}$ mit $|K| \ge 2$ und für jedes $a \in \Sigma$:
 - 2.2.1.1 Berechne für jeden Zustand $z \in K$ die Klasse $L \in \mathcal{P}$, sodass $\delta(z, a) \in L$.
 - 2.2.1.2 Partitioniere K in Teilklassen je nach L.
 - 2.2.1.3 Falls es mehrere Teilklassen gibt, ersetze K in \mathcal{P} durch die Teilklassen.

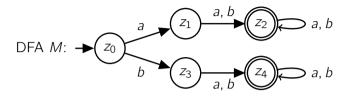
DFA
$$M = (Z, \Sigma, z_0, E)$$

Schritte:

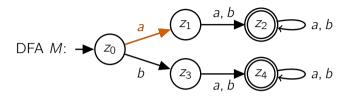
- 2.1 Bilde eine Partition \mathcal{P} von Z mit folgenden Klassen: Endzustände E (falls nicht leer) und Nicht-Endzustände $Z \setminus E$ (falls nicht leer).
- 2.2 Wiederhole bis \mathcal{P} sich nicht mehr verändert:
 - 2.2.1 Für jede Klasse $K \in \mathcal{P}$ mit $|K| \ge 2$ und für jedes $a \in \Sigma$:
 - 2.2.1.1 Berechne für jeden Zustand $z \in K$ die Klasse $L \in \mathcal{P}$, sodass $\delta(z, a) \in L$.
 - 2.2.1.2 Partitioniere K in Teilklassen je nach L.
 - 2.2.1.3 Falls es mehrere Teilklassen gibt, ersetze K in $\mathcal P$ durch die Teilklassen.

Am Ende besteht \mathcal{P} aus den verschmolzenen Zuständen.

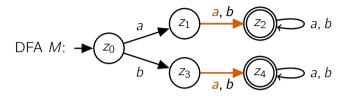




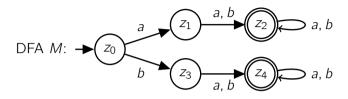
0. z_0 z_1 z_3 z_2 z_4



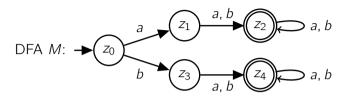
- $0. \quad z_0 \quad z_1 \quad z_3 \quad z_2 \quad z_4$
 - $ightharpoonup z_0$ mit *a* landet in der ersten Klasse.



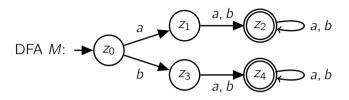
- $0. \quad Z_0 \quad Z_1 \quad Z_3 \quad Z_2 \quad Z_4$
 - $ightharpoonup z_0$ mit a landet in der ersten Klasse.
 - $ightharpoonup z_1$ und z_3 mit a landen in der zweiten Klasse.



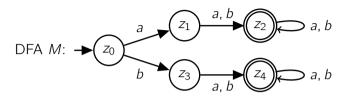
- $0. \quad z_0 \quad z_1 \quad z_3 \quad z_2 \quad z_4$
 - $ightharpoonup z_0$ mit a landet in der ersten Klasse.
 - $ightharpoonup z_1$ und z_3 mit a landen in der zweiten Klasse.
 - $ightharpoonup z_0$ muss daher von z_1 und z_3 getrennt werden.



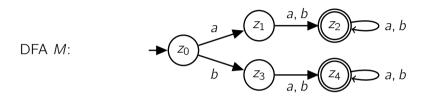
- $0. \quad z_0 \quad z_1 \quad z_3 \quad z_2 \quad z_4$
 - $ightharpoonup z_0$ mit a landet in der ersten Klasse.
 - $ightharpoonup z_1$ und z_3 mit a landen in der zweiten Klasse.
 - $ightharpoonup z_0$ muss daher von z_1 und z_3 getrennt werden.
- 1. z_0 z_1 z_3 z_2 z_4 mit a



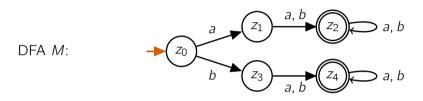
- $0. \quad z_0 \quad z_1 \quad z_3 \quad z_2 \quad z_4$
 - $ightharpoonup z_0$ mit a landet in der ersten Klasse.
 - \triangleright z_1 und z_3 mit a landen in der zweiten Klasse.
 - $ightharpoonup z_0$ muss daher von z_1 und z_3 getrennt werden.
- 1. z_0 z_1 z_3 z_2 z_4 mit a
 - Keine weitere Partition möglich.



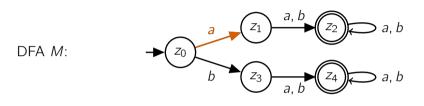
- $0. \quad z_0 \quad z_1 \quad z_3 \quad z_2 \quad z_4$
 - $ightharpoonup z_0$ mit a landet in der ersten Klasse.
 - \triangleright z_1 und z_3 mit a landen in der zweiten Klasse.
 - $ightharpoonup z_0$ muss daher von z_1 und z_3 getrennt werden.
- 1. z_0 z_1 z_3 z_2 z_4 mit a
 - Keine weitere Partition möglich.
 - ▶ Der minimale DFA hat drei Zustände: $\{z_0\}$, $\{z_1, z_3\}$, $\{z_2, z_4\}$.

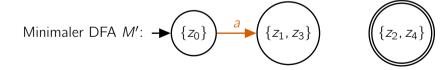


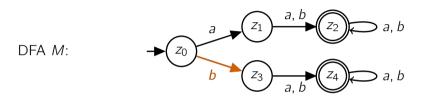
Minimaler DFA M':

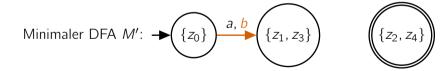


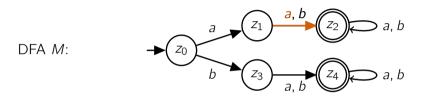
Minimaler DFA M': \longrightarrow $\{z_0\}$

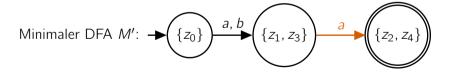


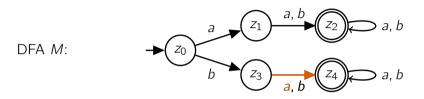


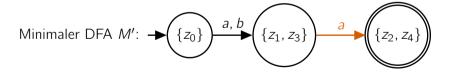


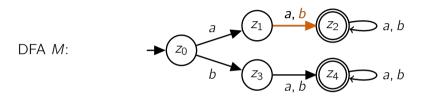


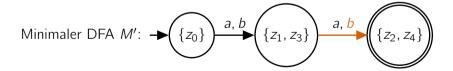


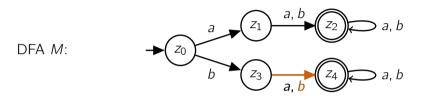


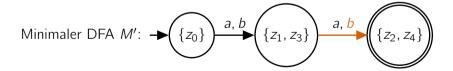


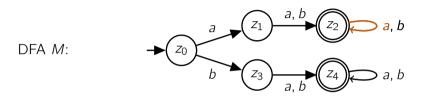


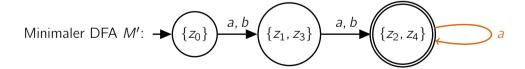


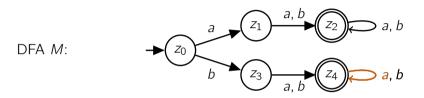


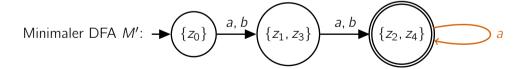


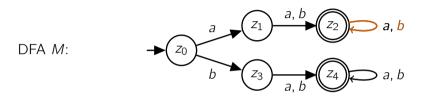


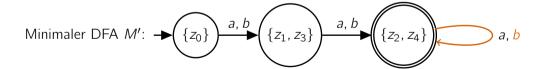


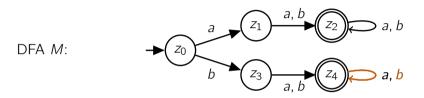


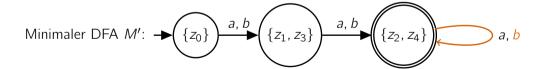


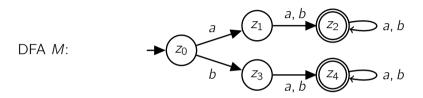


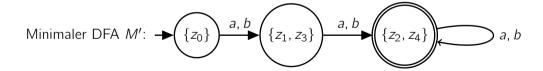




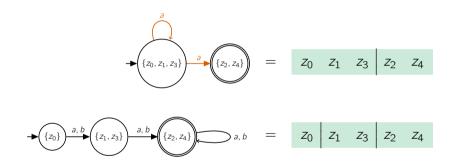


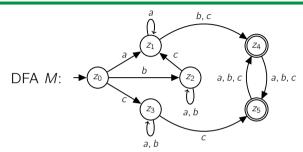


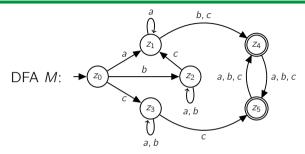




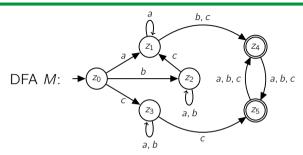
Äquivalenz des graphischen und des tabellarischen Ansatzes







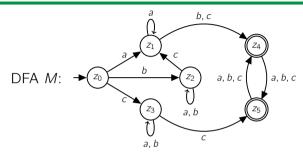
Partitionstabelle:



Partitionstabelle:

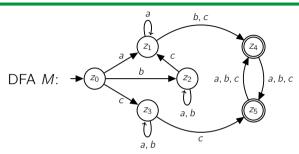
0.
$$z_0$$
 z_1 z_2 z_3 z_4 z_5

1.
$$z_1 \begin{vmatrix} z_0 & z_1 & z_2 & z_3 & z_4 & z_5 \\ z_1 & z_0 & z_2 & z_3 & z_4 & z_5 & \text{mit } b \end{vmatrix}$$



Partitionstabelle:

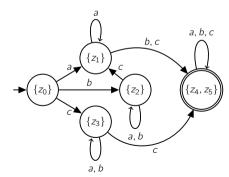
- 0. z₀ z₁ z₂ z₃ z₄ z₅
- 1. $z_1 \mid z_0 \quad z_2 \quad z_3 \mid z_4 \quad z_5 \quad \text{mit } b$
- 2. z_1 z_0 z_2 z_3 z_4 z_5 mit c



Partitionstabelle:

0.
$$z_0$$
 z_1 z_2 z_3 z_4 z_5
1. z_1 z_0 z_2 z_3 z_4 z_5 mit b
2. z_1 z_0 z_2 z_3 z_4 z_5 mit c

Minimaler DFA M':



Äquivalenzklassenautomat

Beide Ansätze basieren auf dem Äquivalenzklassenautomaten.

Definition

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA.

Wir nennen zwei Zustände $z, z' \in Z$ äquivalent und schreiben $z \equiv_M z'$ (alternativ $z \equiv z'$), falls gilt: $\widetilde{\delta}(z, w) \in E$ g.d.w. $\widetilde{\delta}(z', w) \in E$ für alle $w \in \Sigma^*$.

Äquivalenzklassenautomat

Beide Ansätze basieren auf dem Äquivalenzklassenautomaten.

Definition

```
Sei M=(Z,\Sigma,\delta,z_0,E) ein DFA. Wir nennen zwei Zustände z,z'\in Z äquivalent und schreiben z\equiv_M z' (alternativ z\equiv z'), falls gilt: \widetilde{\delta}(z,w)\in E g.d.w. \widetilde{\delta}(z',w)\in E für alle w\in \Sigma^*. Der Äquivalenzklassenautomat zu M ist der DFA M'=(Z',\Sigma,\delta',z'_0,E') mit Z':=\{[z]_{\equiv}\mid z\in Z\} z'_0:=[z_0]_{\equiv}
```

 $\delta'([z]_{=}, a) := [\delta(z, a)]_{=}$

 $E' := \{ [z]_{=} \mid z \in E \}$

Äquivalenzklassenautomat

Beide Ansätze basieren auf dem Äquivalenzklassenautomaten.

Definition

```
Sei M=(Z,\Sigma,\delta,z_0,E) ein DFA. Wir nennen zwei Zustände z,z'\in Z äquivalent und schreiben z\equiv_M z' (alternativ z\equiv z'), falls gilt: \widetilde{\delta}(z,w)\in E g.d.w. \widetilde{\delta}(z',w)\in E für alle w\in\Sigma^*. Der Äquivalenzklassenautomat zu M ist der DFA M'=(Z',\Sigma,\delta',z'_0,E') mit Z':=\{[z]_{\equiv}\mid z\in Z\} z'_0:=[z_0]_{\equiv} E':=\{[z]_{\equiv}\mid z\in E\} \delta'([z]_{\equiv},a):=[\delta(z,a)]_{\equiv}
```

Informell: Zwei Zustände sind äquivalent, wenn sie die gleiche "Sprache" darstellen.

Satz

Seien $M=(Z, \Sigma, \delta, z_0, E)$ ein DFA und $M'=(Z', \Sigma, \delta', z_0', E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Satz

Seien $M=(Z, \Sigma, \delta, z_0, E)$ ein DFA und $M'=(Z', \Sigma, \delta', z_0', E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Beweis

1. Wir zeigen: $w \in L(M')$ g.d.w. $w \in L(M)$. Sei $w \in \Sigma^*$.

Satz

Seien $M=(Z, \Sigma, \delta, z_0, E)$ ein DFA und $M'=(Z', \Sigma, \delta', z'_0, E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Beweis

1. Wir zeigen: $w \in L(M')$ g.d.w. $w \in L(M)$. Sei $w \in \Sigma^*$. M durchläuft $z_0, \ldots, z_{|w|}$ entlang w und akzeptiert w g.d.w. $z_{|w|} \in E$.

Satz

Seien $M=(Z, \Sigma, \delta, z_0, E)$ ein DFA und $M'=(Z', \Sigma, \delta', z_0', E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Beweis

1. Wir zeigen: $w \in L(M')$ g.d.w. $w \in L(M)$. Sei $w \in \Sigma^*$.

M durchläuft $z_0, \ldots, z_{|w|}$ entlang w und akzeptiert w g.d.w. $z_{|w|} \in E$.

M' durchläuft $[z_0]_{\equiv}, \ldots, [z_{|w|}]_{\equiv}$ und akzeptiert w g.d.w. $[z_{|w|}]_{\equiv} \in E'$.

Satz

Seien $M=(Z, \Sigma, \delta, z_0, E)$ ein DFA und $M'=(Z', \Sigma, \delta', z_0', E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Beweis

1. Wir zeigen: $w \in L(M')$ g.d.w. $w \in L(M)$. Sei $w \in \Sigma^*$. M durchläuft $z_0, \ldots, z_{|w|}$ entlang w und akzeptiert w g.d.w. $z_{|w|} \in E$. M' durchläuft $[z_0]_{\equiv}, \ldots, [z_{|w|}]_{\equiv}$ und akzeptiert w g.d.w. $[z_{|w|}]_{\equiv} \in E'$.

Da per Definition $[z_{|w|}]_{\equiv} \in E'$ äquivalent zu $z_{|w|} \in E$ ist, folgt, dass L(M') = L(M).

Satz

Seien $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA und $M' = (Z', \Sigma, \delta', z'_0, E')$ der Äquivalenzklassenautomat zu M. Dann gilt

- 1. L(M') = L(M).
- 2. Falls alle Zustände in \mathbb{Z} von \mathbb{Z}_0 erreichbar sind, dann ist M' minimal, d.h. jeder DFA M'' mit L(M'') = L(M') hat mindestens so viele Zustände wie M'.

Beweis (Fortsetzung)

2. Wird in späterer Vorlesung gezeigt (nur FSK).

Algorithmus 3: Berechnung aller äquivalenten Zustände

```
Eingabe: DFA M = (Z, \Sigma, \delta, z_0, E), der keine unerreichbaren Zustände hat
Ausqabe: Partition \mathcal{P} = \{[z_1]_{=}, \dots, [z_m]_{=}\} von Z
Beginn
    initialisiere Partition \mathcal{P} mit E (falls nicht leer) und Z \setminus E (falls nicht leer);
    wiederhole
         für jedes K = \{z_1, \ldots, z_m\} \in \mathcal{P} \text{ mit } |m| \geq 2 \text{ tue}
              für iedes a \in \Sigma tue
                  berechne die Partition Q von \{z_1, \ldots, z_m\} über
                  dem Wert von [\delta(z_i, a)] für jedes i;
               \mathcal{P} := (\mathcal{P} \setminus \{K\}) \cup \mathcal{Q};
              Ende
         Ende
    bis sich \mathcal{P} nicht mehr verändert:
    return \mathcal{P}
Ende
```

Korrektheit von Algorithmus 3

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat.

Algorithmus 3 berechnet die Äquivalenzklassen bezüglich \equiv .

Korrektheit von Algorithmus 3

Satz

Sei $M = (Z, \Sigma, \delta, z_0, E)$ ein DFA, der keine unerreichbaren Zustände hat. Algorithmus 3 berechnet die Äquivalenzklassen bezüglich \equiv .

Beweis Wir führen den Beweis in zwei Schritten:

- 1. Wenn $z \equiv z'$, dann sind z und z' in derselben Klasse von \mathcal{P} .
- 2. Wenn $z \not\equiv z'$, dann sind z und z' in verschiedenen Klassen von \mathcal{P} .

Beweis (Fortsetzung)

1. Wir zeigen die Kontraposition: Wenn z und z' in verschiedenen Klassen von \mathcal{P} sind, dann $z \not\equiv z'$.

Beweis (Fortsetzung)

1. Wir zeigen die Kontraposition: Wenn z und z' in verschiedenen Klassen von \mathcal{P} sind, dann $z \not\equiv z'$. Und um $z \not\equiv z'$ zu zeigen, reicht es, ein Wort w zu finden, sodass $\widetilde{\delta}(z,w) \in \mathcal{E}$ und $\widetilde{\delta}(z',w) \notin \mathcal{E}$ oder umgekehrt.

Beweis (Fortsetzung)

1. Wir zeigen die Kontraposition: Wenn z und z' in verschiedenen Klassen von \mathcal{P} sind, dann $z \not\equiv z'$. Und um $z \not\equiv z'$ zu zeigen, reicht es, ein Wort w zu finden, sodass $\widetilde{\delta}(z,w) \in \mathcal{E}$ und $\widetilde{\delta}(z',w) \not\in \mathcal{E}$ oder umgekehrt.

Durch Induktion über die Anzahl n der Schleifeniterationen bis z und z' getrennt wurden.

Beweis (Fortsetzung)

1. Wir zeigen die Kontraposition: Wenn z und z' in verschiedenen Klassen von \mathcal{P} sind, dann $z \not\equiv z'$. Und um $z \not\equiv z'$ zu zeigen, reicht es, ein Wort w zu finden, sodass $\widetilde{\delta}(z,w) \in \mathcal{E}$ und $\widetilde{\delta}(z',w) \notin \mathcal{E}$ oder umgekehrt.

Durch Induktion über die Anzahl n der Schleifeniterationen bis z und z' getrennt wurden.

▶ Fall n=0: Da z und z' schon vor der ersten Iteration getrennt wurden, müssen $z \in E$ und $z' \notin E$ oder umgekehrt gelten. Wir nehmen $w=\varepsilon$: $\widetilde{\delta}(z,\varepsilon) \in E$ und $\widetilde{\delta}(z',\varepsilon) \notin E$ oder umgekehrt.

Beweis (Fortsetzung)

1. Wir zeigen die Kontraposition: Wenn z und z' in verschiedenen Klassen von $\mathcal P$ sind, dann $z\not\equiv z'$. Und um $z\not\equiv z'$ zu zeigen, reicht es, ein Wort w zu finden, sodass $\widetilde{\delta}(z,w)\in \mathcal E$ und $\widetilde{\delta}(z',w)\not\in \mathcal E$ oder umgekehrt.

Durch Induktion über die Anzahl n der Schleifeniterationen bis z und z' getrennt wurden.

- ► Fall n=0: Da z und z' schon vor der ersten Iteration getrennt wurden, müssen $z \in E$ und $z' \notin E$ oder umgekehrt gelten. Wir nehmen $w=\varepsilon$: $\widetilde{\delta}(z,\varepsilon) \in E$ und $\widetilde{\delta}(z',\varepsilon) \notin E$ oder umgekehrt.
- ▶ Fall n>0: Da z und z' in Iteration n getrennt wurden, muss es $a\in \Sigma$ geben, sodass $\delta(z,a)$ und $\delta(z',a)$ schon in Iteration n-1 getrennt waren. Die Induktionshypothese liefert ein Wort w' mit $\widetilde{\delta}(\delta(z,a),w')\in E$ und $\widetilde{\delta}(\delta(z',a),w')\notin E$ oder umgekehrt. Wir nehmen w=aw': $\widetilde{\delta}(z,aw')\in E$ und $\widetilde{\delta}(z',aw')\notin E$ oder umgekehrt.

Beweis (Fortsetzung)

2. Wir müssen zeigen, dass wenn $z \not\equiv z'$, dann sind z und z' in zwei verschiedenen Klassen von \mathcal{P} . Sei w ein Wort, sodass $\widetilde{\delta}(z,w) \in \mathcal{E}$ und $\widetilde{\delta}(z',w) \not\in \mathcal{E}$ oder umgekehrt.

Durch Induktion über |w|.

- ► Fall $w = \varepsilon$: Dann haben wir $\widetilde{\delta}(z, \varepsilon) \in E$ und $\widetilde{\delta}(z', \varepsilon) \notin E$ oder umgekehrt. Die Initialisierungsphase sorgt dafür, dass z und z' getrennt werden.
- Fall w ist von der Form aw': Dann haben wir $\widetilde{\delta}(z,aw') = \widetilde{\delta}(\delta(z,a),w') \in E$ und $\widetilde{\delta}(z',aw') = \widetilde{\delta}(\delta(z',a),w') \notin E$ oder umgekehrt. Per Induktionshypothese müssen $\delta(z,a)$ und $\delta(z',a)$ getrennt sein. Der Algorithmus muss z und z' trennen, wenn a betrachtet wird.

Algorithmus 4: Minimierung von DFAs

Eingabe: DFA $M = (Z, \Sigma, \delta, z_0, E)$

Ausgabe: Minimaler DFA M' mit L(M') = L(M)

Beginn

entferne Zustände aus M, die nicht vom Startzustand aus erreichbar sind; berechne äquivalente Zustände mit Algorithmus 3; erzeuge den Äquivalenzklassenautomat, indem die berechneten äquivalenten Zustände verschmolzen werden:

Ende