Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

Zentralübung 6

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Plan für heute

- 1. Reduktionen
- 2. Der Satz von Rice
- 3. Das Postsche Korrespondenzproblem (PCP)
- 4. Primitiv und μ -rekursive Funktionen (nur FSK)

1. Reduktionen

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen.

Dann sagen wir L_1 ist auf L_2 reduzierbar (geschrieben $L_1 \leq L_2$), falls es eine totale berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$.

Die Funktion f nennt man Reduktion.

Eselsbrücke:

- ► ≤ sagt die Wahrheit.
- "Reduktion" täuscht. Man reduziert das "kleine" Problem auf das "große".

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Zeige $L = \{w \mid TM M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Zeige $L = \{w \mid TM M_w \text{ berechnet } 1 \text{ bei Eingabe } 0\}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf L reduzieren:

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf L reduzieren:

Wir reduzieren H_0 auf L (d.h. $H_0 \le L$). $H_0 = \{ w \mid TM \ M_w \ hält bei leerer Eingabe \}.$

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf L reduzieren:

```
Wir reduzieren H_0 auf L (d.h. H_0 \le L).

H_0 = \{ w \mid TM \ M_w \ hält bei leerer Eingabe \}.
```

2. Definiere f (mit $w \in H_0$ g.d.w. $f(w) \in L$):

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf *L* reduzieren:

Wir reduzieren H_0 auf L (d.h. $H_0 \le L$). $H_0 = \{ w \mid \text{TM } M_w \text{ hält bei leerer Eingabe} \}.$

2. Definiere f (mit $w \in H_0$ g.d.w. $f(w) \in L$):

Sei f die folgende Funktion, die bei Eingabe w, eine neue Turingmaschinenbeschreibung u erstellt, sodass M_u sich wie folgt verhält:

- $ightharpoonup M_u$ löscht das Band und simuliert M_w auf leerer Eingabe.
- ightharpoonup Wenn M_w anhält, dann schreibe 1 auf das Band und akzeptiere.

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf L reduzieren:

Wir reduzieren H_0 auf L (d.h. $H_0 \le L$). $H_0 = \{ w \mid TM \ M_w \ h\"{a}lt \ bei \ leerer \ Eingabe \}.$

2. Definiere f (mit $w \in H_0$ g.d.w. $f(w) \in L$):

Sei f die folgende Funktion, die bei Eingabe w, eine neue Turingmaschinenbeschreibung u erstellt, sodass M_u sich wie folgt verhält:

- $ightharpoonup M_u$ löscht das Band und simuliert M_w auf leerer Eingabe.
- ightharpoonup Wenn M_w anhält, dann schreibe 1 auf das Band und akzeptiere.
- 3. Zeige, dass f total und berechenbar ist:

Zeige $L = \{w \mid TM \ M_w \text{ berechnet 1 bei Eingabe 0} \}$ ist unentscheidbar.

Antwort:

1. Wähle unentscheidbare Sprache, die wir auf L reduzieren:

Wir reduzieren H_0 auf L (d.h. $H_0 \le L$). $H_0 = \{ w \mid TM \ M_w \ h\"{a}lt \ bei \ leerer \ Eingabe \}.$

2. Definiere f (mit $w \in H_0$ g.d.w. $f(w) \in L$):

Sei f die folgende Funktion, die bei Eingabe w, eine neue Turingmaschinenbeschreibung u erstellt, sodass M_u sich wie folgt verhält:

- $ightharpoonup M_u$ löscht das Band und simuliert M_w auf leerer Eingabe.
- ightharpoonup Wenn M_w anhält, dann schreibe 1 auf das Band und akzeptiere.
- 3. Zeige, dass f total und berechenbar ist:

Totalität ist klar. Die TM M_u ist konstruierbar und das (De)kodieren von w und u auf TM ist möglich.

```
4. Zeige w \in H_0 g.d.w. f(w) \in L:
Es gilt:
w \in H_0
```

4. Zeige $w \in H_0$ g.d.w. $f(w) \in L$: Es gilt: $w \in H_0$ g.d.w. M_w hält bei leerer Eingabe

Es gilt:

 $w \in H_0$

g.d.w. M_w hält bei leerer Eingabe

g.d.w. M_u hält bei jeder Eingabe (auch bei 0) und schreibt 1 auf das Band

Es gilt:

 $w \in H_0$

g.d.w. M_w hält bei leerer Eingabe

g.d.w. M_u hält bei jeder Eingabe (auch bei 0) und schreibt 1 auf das Band

g.d.w. M_u berechnet 1 bei Eingabe 0

Es gilt:

$$w \in H_0$$

g.d.w. M_w hält bei leerer Eingabe

g.d.w. M_u hält bei jeder Eingabe (auch bei 0) und schreibt 1 auf das Band

g.d.w. M_u berechnet 1 bei Eingabe 0

g.d.w.
$$u = f(w) \in L$$

Es gilt:

$$w \in H_0$$

g.d.w. M_w hält bei leerer Eingabe

g.d.w. M_u hält bei jeder Eingabe (auch bei 0) und schreibt 1 auf das Band

g.d.w. M_u berechnet 1 bei Eingabe 0

g.d.w.
$$u = f(w) \in L$$

5. Damit gilt $H_0 \leq L$. Da H_0 unentscheidbar ist, ist auch L unentscheidbar.

2. Der Satz von Rice

Satz von Rice

Sei $\mathcal R$ die Klasse aller turingberechenbaren Funktionen. Sei $\mathcal S$ eine beliebige Teilmenge, sodass $\emptyset \subset \mathcal S \subset \mathcal R$. Dann ist folgende Sprache unentscheidbar:

 $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$

Anwendung des Satzes von Rice

Sei L eine Sprache, die als unentscheidbar zu beweisen ist.

Schritte:

- 1. Definiere Menge S von Funktionen.
- 2. Zeige Nichttrivialität von S.
- 3. Begründe, dass S richtig gewählt ist, d.h. C(S) = L.
- 4. Der Satz von Rice zeigt dann das Resultat.

Aufgabe: Den Satz von Rice anwenden

Sei $L = \{w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}.$

Aufgabe: Den Satz von Rice anwenden

Sei $L = \{w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}.$

Antwort:

1. $S = \{f \mid f \text{ ist an der Stelle 0 undefiniert oder an den Stellen 0 und 1 definiert}\}$.

Sei $L = \{w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}.$

- 1. $S = \{f \mid f \text{ ist an der Stelle 0 undefiniert oder an den Stellen 0 und 1 definiert}\}$.
- 2. S ist nicht trivial:
 - \blacktriangleright $\emptyset \subset \mathcal{S}$, da $id \in \mathcal{S}$ mit id(x) = x.
 - $ightharpoonup \mathcal{S} \subset \mathcal{R}$, da für f, mit f(0) = 1 aber f(i) undefiniert für $i \neq 0$, gilt $f \notin \mathcal{S}$.

Sei $L = \{w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}.$

- 1. $S = \{f \mid f \text{ ist an der Stelle 0 undefiniert oder an den Stellen 0 und 1 definiert}\}$.
- 2. S ist nicht trivial:
 - \blacktriangleright $\emptyset \subset \mathcal{S}$, da $id \in \mathcal{S}$ mit id(x) = x.
 - ▶ $S \subset R$, da für f, mit f(0) = 1 aber f(i) undefiniert für $i \neq 0$, gilt $f \notin S$.
- 3. $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ $= \{ w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}$ = L.

Sei $L = \{w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}.$

- 1. $S = \{f \mid f \text{ ist an der Stelle 0 undefiniert oder an den Stellen 0 und 1 definiert}\}$.
- 2. S ist nicht trivial:
 - \blacktriangleright $\emptyset \subset \mathcal{S}$, da $id \in \mathcal{S}$ mit id(x) = x.
 - ▶ $S \subset R$, da für f, mit f(0) = 1 aber f(i) undefiniert für $i \neq 0$, gilt $f \notin S$.
- 3. $C(S) = \{ w \mid \text{die von } M_w \text{ berechnete Funktion liegt in } S \}$ $= \{ w \mid \text{wenn } M_w \text{ auf Eingabe 0 hält, dann hält } M_w \text{ auf Eingabe 1} \}$ = L.
- 4. Mit dem Satz von Rice ist C(S) unentscheidbar.

3. Das Postsche Korrespondenzproblem (PCP)

Eine Verschlüsselungstabelle ist eine Tabelle T

Wort	Kodewort
w_1	k_1
÷	:
W_n	k _n

wobei $w_i, k_i \in \Sigma^+$.

Eine Verschlüsselungstabelle ist eine Tabelle T

Wort	Kodewort
W_1	k_1
÷	:
W_n	k_n

wobei $w_i, k_i \in \Sigma^+$.

Kodierung von ganzen Zeichenketten: aus $w=w_{i_1}\cdots w_{i_m}$ wird $k_{i_1}\cdots k_{i_m}$.

Eine Verschlüsselungstabelle ist eine Tabelle T

Wort	Kodewort
w_1	k_1
:	:
W_n	k_n

wobei $w_i, k_i \in \Sigma^+$.

Kodierung von ganzen Zeichenketten: aus $w = w_{i_1} \cdots w_{i_m}$ wird $k_{i_1} \cdots k_{i_m}$.

Eine Verschlüsselungstabelle ist unsicher, wenn es ein Wort w gibt, dessen Kodierung wieder w ist.

Beispiel für eine Verschlüsselungstabelle

Wort	Kodewort
mit	für
der	das
frau	fru
mann	man
an	nanu
hund	katze
dem	den
ein	nein

Aus derhundmitdemmann wird z.B. daskatzefürdenman.

Beispiel für eine Verschlüsselungstabelle

Wort	Kodewort
mit	für
der	das
frau	fru
mann	man
an	nanu
hund	katze
dem	den
ein	nein

Aus derhundmitdemmann wird z.B. daskatzefürdenman.

Ist das Beispiel unsicher?

Beispiel für eine Verschlüsselungstabelle

Wort	Kodewort
mit	für
der	das
frau	fru
mann	man
an	nanu
hund	katze
dem	den
ein	nein

Aus derhundmitdemmann wird z.B. daskatzefürdenman.

Ist das Beispiel unsicher?

Antwort: Ja. da mannein zu mannein wird.

Ein Verschlüsselungsproblems

Ist es entscheidbar, ob eine Verschlüsselungstabelle unsicher ist?

Ein Verschlüsselungsproblems

Ist es entscheidbar, ob eine Verschlüsselungstabelle unsicher ist?

Antwort: Nein, da das Problem zu PCP äquivalent ist.

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \dots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das Postsche Korrespondenzproblem (PCP) ist die Frage, ob es für die gegebene Folge K eine nichtleere Folge von Indizes i_1, \ldots, i_m mit $i_j \in \{1, \ldots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

Aufgabe: PCP-Instanz lösen

Sei
$$K = \begin{pmatrix} \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix}$$
 eine PCP-Instanz. Hat sie eine Lösung?

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

Antwort:

► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen): $\begin{bmatrix} a \\ ab \end{bmatrix}$

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

- ► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen): | ab ab
- ▶ Danach muss oben ein b kommen. Nur Stein 1 ist möglich: $\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}$

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

Antwort:

- ► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen):
- ▶ Danach muss oben ein *b* kommen. Nur Stein 1 ist möglich:

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}$$
$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ ab \end{bmatrix}$$

► Oben fehlt *ca*. Nur Stein 3 ist möglich:

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

- ► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen):
- ▶ Danach muss oben ein *b* kommen. Nur Stein **1** ist möglich:
- ► Oben fehlt *ca.* Nur Stein 3 ist möglich:
- ▶ Oben fehlt a. Nur Stein 2 oder 4 ist möglich. Wir nehmen 2:

$$\begin{bmatrix} a \\ a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}$$

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}$$

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}$$

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

- ► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen):
- ▶ Danach muss oben ein *b* kommen. Nur Stein 1 ist möglich:
- ▶ Oben fehlt *ca.* Nur Stein 3 ist möglich:
- ▶ Oben fehlt a. Nur Stein 2 oder 4 ist möglich. Wir nehmen 2:
- ▶ Oben fehlt *ab.* Nur Stein 2 oder 4 ist möglich. Wir nehmen 4:

```
 \begin{bmatrix} ab \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix} 
 \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix} 
 \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} abc \\ ca \end{bmatrix}
```

Sei
$$K = \left(\begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right)$$
 eine PCP-Instanz.

- ► Eine Lösung muss mit Stein 2 beginnen (wegen gleichen Anfängen):
- ▶ Danach muss oben ein *b* kommen. Nur Stein 1 ist möglich:
- ▶ Oben fehlt *ca*. Nur Stein 3 ist möglich:
- ▶ Oben fehlt a. Nur Stein 2 oder 4 ist möglich. Wir nehmen 2:
- ▶ Oben fehlt *ab*. Nur Stein 2 oder 4 ist möglich. Wir nehmen 4:
- ▶ Dies führt zur Lösung 2, 1, 3, 2, 4.

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}$$

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}$$

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}$$

$$\begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} ab \\ ca \end{bmatrix}$$

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen, wobei L_1 unentscheidbar ist. Wie können wir zeigen, dass L_2 unentscheidbar ist?

- a) Zeige, dass es eine totale und berechenbare Funktion f gibt mit $w \in L_2$ g.d.w. $f(w) \in L_1$.
- b) Zeige, dass es eine totale und berechenbare Funktion f gibt mit $w \in L_1$ g.d.w. $f(w) \in L_2$.
- c) Zeige $L_1 \leq L_2$.
- d) Zeige $L_2 \leq L_1$.

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen, wobei L_1 unentscheidbar ist. Wie können wir zeigen, dass L_2 unentscheidbar ist?

- a) Zeige, dass es eine totale und berechenbare Funktion f gibt mit $w \in L_2$ g.d.w. $f(w) \in L_1$.
- b) Zeige, dass es eine totale und berechenbare Funktion f gibt mit $w \in L_1$ g.d.w. $f(w) \in L_2$.
- c) Zeige $L_1 \leq L_2$.
- d) Zeige $L_2 \leq L_1$.

Antwort: b) und c).

4. Primitiv und μ -rekursive Funktionen (nur FSK)

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ ist primitiv rekursiv, wenn sie der folgenden Definition genügt:

- ▶ Jede konstante Funktion $f(x_1,...,x_k) = c \in \mathbb{N}$ ist primitiv rekursiv.
- ▶ Die Projektionsfunktionen $\pi_i^k(x_1, ..., x_k) = x_i$ sind primitiv rekursiv.
- ▶ Die Nachfolgerfunktion succ(x) = x + 1 ist primitiv rekursiv.
- ► Komposition/Einsetzung: Wenn $g: \mathbb{N}^m \to \mathbb{N}$ und für $i = 1, ..., m: h_i: \mathbb{N}^k \to \mathbb{N}$ primitiv rekursiv sind, dann ist auch f mit

 $f(x_1,\ldots,x_k)=g(h_1(x_1,\ldots,x_k),\ldots,h_m(x_1,\ldots,x_k))$ primitiv rekursiv.

(Fortsetzung folgt.)

▶ Rekursion: Wenn $g: \mathbb{N}^{k-1} \to \mathbb{N}$ und $h: \mathbb{N}^{k+1} \to \mathbb{N}$ primitiv rekursiv sind, dann ist auch f mit

$$f(x_1, \dots, x_k) = \begin{cases} g(x_2, \dots, x_k) & \text{falls } x_1 = 0 \\ h(f(x_1 - 1, x_2, \dots, x_k), x_1 - 1, x_2, \dots, x_k) & \text{sonst} \end{cases}$$

primitiv rekursiv.

- ▶ Vertauschen, Verdoppeln, Entfernen von Argumenten ist primitiv rekursiv.
- ► Rekursionsabstieg muss nicht über das erste, sondern kann auch über das *i*-te Argument erfolgen.
- Addition add(x, y) = x + y ist primitiv rekursiv.
- ► Multiplikation $mult(x, y) = x \cdot y$ ist primitiv rekursiv.
- ▶ Die angepasste Differenz $sub(x, y) = \begin{cases} x y & \text{falls } x \ge y \\ 0 & \text{sonst} \end{cases}$ ist primitiv rekursiv.

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ▶ g() = ?
- \blacktriangleright h(w,x) = ?

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

$$ightharpoonup g() = 0$$

$$h(w,x) = ?$$

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup q() = 0
- h(w,x) = add(w,add(x,1))

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup q() = 0
- ► $h(w,x) = add(w, add(x,1)) = add(\pi_1^2(w,x), r(w,x))$, wobei
 - ightharpoonup r(w,x) = ?

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup g() = 0
- $h(w,x) = add(w,add(x,1)) = add(\pi_1^2(w,x),r(w,x)), \text{ wobei}$
 - $r(w,x) = add(\pi_2^2(w,x),s(w,x))$

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup g() = 0
- \blacktriangleright $h(w,x) = add(w,add(x,1)) = add(\pi_1^2(w,x),r(w,x))$, wobei
 - $ightharpoonup r(w, x) = add(\pi_2^2(w, x), s(w, x))$
 - ► s(w, x) = ?

Zeige ausführlich, dass die Summenfunktion mit sum(0) = 0 und sum(n) = sum(n-1) + n für n > 0 primitiv rekursiv ist.

Antwort:

$$sum(x) = \begin{cases} g() & \text{falls } x = 0\\ h(sum(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup g() = 0
- $h(w,x) = add(w,add(x,1)) = add(\pi_1^2(w,x),r(w,x)), \text{ wobei}$
 - $ightharpoonup r(w, x) = add(\pi_2^2(w, x), s(w, x))$
 - ► s(w, x) = 1

Zeige, dass die Funktion

$$max(x,y) = \begin{cases} x & \text{falls } x \ge y \\ y & \text{sonst} \end{cases}$$

primitiv rekursiv ist.

Zeige, dass die Funktion

$$max(x,y) = \begin{cases} x & \text{falls } x \ge y \\ y & \text{sonst} \end{cases}$$

primitiv rekursiv ist.

Antwort:

Es gilt max(x, y) = add(x, sub(y, x)), denn:

- ▶ Wenn $x \ge y$, dann sub(y, x) = 0 und add(x, 0) = x.
- ► Wenn x < y, dann sub(y, x) = y x und add(x, y x) = y.

Zeige, dass die Funktion

$$max(x,y) = \begin{cases} x & \text{falls } x \ge y \\ y & \text{sonst} \end{cases}$$

primitiv rekursiv ist.

Antwort:

Es gilt max(x, y) = add(x, sub(y, x)), denn:

- ▶ Wenn $x \ge y$, dann sub(y, x) = 0 und add(x, 0) = x.
- ► Wenn x < y, dann sub(y, x) = y x und add(x, y x) = y.

Da add, sub und Komposition primitiv rekursiv sind, ist max auch primitiv rekursiv.

Zeige, dass die Funktion absdiff (x, y) = |x - y| primitiv rekursiv ist.

Zeige, dass die Funktion absdiff (x, y) = |x - y| primitiv rekursiv ist.

Antwort:

Beachte:

$$\begin{array}{c|cccc} & sub(x,y) & sub(y,x) & absdiff(x,y) \\ \hline x \leq y & 0 & y-x & y-x \\ x > y & x-y & 0 & x-y \\ \end{array}$$

Zeige, dass die Funktion absdiff (x, y) = |x - y| primitiv rekursiv ist.

Antwort:

Beachte:

Daher absdiff(x, y) = add(sub(x, y), sub(y, x)).

Da add, sub und Komposition primitiv rekursiv sind, ist auch absdiff primitiv rekursiv.

- ▶ Primitiv rekursive Funktionen sind Funktionen $\mathbb{N}^k \to \mathbb{N}$.
- ▶ Prädikate liefern eigentlich wahr oder falsch.
- ▶ Wir verwenden $P : \mathbb{N}^k \to \{0, 1\}$ für Prädikate P.
- ▶ Das passt immer noch zu den primitiv rekursiven Funktionen.

Zeige, dass das folgende Prädikat primitiv rekursiv ist:

$$equal(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

Zeige, dass das folgende Prädikat primitiv rekursiv ist:

$$equal(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

Antwort:

Beachte: equal(x, y) gilt g.d.w. |x - y| = 0. Daher: equal(x, y) = eq0?(absdiff(x, y)), wobei

► D.h.
$$eq0?(x) = \begin{cases} g() & \text{falls } x = 0 \\ h(eq0?(x-1), x-1) & \text{sonst} \end{cases}$$

$$ightharpoonup g() = ?$$

►
$$h(w, x) = ?$$

Zeige, dass das folgende Prädikat primitiv rekursiv ist:

$$equal(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

Antwort:

Beachte: equal(x, y) gilt g.d.w. |x - y| = 0. Daher: equal(x, y) = eq0?(absdiff(x, y)), wobei

► D.h.
$$eq0?(x) = \begin{cases} g() & \text{falls } x = 0 \\ h(eq0?(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup g() = 1
- ► h(w, x) = ?

Zeige, dass das folgende Prädikat primitiv rekursiv ist:

$$equal(x, y) = \begin{cases} 1 & \text{falls } x = y \\ 0 & \text{sonst} \end{cases}$$

Antwort:

Beachte: equal(x, y) gilt g.d.w. |x - y| = 0. Daher: equal(x, y) = eq0?(absdiff(x, y)), wobei

► D.h.
$$eq0?(x) = \begin{cases} g() & \text{falls } x = 0 \\ h(eq0?(x-1), x-1) & \text{sonst} \end{cases}$$

- ightharpoonup g() = 1
- ► h(w, x) = 0

Sei $h: \mathbb{N}^{k+1} \to \mathbb{N}$ eine (partielle oder totale) Funktion.

Dann ist $\mu h : \mathbb{N}^k \to \mathbb{N}$ definiert als

$$(\mu h)(x_1, \dots, x_k) = \begin{cases} n & \text{falls } h(\underline{n}, x_1, \dots, x_k) = 0 \text{ und für} \\ & \text{alle } m < \underline{n} \text{: } h(m, x_1, \dots, x_k) \text{ ist definiert} \\ & \text{und } h(m, x_1, \dots, x_k) > 0 \end{cases}$$
undefiniert sonst

Der μ -Operator "sucht" nach der ersten Nullstelle von h.

Wenn diese nicht existiert (entweder da h keine Nullstelle hat, oder da h undefiniert ist für Werte, die kleiner als die Nullstelle sind), dann ist auch μh undefiniert.

Eine Funktion $f: \mathbb{N}^k \to \mathbb{N}$ ist μ -rekursiv, wenn sie der folgenden Definition genügt:

- ▶ Jede konstante Funktion $f(x_1, ..., x_k) = c \in \mathbb{N}$ ist μ -rekursiv.
- ▶ Die Projektionsfunktionen $\pi_i^k(x_1, ..., x_k) = x_i$ sind μ -rekursiv.
- ▶ Die Nachfolgerfunktion succ(x) = x + 1 ist μ -rekursiv.
- ► Komposition/Einsetzung: Wenn $g: \mathbb{N}^m \to \mathbb{N}$ und für $i = 1, ..., m: h_i: \mathbb{N}^k \to \mathbb{N}$ μ -rekursiv sind, dann ist auch f mit $f(x_1, ..., x_k) = g(h_1(x_1, ..., x_k), ..., h_m(x_1, ..., x_k))$ μ -rekursiv.

(Fortsetzung folgt.)

▶ Rekursion: Wenn $g: \mathbb{N}^{k-1} \to \mathbb{N}$ und $h: \mathbb{N}^{k+1} \to \mathbb{N}$ μ -rekursiv sind, dann ist

$$f(x_1, \dots, x_k) = \begin{cases} g(x_2, \dots, x_k) & \text{falls } x_1 = 0 \\ h(f(x_1 - 1, x_2, \dots, x_k), x_1 - 1, x_2, \dots, x_k) & \text{sonst} \end{cases}$$

auch μ -rekursiv.

▶ μ-Operator: Wenn $h: \mathbb{N}^{k+1} \to \mathbb{N}$ μ-rekursiv ist, dann ist auch $f = \mu h$ μ-rekursiv.

Welche Funktion wird durch μh_i mit

a)
$$h_1(x, y) = sub(x, y)$$

b)
$$h_2(x, y) = sub(y, x)$$

c)
$$h_3(x, y) = sub(y, mult(2, x))$$

berechnet?

a)
$$h_1(x, y) = sub(x, y)$$

Antwort:

a) $h_1(x, y) = sub(x, y)$

Da sub überall definiert ist, berechnet μh_1 das kleinste x, sodass sub(x,y)=0.

Zentralübung 6 31/33 Plan Reduktionen Rice PCP Rekursio

Antwort:

a) $h_1(x, y) = sub(x, y)$

Da sub überall definiert ist, berechnet μh_1 das kleinste x, sodass sub(x,y)=0.

Das gilt schon für x = 0, also $(\mu h_1)(y) = 0$.

b)
$$h_2(x, y) = sub(y, x)$$

b)
$$h_2(x,y) = sub(y,x)$$

Da sub überall definiert ist, berechnet μh_2 das kleinste x , sodass $sub(y,x) = 0$

b)
$$h_2(x,y) = sub(y,x)$$

Da sub überall definiert ist, berechnet μh_2 das kleinste x , sodass $sub(y,x) = 0$
Dies gilt für $x = y$. Zudem gilt $sub(y,z) > 0$ für alle $z < y$. Daher $(\mu h_2)(y) = y$.

c)
$$h_3(x, y) = sub(y, mult(2, x))$$

c)
$$h_3(x, y) = sub(y, mult(2, x))$$

Wir suchen das kleinste x , sodass $y - 2x < 0$.

c)
$$h_3(x,y) = sub(y, mult(2,x))$$

Wir suchen das kleinste x , sodass $y - 2x \le 0$.
Dies gilt für $x = \lceil y/2 \rceil$. Daher $(\mu h_3)(y) = \lceil y/2 \rceil$.