Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

Zentralübung 7

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 29. April 2025 Basierend auf Folien von PD Dr. David Sabel

Plan für heute

- 1. Das CLIQUE-Problem
- 2. Das GRAPH-COLORING-Problem
- 3. Das KNAPSACK-Problem (nur FSK)

1. Das CLIQUE-Problem

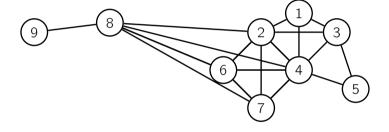
Cliquen in Graphen

Definition

Für einen ungerichteten Graphen G = (V, E) ist eine Clique der Größe k eine Menge $V' \subseteq V$, sodass |V'| = k und für alle $u, v \in V'$ mit $u \neq v$ gilt: $\{u, v\} \in E$.

Hat der Graph eine Clique der Größe

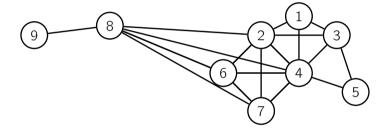
- a) 1?
- b) 2?
- c) 3?
- d) 4?
- e) 5?
- f) 6?
- g) 7?



Hat der Graph eine Clique der Größe

- a) 1?
- b) 2?
- c) 3?
- d) 4?
- e) 5?
- f) 6?
- g) 7?

Antwort: a)-e).



Das CLIQUE-Problem

Definition

Das CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$

gefragt: Besitzt G eine Clique der Größe k?

Satz

CLIQUE ist \mathcal{NP} -vollständig.

Nachweis der \mathcal{NP} -Vollständigkeit

Nachweis der \mathcal{NP} -Vollständigkeit einer Sprache L:

- 1. Zugehörigkeit zu \mathcal{NP} : Gib eine Polynomialzeit-beschränkte NTM an, die L entscheidet.
- 2. \mathcal{NP} -Schwere: Wähle ein \mathcal{NP} -schweres Problem L_0 und zeige $L_0 \leq_p L$.

Definition

Das FULL-CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E)

gefragt: Besitzt G eine Clique der Größe |V|?

Nehmen Sie an, dass $\mathcal{P} \neq \mathcal{NP}$. Ist FULL-CLIQUE \mathcal{NP} -vollständig?

Definition

Das FULL-CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E)

gefragt: Besitzt G eine Clique der Größe |V|?

Nehmen Sie an, dass $\mathcal{P} \neq \mathcal{NP}$. Ist FULL-CLIQUE \mathcal{NP} -vollständig?

Antwort:

Nein. Man kann in deterministischer Polynomialzeit prüfen, ob der Graph vollständig ist. Daher ist das problem in \mathcal{P} . Unter der Annahme $\mathcal{P} \neq \mathcal{N}\mathcal{P}$ ist das Problem nicht $\mathcal{N}\mathcal{P}$ -vollständig.

Definition

Das TWIN-CLIQUES-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$

gefragt: Besitzt G zwei Knotendisjunkte Cliquen der Größe k?

Nehmen Sie an, dass $\mathcal{P} \neq \mathcal{NP}$. Ist TWIN-CLIQUES \mathcal{NP} -vollständig?

Antwort:

Ja. Beweis:

Antwort:

Ja. Beweis:

1. TWIN-CLIQUES $\in \mathcal{NP}$:

NTM rät nichtdeterministisch disjunkte Knotenmengen $V_1, V_2 \subseteq V$ mit $|V_i| = k$ und prüft in deterministischer Polynomialzeit, ob V_1 und V_2 Cliquen sind.

2. TWIN-CLIQUES ist \mathcal{NP} -schwer: Wir zeigen CLIQUE \leq_p TWIN-CLIQUES.

2. TWIN-CLIQUES ist \mathcal{NP} -schwer:

Wir zeigen CLIQUE \leq_{p} TWIN-CLIQUES.

Sei
$$f((V, E), k) = ((V \cup V', E \cup E', k))$$
, wobei $V' = \{v' \mid v \in V\}$ und $E' = \{\{u', v'\} \mid \{u, v\} \in E\}$.

2. TWIN-CLIQUES ist \mathcal{NP} -schwer:

Wir zeigen CLIQUE \leq_p TWIN-CLIQUES.

Sei
$$f((V, E), k) = ((V \cup V', E \cup E', k))$$
, wobei $V' = \{v' \mid v \in V\}$ und $E' = \{\{u', v'\} \mid \{u, v\} \in E\}$.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

2. TWIN-CLIQUES ist \mathcal{NP} -schwer:

Wir zeigen CLIQUE \leq_p TWIN-CLIQUES.

Sei
$$f((V, E), k) = ((V \cup V', E \cup E', k))$$
, wobei $V' = \{v' \mid v \in V\}$ und $E' = \{\{u', v'\} \mid \{u, v\} \in E\}$.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

f ist korrekt:

$$((V, E), k) \in CLIQUE$$

g.d.w. (V, E) hat eine Clique der Größe k

g.d.w. (V, E) und (V', E') haben jeweils eine Clique der Größe k

g.d.w. $f((V, E), k) = ((V \cup V', E \cup E'), k) \in TWIN-CLIQUES$

Definition

Das TWO-CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E)

gefragt: Besitzt G eine Clique der Größe 2?

Nehmen Sie an, dass $P \neq \mathcal{NP}$. Ist TWO-CLIQUE \mathcal{NP} -vollständig?

Definition

Das TWO-CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E)

gefragt: Besitzt G eine Clique der Größe 2?

Nehmen Sie an, dass $P \neq \mathcal{NP}$. Ist TWO-CLIQUE \mathcal{NP} -vollständig?

Antwort:

Nein. Man kann in deterministischer Polynomialzeit prüfen, ob $E \neq \emptyset$. Daher ist das problem in \mathcal{P} . Unter der Annahme $\mathcal{P} \neq \mathcal{NP}$ ist das Problem nicht \mathcal{NP} -vollständig.

Definition

Das TRIPLE-CLIQUE-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E) und drei Zahlen $k_1, k_2, k_3 \in \mathbb{N}$

gefragt: Besitzt G Cliquen der Größen k₁, k₂ und k₃?

Nehmen Sie an, dass $\mathcal{P} \neq \mathcal{NP}$. Ist TRIPLE-CLIQUE \mathcal{NP} -vollständig?

Antwort:

Ja. TRIPLE-CLIQUE ist eigentlich das gleiche wie CLIQUE mit $\max\{k_1, k_2, k_3\}$. Wir bieten trotzdem einen \mathcal{NP} -Vollständigkeitsbeweis an:

1. TRIPLE-CLIQUE $\in \mathcal{NP}$:

NTM rät nichtdeterministisch Knotenmengen $V_1, V_2, V_3 \subseteq V$ mit $|V_i| = k_i$ und prüft in deterministischer Polynomialzeit, ob alle V_i Cliquen sind.

2. TRIPLE-CLIQUE ist \mathcal{NP} -schwer: Wir zeigen CLIQUE \leq_p TRIPLE-CLIQUE.

2. TRIPLE-CLIQUE ist \mathcal{NP} -schwer: Wir zeigen CLIQUE \leq_p TRIPLE-CLIQUE. Sei f((V, E), k)) = ((V, E), k, k, k).

2. TRIPLE-CLIQUE ist \mathcal{NP} -schwer:

Wir zeigen CLIQUE \leq_p TRIPLE-CLIQUE.

Sei
$$f((V, E), k)) = ((V, E), k, k, k)$$
.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

2. TRIPLE-CLIQUE ist \mathcal{NP} -schwer:

Wir zeigen CLIQUE \leq_p TRIPLE-CLIQUE.

Sei
$$f((V, E), k)) = ((V, E), k, k, k)$$
.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

f ist korrekt:

$$((V, E), k) \in CLIQUE$$

g.d.w. (V, E) hat eine Clique der Größe k

g.d.w. (V, E) hat Cliquen der Größen k, k und k

g.d.w. $((V, E), k, k, k) \in TRIPLE-CLIQUE$

2. Das GRAPH-COLORING-Problem

Das GRAPH-COLORING-Problem

Definition

Das GRAPH-COLORING-Problem lässt sich wie folgt formulieren.

gegeben: ein ungerichteter Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$

gefragt: Gibt es eine Färbung der Knoten in V mit höchstens k Farben (eine sogenannte k-Färbung), sodass keine zwei benachbarten Knoten in G die

gleiche Farbe erhalten?

Satz

GRAPH-COLORING ist \mathcal{NP} -vollständig.

Definition

Das EXAM-ASSIGN-Problem lässt sich wie folgt formulieren.

gegeben: eine Menge P von (studierende Person, Klausur)-Paaren, die erfassen,

welche Studierenden welche Klausure schreiben und eine Menge von Ter-

minen T

gefragt: Gibt es eine Zuordnung aller Klausuren auf Termine, sodass keine studie-

rende Person zur gleichen Zeit mehrere Klausuren schreiben muss?

Beweisen Sie, dass EXAM-ASSIGN \mathcal{NP} -vollständig ist.

Antwort:

- 1. EXAM-ASSIGN ist in \mathcal{NP} :
 Rate nichtdeterministisch eine Zuordnung Klausur zu Termin und prüfe anschließend pro studierende Person, ob ein Konflikt vorliegt.
- 2. EXAM-ASSIGN ist \mathcal{NP} -schwer: Wir zeigen GRAPH-COLORING \leq_p EXAM-ASSIGN.

Welche der beiden folgenden Anweisungen ergibt eine korrekte Reduktionsfunktion f?

- a) Pro Klausur erzeuge Knoten, pro studierende Person erzeuge Knoten.
 Pro (studierende Person, Klausur)-Paar erzeuge eine Kante im Graph.
 Pro Termin erzeuge eine Farbe.
- b) Pro Farbe erzeuge einen Termin.
 Pro Knoten v erzeuge eine Klausur v.
 Pro Kante e = {u, v} erzeuge studierende Person e, sodass e Klausur u und Klausur v schreibt, d.h. füge Paare (e, u) und (e, v) hinzu.

Welche der beiden folgenden Anweisungen ergibt eine korrekte Reduktionsfunktion f?

- a) Pro Klausur erzeuge Knoten, pro studierende Person erzeuge Knoten.
 Pro (studierende Person, Klausur)-Paar erzeuge eine Kante im Graph.
 Pro Termin erzeuge eine Farbe.
- b) Pro Farbe erzeuge einen Termin.
 Pro Knoten v erzeuge eine Klausur v.
 Pro Kante e = {u, v} erzeuge studierende Person e, sodass e Klausur u und Klausur v schreibt, d.h. füge Paare (e, u) und (e, v) hinzu.

Antwort: b).

2. EXAM-ASSIGN ist \mathcal{NP} -schwer: Wir zeigen GRAPH-COLORING \leq_p EXAM-ASSIGN.

2. EXAM-ASSIGN ist \mathcal{NP} -schwer:

Wir zeigen GRAPH-COLORING \leq_p EXAM-ASSIGN.

$$f((V, E), k) = (P, T)$$
, wobei $P = \bigcup \{\{(e, u), (e, v)\} \mid e = \{u, v\} \in E\}$ und $T = \{t_1, \ldots, t_k\}$, wobei die t_i paarweise disjunkt sind.

2. EXAM-ASSIGN ist \mathcal{NP} -schwer:

Wir zeigen GRAPH-COLORING \leq_p EXAM-ASSIGN.

$$f((V, E), k) = (P, T)$$
, wobei $P = \bigcup \{\{(e, u), (e, v)\} \mid e = \{u, v\} \in E\}$ und $T = \{t_1, \dots, t_k\}$, wobei die t_i paarweise disjunkt sind.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

2. EXAM-ASSIGN ist \mathcal{NP} -schwer:

Wir zeigen GRAPH-COLORING \leq_p EXAM-ASSIGN.

$$f((V, E), k) = (P, T)$$
, wobei

$$P = \bigcup \{\{(e, u), (e, v)\} \mid e = \{u, v\} \in E\}$$
 und

 $T = \{t_1, \ldots, t_k\}$, wobei die t_i paarweise disjunkt sind.

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

f ist korrekt:

$$((V, E), k) \in GRAPH-COLORING$$

- g.d.w. es gibt eine k-Färbung, sodass keine benachbarten Knoten dieselbe Farbe haben
- g.d.w. es gibt eine Zuordnung Klausur zu Termin, sodass keine studierende Person zwei Klausuren am gleichen Termin haben
- g.d.w. $f((V, E), k) = (P, T) \in EXAM-ASSIGN$

3. Das KNAPSACK-Problem (nur FSK)

Das KNAPSACK-Problem

Definition

Das KNAPSACK-Problem lässt sich wie folgt formulieren.

gegeben: k Gegenstände mit Gewichten $w_1, \ldots, w_k \in \mathbb{N}$ und

Nutzenwerten $n_1, \ldots, n_k \in \mathbb{N}$,

sowie zwei Schwellenwerte $s_w, s_n \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} w_i \le s_w$ und $\sum_{i \in I} n_i \ge s_n$?

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

Das TASK-MACHINE-Problem

Definition

Das TASK-MACHINE-Problem lässt sich wie folgt formulieren.

gegeben: Zielwert W und n Aufgaben mit

- ullet t_i ist die Bearbeitungszeit (in Stunden) von Aufgabe i
- d_i ist die Deadline (in Stunden) von Aufgabe i
- *val*_i ist der Wert von Aufgabe i.

gefragt:

Es gibt eine Maschine, die immer eine Aufgabe vollständig (ohne Unterbrechung) bearbeiten kann, und dann die nächste usw. Nur wenn eine Aufgabe vor der Deadline fertigstellt wird, wird der Wert val_i erzielt, ansonsten wird für diese Aufgabe kein Wert erzielt.

Gibt es eine Abarbeitungsreihenfolge der Aufgaben, sodass der Ziel-

wert W mindestens erreicht wird?

Beweisen Sie, dass TASK-MACHINE \mathcal{NP} -vollständig ist.

Beweisen Sie, dass TASK-MACHINE \mathcal{NP} -vollständig ist.

Antwort:

1. TASK-MACHINE $\in \mathcal{NP}$:

NTM rät nichtdeterministisch eine Abarbeitungsreihenfolge und prüft in deterministischer Polynomialzeit, ob der Wert W erreicht wird.

2. TASK-MACHINE ist \mathcal{NP} -schwer:

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$

wobei

- ► *W* = ?
- $ightharpoonup t_i = ?$
- $ightharpoonup d_i = ?$
- ightharpoonup val_i = ?

2. TASK-MACHINE ist \mathcal{NP} -schwer:

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$

wobei

- ► *W* = ?
- $ightharpoonup t_i = w_i$
- $ightharpoonup d_i = ?$
- ightharpoonup val_i = ?

2. TASK-MACHINE ist \mathcal{NP} -schwer:

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$

wobei

- ► *W* = ?
- $ightharpoonup t_i = w_i$
- $ightharpoonup d_i = s_w$ (für alle *i* gleich)
- ightharpoonup val_i = ?

2. TASK-MACHINE ist \mathcal{NP} -schwer:

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$
 wobei

- ► *W* = ?
- $ightharpoonup t_i = w_i$
- $ightharpoonup d_i = s_w$ (für alle *i* gleich)
- $ightharpoonup val_i = n_i$

2. TASK-MACHINE ist \mathcal{NP} -schwer:

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$
 wobei

- $ightharpoonup W = s_n$
- $ightharpoonup t_i = w_i$
- $ightharpoonup d_i = s_w$ (für alle *i* gleich)
- $ightharpoonup val_i = n_i$

2. TASK-MACHINE ist \mathcal{NP} -schwer:

Wir zeigen KNAPSACK \leq_p TASK-MACHINE.

$$f(w_1, \ldots, w_k, n_1, \ldots, n_k, s_w, s_n) = (W, t_1, \ldots, t_k, d_1, \ldots, d_k, val_1, \ldots, val_k),$$
 wobei

- $ightharpoonup W = s_n$
- $ightharpoonup t_i = w_i$
- $ightharpoonup d_i = s_w$ (für alle *i* gleich)
- $ightharpoonup val_i = n_i$

Die Funktion f ist total und in deterministischer Polynomialzeit berechenbar.

f ist korrekt:

$$(w_1,\ldots,w_k,n_1,\ldots,n_k,s_w,s_n) \in \mathsf{KNAPSACK}$$

- g.d.w. es gibt eine Teilmenge $I \subseteq \{1, \ldots, k\}$, sodass $\sum_{i \in I} w_i \le s_w$ und $\sum_{i \in I} n_i \ge s_n$
- g.d.w. es gibt eine Abarbeitungsreihenfolge, sodass Aufgaben $I \subseteq \{1, \ldots, k\}$ vor der Deadline s_w mit einem Gesamtwert $\sum n_i \ge s_n$ abgearbeitet werden
- q.d.w. $f(w_1, ..., w_k, n_1, ..., n_k, s_w, s_n) =$ $(W. t_1....t_k, d_1,..., d_k, val_1,..., val_k) \in TASK-MACHINE$