Formale Sprachen und Komplexität Sommersemester 2025

12a

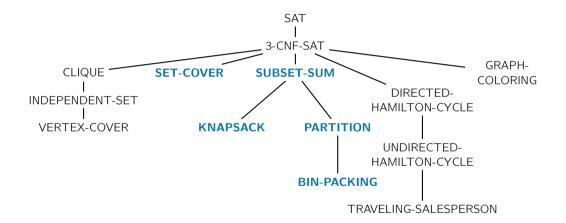
NP-Vollständigkeit von SET-COVER, SUBSET-SUM, KNAPSACK, PARTITION und BIN-PACKING

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Überblick über \mathcal{NP} -Vollständigkeitsbeweise



Das SET-COVER-Problem

Definition

Das SET-COVER-Problem lässt sich wie folgt formulieren.

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$,

wobei M eine endliche Grundmenge ist, und

eine Zahl $n \le k$

gefragt: Gibt es eine Auswahl von n Mengen T_{i_1}, \ldots, T_{i_n} $(i_j \in \{1, \ldots, k\})$ mit

 $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Das SET-COVER-Problem

Definition

Das SET-COVER-Problem lässt sich wie folgt formulieren.

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$,

wobei M eine endliche Grundmenge ist, und

eine Zahl $n \le k$

gefragt: Gibt es eine Auswahl von n Mengen T_{i_1}, \ldots, T_{i_n} $(i_j \in \{1, \ldots, k\})$ mit

 $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Beispiel:

Gegeben seien $T_1 = \{1, 2, 3, 5\}, T_2 = \{1, 2\}, T_3 = \{3, 4\}, T_4 = \{3\}$ mit $M = \{1, 2, 3, 4, 5\}$ und n = 2.

Das SET-COVER-Problem

Definition

Das SET-COVER-Problem lässt sich wie folgt formulieren.

gegeben: Mengen T_1, \ldots, T_k mit $T_1, \ldots, T_k \subseteq M$,

wobei M eine endliche Grundmenge ist, und

eine Zahl $n \le k$

gefragt: Gibt es eine Auswahl von n Mengen T_{i_1}, \ldots, T_{i_n} $(i_j \in \{1, \ldots, k\})$ mit

 $T_{i_1} \cup \cdots \cup T_{i_n} = M$?

Beispiel:

Gegeben seien $T_1 = \{1, 2, 3, 5\}, T_2 = \{1, 2\}, T_3 = \{3, 4\}, T_4 = \{3\}$ mit

 $M = \{1, 2, 3, 4, 5\}$ und n = 2.

Lösung: T_1 , T_3 , da $T_1 \cup T_3 = M$.

Satz

SET-COVER ist \mathcal{NP} -vollständig.

Satz

SET-COVER ist \mathcal{NP} -vollständig.

Beweis

1. SET-COVER $\in \mathcal{NP}$:

Rate nichtdeterministisch die n Mengen T_{i_1}, \ldots, T_{i_n} .

Verifiziere deterministisch, ob $T_{i_1} \cup \cdots \cup T_{i_n} = M$ gilt.

Daher kann SET-COVER in Polynomialzeit auf einer NTM entschieden werden.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch: Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m\}.$

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_{p} SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m\}$.

Für $i \in \{1, \ldots, n\}$ sei

 $P_i := \{i \mid \text{Literal } x_i \text{ kommt in Klausel } K_i \text{ vor} \}$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_i \text{ vor} \}$

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m\}$.

Für $i \in \{1, \ldots, n\}$ sei

 $P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\}$ $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_i \text{ vor}\}$

Das Mengensystem sei $P_1, \ldots, P_n, N_1, \ldots, N_n \subseteq M$.

Gesucht wird eine Vereinigung von *n* Mengen.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, erster Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m\}$.

Für $i \in \{1, \ldots, n\}$ sei

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor} \}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor} \}$

Das Mengensystem sei $P_1, \ldots, P_n, N_1, \ldots, N_n \subseteq M$.

Gesucht wird eine Vereinigung von *n* Mengen.

Grundgedanke: Wenn P_i bzw. N_i gewählt wird, dann werden die Klauseln, die das Literal enthalten, erfüllt. Das Ziel ist, alle m Klauseln zu erfüllen.

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

```
P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} = \{1, 2\}

N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} = \{3\}

P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} = \{1\}

N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} = \{2, 3\}

P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} = \{1, 3\}
```

 $N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_i \text{ vor}\} = \emptyset$

Gesucht wird eine Vereinigung von n = 3 Mengen U_1, U_2, U_3 mit $U_1 \cup U_2 \cup U_3 = \{1, 2, 3\}.$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

 $P_1 = \{i \mid x_1 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1, 2\}$

 $N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_i \text{ vor}\} = \{3\}$

 $P_2 = \{i \mid x_2 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1\}$

 $N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_i \text{ vor}\} = \{2, 3\}$

 $P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1, 3\}$

 $N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_i \text{ vor}\} = \emptyset$

Gesucht wird eine Vereinigung von n=3 Mengen U_1, U_2, U_3 mit

 $U_1 \cup U_2 \cup U_3 = \{1, 2, 3\}.$

Lösung: z.B. P_1 , N_2 . N_3 .

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

 $P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1, 2\}$

 $N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_i \text{ vor}\} = \{3\}$

 $P_2 = \{i \mid x_2 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1\}$

 $N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_i \text{ vor}\} = \{2, 3\}$

 $P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_i \text{ vor}\} = \{1, 3\}$

 $N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_i \text{ vor}\} = \emptyset$

Gesucht wird eine Vereinigung von n = 3 Mengen U_1, U_2, U_3 mit

 $U_1 \cup U_2 \cup U_3 = \{1, 2, 3\}.$

Lösung: z.B. P_1 , N_2 , N_3 .

Belegung dazu: $I(x_1) = 1$, $I(x_2) = 0$, $I(x_3) = 0$.

3-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$

3-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,3\}$$

$$N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{2, 4\}$$

$$P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1, 4\}$$

$$N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3\}$$

Gesucht wird eine Vereinigung von n = 2 Mengen U_1 , U_2 mit $U_1 \cup U_2 = \{1, 2, 3, 4\}$.

Lösung: z.B. P_1 , N_1 .

3-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,3\}$$

$$N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{2, 4\}$$

$$P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1, 4\}$$

$$N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3\}$$

Gesucht wird eine Vereinigung von n=2 Mengen U_1, U_2 mit $U_1 \cup U_2 = \{1, 2, 3, 4\}$.

Lösung: z.B. P_1 , N_1 .

Aber diese Lösung entspricht keiner gültigen Belegung.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, zweiter Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m + n\}.$

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, zweiter Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei $F = K_1 \wedge \cdots \wedge K_m$ eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze $M := \{1, ..., m + n\}.$

Für $i \in \{1, \ldots, n\}$ sei

 $P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$ $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+i\}$

Das Mengensystem sei $P_1, \ldots, P_n, N_1, \ldots, N_n \subseteq M$.

Gesucht wird eine Vereinigung von *n* Mengen.

Beweis (Fortsetzung)

2. SET-COVER ist \mathcal{NP} -schwer, zweiter Versuch:

Wir zeigen 3-CNF-SAT \leq_p SET-COVER.

Sei
$$F = K_1 \wedge \cdots \wedge K_m$$
 eine 3-CNF.

Seien x_1, \ldots, x_n die in F vorkommenden aussagenlogischen Variablen.

Setze
$$M := \{1, ..., m + n\}.$$

Für
$$i \in \{1, \ldots, n\}$$
 sei

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+i\}$

Das Mengensystem sei $P_1, \ldots, P_n, N_1, \ldots, N_n \subseteq M$.

Gesucht wird eine Vereinigung von *n* Mengen.

Grundgedanke: Für jedes i muss mindestens (und daher höchstens) eins von P_i , N_i gewählt werden.

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

```
\begin{array}{l} P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,2,4\} \\ N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{3,4\} \\ P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1,5\} \\ N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3,5\} \\ P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{1,3,6\} \\ N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{6\} \end{array}
```

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

$$\begin{array}{l} P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,2,4\} \\ N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{3,4\} \\ P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1,5\} \\ N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3,5\} \\ P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{1,3,6\} \\ N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{6\} \end{array}$$

Gesucht wird eine Vereinigung von n = 3 Mengen U_1, U_2, U_3 mit $U_1 \cup U_2 \cup U_3 = \{1, 2, 3, 4, 5, 6\}.$

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,2,4\}$$

 $N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{3,4\}$
 $P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1,5\}$
 $N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3,5\}$
 $P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{1,3,6\}$

 $N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+3\} = \{6\}$

Gesucht wird eine Vereinigung von n=3 Mengen U_1, U_2, U_3 mit $U_1 \cup U_2 \cup U_3 = \{1, 2, 3, 4, 5, 6\}.$

Lösung: z.B. P_1 , N_2 , N_3 .

3-CNF:

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1, 2, 4\}$$

$$N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{3,4\}$$

$$P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1,5\}$$

$$N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2, 3, 5\}$$

$$P_3 = \{j \mid x_3 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+3\} = \{1,3,6\}$$

$$N_3 = \{j \mid \neg x_3 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+3\} = \{6\}$$

Gesucht wird eine Vereinigung von n = 3 Mengen U_1, U_2, U_3 mit

$$U_1 \cup U_2 \cup U_3 = \{1, 2, 3, 4, 5, 6\}.$$

Lösung: z.B. P_1 , N_2 , N_3 .

Belegung dazu: $I(x_1) = 1$, $I(x_2) = 0$, $I(x_3) = 0$.

3-CNF:

$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2)$$

3-CNF:

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

$$\begin{array}{ll} P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{1,3,5\} \\ N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} &= \{2,4,5\} \\ P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{1,4,6\} \\ N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} &= \{2,3,6\} \end{array}$$

3-CNF:

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,3,5\}$$

$$N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{2, 4, 5\}$$

$$P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1, 4, 6\}$$

$$N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_i \text{ vor}\} \cup \{m+2\} = \{2, 3, 6\}$$

Gesucht wird eine Vereinigung von
$$n=2$$
 Mengen U_1, U_2 mit

$$U_1 \cup U_2 = \{1, 2, 3, 4, 5, 6\}.$$

3-CNF:

$$(x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

SET-COVER-Instanz dazu:

$$P_1 = \{j \mid x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{1,3,5\}$$

$$N_1 = \{j \mid \neg x_1 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+1\} = \{2, 4, 5\}$$

$$P_2 = \{j \mid x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{1, 4, 6\}$$

$$N_2 = \{j \mid \neg x_2 \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+2\} = \{2,3,6\}$$

Gesucht wird eine Vereinigung von
$$n = 2$$
 Mengen U_1 , U_2 mit $U_1 \cup U_2 = \{1, 2, 3, 4, 5, 6\}$.

Es gibt keine Lösung aber auch keine Belegung für die 3-CNF.

Beweis (Fortsetzung)

Zur Erinnerung:

```
P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
```

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Die Reduktionsfunktion ist total und kann in Polynomialzeit berechnet werden.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Die Reduktionsfunktion ist total und kann in Polynomialzeit berechnet werden.

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Die Reduktionsfunktion ist total und kann in Polynomialzeit berechnet werden.

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$. \Longrightarrow Wenn F erfüllbar ist, gibt es eine Belegung I mit I(F) = 1.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Die Reduktionsfunktion ist total und kann in Polynomialzeit berechnet werden.

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

 \implies Wenn F erfüllbar ist, gibt es eine Belegung I mit I(F) = 1.

Wenn $I(x_i) = 1$, dann wähle P_i , sonst wähle N_i . Dies ergibt n gewählte Mengen.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Die Reduktionsfunktion ist total und kann in Polynomialzeit berechnet werden.

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

 \implies Wenn F erfüllbar ist, gibt es eine Belegung I mit I(F) = 1.

Wenn $I(x_i) = 1$, dann wähle P_i , sonst wähle N_i . Dies ergibt n gewählte Mengen. Jede Zahl aus M kommt vor:

- ▶ Da jede Klausel durch / erfüllt ist, kommen alle 1, . . . , m vor.
- ▶ Da jede Variable x_i mit 0 oder 1 belegt wird, kommen alle m + 1, ..., m + n vor.

Die Vereinigung der *n* Mengen ergibt daher *M*.

Beweis (Fortsetzung)

Zur Erinnerung:

```
P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
```

Beweis (Fortsetzung)

Zur Erinnerung:

```
P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}
```

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$. \iff Seien $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ mit $U_1 \cup \cdots \cup U_n = M$.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

 $\iff \text{Seien } U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\} \text{ mit } U_1 \cup \cdots \cup U_n = M.$

Da m+1,...,m+n in der Vereinigung sind, muss für jedes $i \in \{1,...,n\}$ genau entweder P_i oder N_i in der Vereinigung sein. O.B.d.A. $U_i \in \{P_i, N_i\}$.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen

$$U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$$
 gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

$$\leftarrow$$
 Seien $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ mit $U_1 \cup \cdots \cup U_n = M$.

Da m+1,...,m+n in der Vereinigung sind, muss für jedes $i \in \{1,...,n\}$ genau entweder P_i oder N_i in der Vereinigung sein. O.B.d.A. $U_i \in \{P_i, N_i\}$.

Setze
$$I(x_i) = 1$$
 wenn $U_i = P_i$ und $I(x_i) = 0$ wenn $U_i = N_i$.

Beweis (Fortsetzung)

Zur Erinnerung:

$$P_i := \{j \mid \text{Literal } x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$$

 $N_i := \{j \mid \text{Literal } \neg x_i \text{ kommt in Klausel } K_j \text{ vor}\} \cup \{m+i\}$

Zu zeigen: F ist erfüllbar g.d.w. es eine Vereinigung von n Mengen

$$U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$$
 gibt, sodass $U_1 \cup \cdots \cup U_n = M$.

$$\leftarrow$$
 Seien $U_1, \ldots, U_n \in \{P_1, N_1, \ldots, P_n, N_n\}$ mit $U_1 \cup \cdots \cup U_n = M$.

Da m+1,...,m+n in der Vereinigung sind, muss für jedes $i \in \{1,...,n\}$ genau entweder P_i oder N_i in der Vereinigung sein. O.B.d.A. $U_i \in \{P_i, N_i\}$.

Setze
$$I(x_i) = 1$$
 wenn $U_i = P_i$ und $I(x_i) = 0$ wenn $U_i = N_i$.

Da $1, \ldots, m$ in der Vereinigung sind, wird in jeder Klausel ein Literal durch I wahr gemacht. Daher ist F erfüllbar.

Definition

Das SUBSET-SUM-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Definition

Das SUBSET-SUM-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Beispiel:

Gegeben seien $a_1, \ldots, a_6 = 1, 21, 5, 16, 12, 19$ und s = 49.

Definition

Das SUBSET-SUM-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Beispiel:

Gegeben seien $a_1, \ldots, a_6 = 1, 21, 5, 16, 12, 19$ und s = 49.

Lösung: 2, 4, 5, da 21 + 16 + 12 = 49.

Definition

Das SUBSET-SUM-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Beispiel:

Gegeben seien $a_1, \ldots, a_6 = 1, 21, 5, 16, 12, 19$ und s = 49.

Lösung: 2, 4, 5, da 21 + 16 + 12 = 49.

Satz

Das SUBSET-SUM-Problem ist \mathcal{NP} -vollständig.

Definition

Das SUBSET-SUM-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$ und $s \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = s$?

Beispiel:

Gegeben seien $a_1, \ldots, a_6 = 1, 21, 5, 16, 12, 19$ und s = 49.

Lösung: 2, 4, 5, da 21 + 16 + 12 = 49.

Satz

Das SUBSET-SUM-Problem ist \mathcal{NP} -vollständig.

Beweis Siehe Skript.

Das KNAPSACK-Problem

Definition

Das KNAPSACK-Problem lässt sich wie folgt formulieren.

gegeben: k Gegenstände mit Gewichten $w_1, \ldots, w_k \in \mathbb{N}$ und

Nutzenwerten $n_1, \ldots, n_k \in \mathbb{N}$,

sowie zwei Schwellenwerte s_w , $s_n \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} w_i \le s_w$ und $\sum_{i \in I} n_i \ge s_n$?

Das KNAPSACK-Problem

Definition

Das KNAPSACK-Problem lässt sich wie folgt formulieren.

gegeben: k Gegenstände mit Gewichten $w_1, \ldots, w_k \in \mathbb{N}$ und

Nutzenwerten $n_1, \ldots, n_k \in \mathbb{N}$,

sowie zwei Schwellenwerte s_w , $s_n \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} w_i \le s_w$ und $\sum_{i \in I} n_i \ge s_n$?

Beachte: Für $w_i = n_i$ und $s_n = s_w$ ergibt sich genau das SUBSET-SUM-Problem.

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

Satz

KNAPSACK ist \mathcal{NP} -vollständig.

Beweis

1. KNAPSACK $\in \mathcal{NP}$:

Rate eine Teilmenge $I \subseteq \{1, ..., k\}$ nichtdeterministisch.

Prüfe deterministisch, ob $\sum_{i \in I} w_i \leq s_w$ und $\sum_{i \in I} n_i \geq s_n$.

Daher kann KNAPSACK in Polynomialzeit auf einer NTM entschieden werden.

Beweis (Fortsetzung)

2. KNAPSACK ist \mathcal{NP} -schwer: Wir zeigen SUBSET-SUM \leq_p KNAPSACK.

Beweis (Fortsetzung)

2. KNAPSACK ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_p KNAPSACK.

Sei $((a_1, \ldots, a_k), s)$ eine SUBSET-SUM-Instanz.

Beweis (Fortsetzung)

2. KNAPSACK ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_{p} KNAPSACK.

Sei $((a_1, \ldots, a_k), s)$ eine SUBSET-SUM-Instanz.

Sei $f((a_1, ..., a_k), s) = ((w_1, ..., w_k), (n_1, ..., n_k), s_w, s_m)$ mit $w_i = a_i, n_i = a_i$ für $i \in \{1, ..., k\}$ und $s_w = s$ und $s_m = s$.

Beweis (Fortsetzung)

2. KNAPSACK ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_{p} KNAPSACK.

Sei $((a_1, \ldots, a_k), s)$ eine SUBSET-SUM-Instanz.

Sei $f((a_1, ..., a_k), s) = ((w_1, ..., w_k), (n_1, ..., n_k), s_w, s_m)$ mit $w_i = a_i, n_i = a_i$ für $i \in \{1, ..., k\}$ und $s_w = s$ und $s_m = s$.

f ist in polynomieller Zeit von einer DTM berechenbar.

Beweis (Fortsetzung)

2. KNAPSACK ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_{p} KNAPSACK.

Sei $((a_1, \ldots, a_k), s)$ eine SUBSET-SUM-Instanz.

Sei
$$f((a_1, ..., a_k), s) = ((w_1, ..., w_k), (n_1, ..., n_k), s_w, s_m)$$
 mit $w_i = a_i, n_i = a_i$ für $i \in \{1, ..., k\}$ und $s_w = s$ und $s_m = s$.

f ist in polynomieller Zeit von einer DTM berechenbar.

$$((a_1, \ldots, a_k), s)$$
 ist SUBSET-SUM-lösbar g.d.w. $f((a_1, \ldots, a_k), s)$ KNAPSACK-lösbar ist.

Das PARTITION-Problem

Definition

Das PARTITION-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = \sum_{i \in \{1, ..., k\} \setminus I} a_i$?

Das PARTITION-Problem

Definition

Das PARTITION-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = \sum_{i \in \{1, ..., k\} \setminus I} a_i$?

Beispiel:

Gegeben seien k = 4 und $a_1, ..., a_4 = 7, 2, 8, 13.$

Das PARTITION-Problem

Definition

Das PARTITION-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$

gefragt: Gibt es eine Teilmenge $I \subseteq \{1, ..., k\}$, sodass $\sum_{i \in I} a_i = \sum_{i \in \{1, ..., k\} \setminus I} a_i$?

Beispiel:

Gegeben seien k = 4 und $a_1, ..., a_4 = 7, 2, 8, 13.$

Lösung: z.B. $I = \{1, 3\}$, da $\sum_{i \in \{13\}} a_i = 15 = \sum_{i \in \{2, 4\}} a_i$.

Satz

PARTITION ist \mathcal{NP} -vollständig.

Satz

PARTITION ist \mathcal{NP} -vollständig.

Beweis

1. PARTITION $\in \mathcal{NP}$:

Rate nichtdeterministisch $I \subseteq \{1, ..., k\}$.

Prüfe deterministisch, ob $\sum_{i \in I} a_i = \sum_{i \in \{1,...,k\} \setminus I} a_i$.

Daher kann PARTITION in Polynomialzeit auf einer NTM entschieden werden.

Beweis (Fortsetzung)

2. PARTITION ist \mathcal{NP} -schwer: Wir zeigen SUBSET-SUM \leq_p PARTITION.

Beweis (Fortsetzung)

2. PARTITION ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_{p} PARTITION.

Sei
$$f((a_1, ..., a_k), s) = (a_1, ..., a_k, a_{k+1}, a_{k+2})$$
 mit $a_{k+1} = A + s$ und $a_{k+2} = 2A - s$, wobei $A = \sum_{i=1}^k a_i$.

Beweis (Fortsetzung)

2. PARTITION ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_p PARTITION.

Sei
$$f((a_1, ..., a_k), s) = (a_1, ..., a_k, a_{k+1}, a_{k+2})$$
 mit $a_{k+1} = A + s$ und $a_{k+2} = 2A - s$, wobei $A = \sum_{i=1}^k a_i$.

Beachte: $\sum_{i=1}^{k+2} a_i = 4A$.

Beweis (Fortsetzung)

2. PARTITION ist \mathcal{NP} -schwer:

Wir zeigen SUBSET-SUM \leq_p PARTITION.

Sei
$$f((a_1, ..., a_k), s) = (a_1, ..., a_k, a_{k+1}, a_{k+2})$$
 mit $a_{k+1} = A + s$ und $a_{k+2} = 2A - s$, wobei $A = \sum_{i=1}^k a_i$.

Beachte: $\sum_{i=1}^{k+2} a_i = 4A$.

Die Funktion *f* ist total und kann in polynomieller Zeit berechnet werden.

SUBSET-SUM-Instanz:

((1, 2, 3, 4, 5, 6), 14)

SUBSET-SUM-Instanz:

Wir haben s = 14, A = 21, A + s = 35, 2A = 42 und 2A - s = 28.

SUBSET-SUM-Instanz:

Wir haben s = 14, A = 21, A + s = 35, 2A = 42 und 2A - s = 28.

PARTITION-Instanz zur SUBSET-SUM-Instanz:

(1, 2, 3, 4, 5, 6, 35, 28)

SUBSET-SUM-Instanz:

Wir haben s = 14, A = 21, A + s = 35, 2A = 42 und 2A - s = 28.

PARTITION-Instanz zur SUBSET-SUM-Instanz:

Lösung der PARTITION-Instanz: z.B. $I = \{1, 3, 4, 6, 8\}$, da 1 + 3 + 4 + 6 + 28 = 42 = 2 + 5 + 35.

SUBSET-SUM-Instanz:

Wir haben s = 14, A = 21, A + s = 35, 2A = 42 und 2A - s = 28.

PARTITION-Instanz zur SUBSET-SUM-Instanz:

Lösung der PARTITION-Instanz: z.B. $I = \{1, 3, 4, 6, 8\}$, da 1 + 3 + 4 + 6 + 28 = 42 = 2 + 5 + 35

Lösung der SUBSET-SUM-Instanz: {1, 3, 4, 6}.

Tatsächlich 1 + 3 + 4 + 6 = 14.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, \ldots, a_k), s)$ ist SUBSET-SUM-lösbar g.d.w. $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, \ldots, a_k), s)$ ist SUBSET-SUM-lösbar g.d.w.

 $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

⇒ Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für $((a_1, ..., a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, ..., a_k, a_{k+1}, a_{k+2})$, weil $\sum_{I \cup \{k+2\}} a_I = s + (2A - s) = 2A$, was die Hälfte von $\sum_{i=1}^{k+2} = 4A$ ausmacht.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, ..., a_k), s)$ ist SUBSET-SUM-lösbar g.d.w. $(a_1, ..., a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

- ⇒ Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für $((a_1, ..., a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, ..., a_k, a_{k+1}, a_{k+2})$, weil $\sum_{I \cup \{k+2\}} a_I = s + (2A s) = 2A$, was die Hälfte von $\sum_{i=1}^{k+2} = 4A$ ausmacht.
- Wenn $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ eine Lösung $I \subseteq \{1, \ldots, k+2\}$ hat, dann $\sum_{i \in I} a_i = 2A = \sum_{i \in \{1, \ldots, k+2\} \setminus I} a_i$.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, ..., a_k), s)$ ist SUBSET-SUM-lösbar g.d.w. $(a_1, ..., a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

- \implies Wenn $I \subseteq \{1, \ldots, k\}$ eine Lösung für $((a_1, \ldots, a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$, weil $\sum_{I \cup \{k+2\}} a_I = s + (2A s) = 2A$, was die Hälfte von $\sum_{i=1}^{k+2} = 4A$ ausmacht.
- Wenn $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ eine Lösung $I \subseteq \{1, \ldots, k+2\}$ hat, dann $\sum_{i \in I} a_i = 2A = \sum_{i \in \{1, \ldots, k+2\} \setminus I} a_i$.

k+1 und k+2 können nicht gleichzeitig in l sein, da sonst die Summe zu groß ist.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, ..., a_k), s)$ ist SUBSET-SUM-lösbar g.d.w. $(a_1, ..., a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

- ⇒ Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für $((a_1, ..., a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, ..., a_k, a_{k+1}, a_{k+2})$, weil $\sum_{I \cup \{k+2\}} a_I = s + (2A s) = 2A$, was die Hälfte von $\sum_{i=1}^{k+2} = 4A$ ausmacht.
- Wenn $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ eine Lösung $I \subseteq \{1, \ldots, k+2\}$ hat, dann $\sum_{i \in I} a_i = 2A = \sum_{i \in \{1, \ldots, k+2\} \setminus I} a_i$.

k+1 und k+2 können nicht gleichzeitig in l sein, da sonst die Summe zu groß ist.

- ▶ Wenn $k + 2 \in I$, dann $I' = I \setminus \{k + 2\}$.
- ▶ Wenn $k + 1 \in I$, dann $I' = (\{1, ..., k + 2\} \setminus I) \setminus \{k + 2\}$.

Beweis (Fortsetzung)

Wir zeigen: $((a_1, \ldots, a_k), s)$ ist SUBSET-SUM-lösbar g.d.w. $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ PARTITION-lösbar ist.

- ⇒ Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für $((a_1, ..., a_k), s)$ ist, dann ist $I \cup \{k+2\}$ eine Lösung für $(a_1, ..., a_k, a_{k+1}, a_{k+2})$, weil $\sum_{I \cup \{k+2\}} a_I = s + (2A s) = 2A$, was die Hälfte von $\sum_{i=1}^{k+2} = 4A$ ausmacht.
- Wenn $(a_1, \ldots, a_k, a_{k+1}, a_{k+2})$ eine Lösung $I \subseteq \{1, \ldots, k+2\}$ hat, dann $\sum_{i \in I} a_i = 2A = \sum_{i \in \{1, \ldots, k+2\} \setminus I} a_i$.

k+1 und k+2 können nicht gleichzeitig in I sein, da sonst die Summe zu groß ist.

- ▶ Wenn $k + 2 \in I$, dann $I' = I \setminus \{k + 2\}$.
- ▶ Wenn $k + 1 \in I$, dann $I' = (\{1, ..., k + 2\} \setminus I) \setminus \{k + 2\}$.

In beiden Fällen ist $\sum_{i \in I'} = 2A - (2A - s) = s$ und die Indexmenge I' ist daher eine Lösung von $((a_1, \ldots, a_k), s)$.

Das BIN-PACKING-Problem

Definition

Das BIN-PACKING-Problem lässt sich wie folgt formulieren.

gegeben: natürliche Zahlen $a_1, \ldots, a_k \in \mathbb{N}$,

die Behältergröße $b \in \mathbb{N}$ und die Anzahl der Behälter m

gefragt: Kann man alle gegebenen Zahlen so auf die Behälter aufteilen, sodass

keiner der Behälter überläuft?

Formal: Gibt es eine totale Funktion assign : $\{1, ..., k\} \rightarrow \{1, ..., m\}$,

sodass für alle Behälter $j \in \{1, ..., m\}$ gilt: $\left(\sum_{i:assign(i)=j} a_i\right) \leq b$?

Satz

BIN-PACKING ist \mathcal{NP} -vollständig.

Satz

BIN-PACKING ist \mathcal{NP} -vollständig.

Beweis

1. BIN-PACKING $\in \mathcal{NP}$:

Rate nichtdeterministisch für jede Zahl a_i in welchen Behälter sie gehört.

Prüfe deterministisch, dass die geratene Zuordnung keinen Behälter überlaufen lässt.

BIN-PACKING kann daher in Polynomialzeit auf einer NTM entschieden werden.

Beweis (Fortsetzung)

2. BIN-PACKING ist \mathcal{NP} -schwer: Wir zeigen PARTITION \leq_p BIN-PACKING.

Beweis (Fortsetzung)

2. BIN-PACKING ist \mathcal{NP} -schwer:

Wir zeigen PARTITION \leq_{p} BIN-PACKING.

Sei (a_1, \ldots, a_k) eine PARTITION-Instanz. Sei $f(a_1, \ldots, a_k)$ die

BIN-PACKING-Instanz mit Zahlen a_1, \ldots, a_k ,

Behältergröße $b = \left| \frac{\sum_{i=1}^{k} a_i}{2} \right|$ und m = 2 Behältern.

Beweis (Fortsetzung)

2. BIN-PACKING ist \mathcal{NP} -schwer:

Wir zeigen PARTITION \leq_p BIN-PACKING.

Sei (a_1, \ldots, a_k) eine PARTITION-Instanz. Sei $f(a_1, \ldots, a_k)$ die

BIN-PACKING-Instanz mit Zahlen a_1, \ldots, a_k ,

Behältergröße $b = \left| \frac{\sum_{i=1}^{k} a_i}{2} \right|$ und m = 2 Behältern.

Die Funktion f ist total und kann in polynomieller Zeit berechnet werden.

Beweis (Fortsetzung)

Wir zeigen: (a_1, \ldots, a_k) ist PARTITION-lösbar g.d.w. $((a_1, \ldots, a_k), b, 2)$ BIN-PACKING-lösbar ist.

Beweis (Fortsetzung)

Wir zeigen: (a_1, \ldots, a_k) ist PARTITION-lösbar g.d.w. $((a_1, \ldots, a_k), b, 2)$ BIN-PACKING-lösbar ist.

Wenn $\sum_{i=1}^{k} a_i$ ungerade ist, dann ist die PARTITION-Instanz unlösbar und die BIN-PACKING-Instanz ebenso. Sonst:

Beweis (Fortsetzung)

Wir zeigen: $(a_1, ..., a_k)$ ist PARTITION-lösbar g.d.w. $((a_1, ..., a_k), b, 2)$ BIN-PACKING-lösbar ist.

Wenn $\sum_{i=1}^{k} a_i$ ungerade ist, dann ist die PARTITION-Instanz unlösbar und die BIN-PACKING-Instanz ebenso. Sonst:

 \implies Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für PARTITION ist, dann ist

$$assign(i) = \begin{cases} 1 & \text{wenn } i \in I \\ 2 & \text{wenn } i \notin I \end{cases}$$

eine Lösung für BIN-PACKING.

Beweis (Fortsetzung)

Wir zeigen: (a_1, \ldots, a_k) ist PARTITION-lösbar g.d.w. $((a_1, \ldots, a_k), b, 2)$ BIN-PACKING-lösbar ist.

Wenn $\sum_{i=1}^{k} a_i$ ungerade ist, dann ist die PARTITION-Instanz unlösbar und die BIN-PACKING-Instanz ebenso. Sonst:

 \implies Wenn $I \subseteq \{1, ..., k\}$ eine Lösung für PARTITION ist, dann ist

$$assign(i) = \begin{cases} 1 & \text{wenn } i \in I \\ 2 & \text{wenn } i \notin I \end{cases}$$

eine Lösung für BIN-PACKING.

Sei assign eine Lösung für BIN-PACKING. Mit $I = \{i \mid 1 \le i \le k, assign(i) = 1\}$ kann eine Lösung für PARTITION erstellt werden.

