Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

11b

 \mathcal{NP} -Vollständigkeit von 3-CNF-SAT

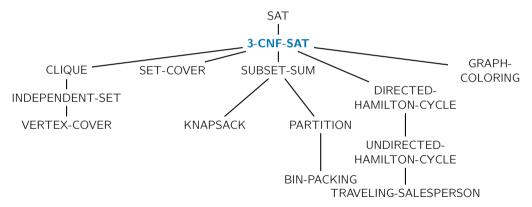
Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025
Basierend auf Folien von PD Dr. David Sabel

Überblick über \mathcal{NP} -Vollständigkeitsbeweise

Wir weisen \mathcal{NP} -Schwere nach durch Polynomialzeitreduktion bekannter \mathcal{NP} -vollständiger Probleme auf das neue Problem.



Wiederholung: \mathcal{NP} -Vollständigkeit

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

Wiederholung: \mathcal{NP} -Vollständigkeit

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

Beweistechnik für \mathcal{NP} -Vollständigkeit von L:

- 1. Zeige $L \in \mathcal{NP}$.
- 2. Zeige $L_0 \leq_p L$ für ein bekanntes \mathcal{NP} -vollständiges Problem L_0 (z.B. SAT). Dann folgt die \mathcal{NP} -Schwere von L.

Die aussagenlogische Formel F ist in konjunktiver Normalform (CNF), wenn sie von der folgenden Form ist:

$$\bigwedge_{i=1}^{m} (\bigvee_{j=1}^{n_i} L_{i,j})$$

- \triangleright Jedes Literal $L_{i,j}$ ist eine aussagenlogische Variable oder deren Negation.
- $ightharpoonup (\bigvee_{i=1}^{n_i} L_{i,j})$ ist eine Klausel.

Die aussagenlogische Formel F ist in konjunktiver Normalform (CNF), wenn sie von der folgenden Form ist:

$$\bigwedge_{i=1}^m (\bigvee_{j=1}^{n_i} L_{i,j})$$

- \triangleright Jedes Literal $L_{i,i}$ ist eine aussagenlogische Variable oder deren Negation.
- \blacktriangleright $(\bigvee_{i=1}^{n_i} L_{i,j})$ ist eine Klausel.

Beispiel:

$$x_1 \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (x_2 \vee x_4)$$

Die aussagenlogische Formel F ist in konjunktiver Normalform (CNF), wenn sie von der folgenden Form ist:

$$\bigwedge_{i=1}^{m} (\bigvee_{j=1}^{n_i} L_{i,j})$$

- \triangleright Jedes Literal $L_{i,j}$ ist eine aussagenlogische Variable oder deren Negation.
- \blacktriangleright $(\bigvee_{i=1}^{n_i} L_{i,j})$ ist eine Klausel.

Beispiel:

$$x_1 \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (x_2 \vee x_4)$$

Eine erfüllende Belegung muss mindestens 1 Literal pro Klausel wahr machen.

Die aussagenlogische Formel F ist in konjunktiver Normalform (CNF), wenn sie von der folgenden Form ist:

$$\bigwedge_{i=1}^{m} (\bigvee_{j=1}^{n_i} L_{i,j})$$

- \triangleright Jedes Literal $L_{i,j}$ ist eine aussagenlogische Variable oder deren Negation.
- $ightharpoonup (\bigvee_{i=1}^{n_i} L_{i,j})$ ist eine Klausel.

Beispiel:

$$x_1 \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (x_2 \vee x_4)$$

Eine erfüllende Belegung muss mindestens 1 Literal pro Klausel wahr machen.

Wir nehmen an, dass es keine Klauseln gibt, die x und $\neg x$ enthalten.

Diese Klauseln sind immer wahr und können gelöscht werden.

3-CNF-SAT

Definition

Das 3-CNF-SAT-Problem lässt sich wie folgt formulieren.

gegeben: eine aussagenlogische Formel F in CNF,

sodass jede Klausel höchstens 3 Literale enthält (d.h. eine aussagenlogische Formel F in 3-CNF)

gefragt: Ist F erfüllbar? Genauer: Gibt es eine erfüllende Belegung der Variablen,

sodass F den Wert 1 erhält?

5/15

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis

1. 3-CNF-SAT ist in \mathcal{NP} :

Rate nichtdeterministisch eine Belegung der Variablen.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis

1. 3-CNF-SAT ist in \mathcal{NP} :

Rate nichtdeterministisch eine Belegung der Variablen.

Prüfe deterministisch, ob die Belegung die 3-CNF wahr macht. Akzeptiere in diesem Fall, sonst verwirf.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis

1. 3-CNF-SAT ist in \mathcal{NP} :

Rate nichtdeterministisch eine Belegung der Variablen.

Prüfe deterministisch, ob die Belegung die 3-CNF wahr macht. Akzeptiere in diesem Fall, sonst verwirf.

Dies geht in Polynomialzeit in der Größe der 3-CNF.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis

1. 3-CNF-SAT ist in \mathcal{NP} :

Rate nichtdeterministisch eine Belegung der Variablen.

Prüfe deterministisch, ob die Belegung die 3-CNF wahr macht. Akzeptiere in diesem Fall, sonst verwirf.

Dies geht in Polynomialzeit in der Größe der 3-CNF.

Daher kann 3-CNF-SAT auf einer NTM in Polynomialzeit entschieden werden.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis (Fortsetzung)

2. 3-CNF-SAT ist \mathcal{NP} -schwer: Wir zeigen SAT \leq_p 3-CNF-SAT.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis (Fortsetzung)

2. 3-CNF-SAT ist \mathcal{NP} -schwer:

Wir zeigen SAT \leq_{p} 3-CNF-SAT.

Gesucht wird eine polynomiell berechenbare, totale Funktion $\it f$, sodass:

F ist erfüllbar g.d.w. die 3-CNF f(F) ist erfüllbar.

Die CNF-Transformation ist ein Verfahren, um F in eine äquivalente CNF f(F) umzuformen.

Die CNF-Transformation ist ein Verfahren, um F in eine äquivalente CNF f(F) umzuformen.

- 1. Löse \iff und \implies auf.
- 2. Schiebe Negationen nach innen und anschließend multipliziere aus. (Wende Distributivität, Kommutativität an, um CNF herzustellen.)

Die CNF-Transformation ist ein Verfahren, um F in eine äquivalente CNF f(F) umzuformen.

Schritte:

- 1. Löse \iff und \implies auf.
- 2. Schiebe Negationen nach innen und anschließend multipliziere aus. (Wende Distributivität, Kommutativität an, um CNF herzustellen.)

Zum Beispiel wird $x_1 \iff x_2$ zu $(\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2)$.

Die CNF-Transformation ist ein Verfahren, um F in eine äquivalente CNF f(F) umzuformen.

Schritte:

- 1. Löse \iff und \implies auf.
- 2. Schiebe Negationen nach innen und anschließend multipliziere aus. (Wende Distributivität, Kommutativität an, um CNF herzustellen.)

Zum Beispiel wird $x_1 \iff x_2$ zu $(\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2)$.

Aber der Algorithmus hat im schlechtesten Fall exponentielle Laufzeit und kann Klauseln erzeugen, die mehr als drei Literale enthalten.

Die CNF-Transformation ist ein Verfahren, um F in eine äquivalente CNF f(F) umzuformen.

Schritte:

- 1. Löse \iff und \implies auf.
- 2. Schiebe Negationen nach innen und anschließend multipliziere aus. (Wende Distributivität, Kommutativität an, um CNF herzustellen.)

Zum Beispiel wird $x_1 \iff x_2$ zu $(\neg x_1 \lor x_2) \land (x_1 \lor \neg x_2)$.

Aber der Algorithmus hat im schlechtesten Fall exponentielle Laufzeit und kann Klauseln erzeugen, die mehr als drei Literale enthalten.

Er kann daher nicht direkt für eine Polynomialzeitreduktion von SAT auf 3-CNF-SAT verwendet werden.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis (Fortsetzung)

2. 3-CNF-SAT ist \mathcal{NP} -schwer:

Wir zeigen SAT \leq_p 3-CNF-SAT.

Gesucht wird eine polynomiell berechenbare, totale Funktion f, sodass:

F ist erfüllbar g.d.w. die 3-CNF f(F) ist erfüllbar.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis (Fortsetzung)

2. 3-CNF-SAT ist \mathcal{NP} -schwer:

Wir zeigen SAT \leq_p 3-CNF-SAT.

Gesucht wird eine polynomiell berechenbare, totale Funktion f, sodass:

F ist erfüllbar g.d.w. die 3-CNF f(F) ist erfüllbar.

Beachte: f muss die Erfüllbarkeit erhalten, aber nicht die Äquivalenz.

Satz

3-CNF-SAT ist \mathcal{NP} -vollständig.

Beweis (Fortsetzung)

2. 3-CNF-SAT ist \mathcal{NP} -schwer:

Wir zeigen SAT \leq_p 3-CNF-SAT.

Gesucht wird eine polynomiell berechenbare, totale Funktion f, sodass:

F ist erfüllbar g.d.w. die 3-CNF f(F) ist erfüllbar.

Beachte: f muss die Erfüllbarkeit erhalten, aber nicht die Äquivalenz.

Die Tseitin-Transformation ist ein Verfahren, um F in eine erfüllbarkeitsäquivalente 3-CNF f(F) umzuformen, sodass f(F) polynomielle Größe in |F| hat.

Schritte:

1. Schiebe alle Negationen nach innen vor die Literale, dabei werden die Regeln $\neg\neg F \leadsto F$, $\neg (F \land G) \leadsto \neg F \lor \neg G$, $\neg (F \lor G) \leadsto \neg F \land \neg G$, $\neg (F \Longleftrightarrow G) \leadsto \neg F \Longleftrightarrow G$ und $\neg (F \Longrightarrow G) \leadsto F \land \neg G$ angewendet.

- 1. Schiebe alle Negationen nach innen vor die Literale, dabei werden die Regeln $\neg \neg F \leadsto F$, $\neg (F \land G) \leadsto \neg F \lor \neg G$, $\neg (F \lor G) \leadsto \neg F \land \neg G$, $\neg (F \Longleftrightarrow G) \leadsto \neg F \Longleftrightarrow G$ und $\neg (F \Longrightarrow G) \leadsto F \land \neg G$ angewendet.
- 2. Bilde den Syntaxbaum der Formel, mit Literalen auf den Blättern.

- 1. Schiebe alle Negationen nach innen vor die Literale, dabei werden die Regeln $\neg \neg F \leadsto F$, $\neg (F \land G) \leadsto \neg F \lor \neg G$, $\neg (F \lor G) \leadsto \neg F \land \neg G$, $\neg (F \Longleftrightarrow G) \leadsto \neg F \Longleftrightarrow G$ und $\neg (F \Longrightarrow G) \leadsto F \land \neg G$ angewendet.
- 2. Bilde den Syntaxbaum der Formel, mit Literalen auf den Blättern.
- 3. Führe für jeden Nichtblatt-Knoten neue aussagenlogische Variable X ein, die als Synonym für eine Teilformel steht.

- 1. Schiebe alle Negationen nach innen vor die Literale, dabei werden die Regeln $\neg \neg F \leadsto F$, $\neg (F \land G) \leadsto \neg F \lor \neg G$, $\neg (F \lor G) \leadsto \neg F \land \neg G$, $\neg (F \Longleftrightarrow G) \leadsto \neg F \Longleftrightarrow G$ und $\neg (F \Longrightarrow G) \leadsto F \land \neg G$ angewendet.
- 2. Bilde den Syntaxbaum der Formel, mit Literalen auf den Blättern.
- 3. Führe für jeden Nichtblatt-Knoten neue aussagenlogische Variable X ein, die als Synonym für eine Teilformel steht.
- 4. Pro Gabelung $\stackrel{X}{\swarrow}_{L_1}$ erzeuge die Formel $X \Longleftrightarrow (L_1 \otimes L_2)$, wobei
 - $\otimes \in \{\land, \lor, \Longrightarrow, \Longleftrightarrow\}$ und L_1 bzw. L_2 entweder eine neue Variable oder ein Literal an einem Blatt ist.

5. Konjugiere die erzeugten Formeln zu F' und schließlich erzeuge $W \wedge F'$, wobei W die Variable für die Wurzel ist. Die erzeugte Formel ist von der Form

$$W \wedge \bigwedge_{i,j,k} (X_i \iff (L_j \otimes_i L_k))$$

5. Konjugiere die erzeugten Formeln zu F' und schließlich erzeuge $W \wedge F'$, wobei W die Variable für die Wurzel ist. Die erzeugte Formel ist von der Form

$$W \wedge \bigwedge_{i,j,k} (X_i \iff (L_j \otimes_i L_k))$$

6. Berechne für jede Teilformel $X_i \iff (L_j \otimes_i L_k)$ die CNF mit der üblichen CNF-Transformation.

 Konjugiere die erzeugten Formeln zu F' und schließlich erzeuge W ∧ F', wobei W die Variable für die Wurzel ist.
 Die erzeugte Formel ist von der Form

$$W \wedge \bigwedge_{i,j,k} (X_i \iff (L_j \otimes_i L_k))$$

- 6. Berechne für jede Teilformel $X_i \iff (L_j \otimes_i L_k)$ die CNF mit der üblichen CNF-Transformation.
- 7. Lösche doppelte Vorkommen von Literalen.

5. Konjugiere die erzeugten Formeln zu F' und schließlich erzeuge $W \wedge F'$, wobei W die Variable für die Wurzel ist. Die erzeugte Formel ist von der Form

$$W \wedge \bigwedge_{i,j,k} (X_i \iff (L_j \otimes_i L_k))$$

- 6. Berechne für jede Teilformel $X_i \iff (L_j \otimes_i L_k)$ die CNF mit der üblichen CNF-Transformation.
- 7. Lösche doppelte Vorkommen von Literalen.

Diese Prozedur ergibt eine Formel in 3-CNF, da pro Klausel nur drei verschiedene Variablen vorkommen können.

Sei
$$F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$
.

Sei
$$F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$
.

Negationen nach innen schieben:

$$\neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$

$$\sim \neg\neg(x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

$$\sim (x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

Sei
$$F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$
.

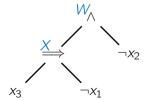
Negationen nach innen schieben:

$$\neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$

$$\sim \neg\neg(x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

$$\sim (x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

Syntaxbaum dazu:



Sei
$$F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$
.

Negationen nach innen schieben:

$$\neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$$

$$\sim \neg\neg(x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

$$\sim (x_3 \Longrightarrow \neg x_1) \land \neg x_2$$

Syntaxbaum dazu:



Formel: $W \land (W \iff (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))$

$$W \wedge (W \iff (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1))$$

$$W \wedge (W \iff (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1))$$

\$\sim W \land (W \lor \equiv (X \land \n x_2)) \land (\neg W \lor (X \land \n x_2)) \land (X \leftrightarrow (x_3 \lor \n x_1))\$

$$\begin{array}{c} W \wedge (W \Longleftrightarrow (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1)) \\ \sim W \wedge (W \vee \neg (X \wedge \neg x_2)) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1)) \\ \sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1)) \end{array}$$

$$W \wedge (W \iff (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1))$$

$$\sim W \wedge (W \vee \neg (X \wedge \neg x_2)) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (X \iff (x_3 \implies \neg x_1))$$

```
 W \wedge (W \iff (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1)) 
 \rightarrow W \wedge (W \vee \neg (X \wedge \neg x_2)) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1)) 
 \rightarrow W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \iff (x_3 \implies \neg x_1)) 
 \rightarrow W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (X \iff (x_3 \implies \neg x_1)) 
 \rightarrow W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee (x_3 \implies \neg x_1)) \wedge (X \vee \neg (x_3 \implies \neg x_1))
```

```
W \land (W \iff (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg (X \land \neg x_2)) \land (\neg W \lor (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor (x_3 \implies \neg x_1)) \land (X \lor \neg (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor \neg (\neg x_3 \lor \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor \neg (\neg x_3 \lor \neg x_1))
```

```
W \land (W \iff (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg (X \land \neg x_2)) \land (\neg W \lor (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor (X \land \neg x_2)) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (X \iff (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor (x_3 \implies \neg x_1)) \land (X \lor \neg (x_3 \implies \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor \neg (\neg x_3 \lor \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor (x_3 \land x_1))
```

```
W \land (W \Longleftrightarrow (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))
\rightsquigarrow W \land (W \lor \neg (X \land \neg x_2)) \land (\neg W \lor (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor (x_3 \Longrightarrow \neg x_1)) \land (X \lor \neg (x_3 \Longrightarrow \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor \neg (\neg x_3 \lor \neg x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor (x_3 \land x_1))
\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor x_3) \land (X \lor x_1)
```

Berechnung der CNFs der kleinen Teilformeln:

$$W \land (W \Longleftrightarrow (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg (X \land \neg x_2)) \land (\neg W \lor (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor (X \land \neg x_2)) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor (x_3 \Longrightarrow \neg x_1)) \land (X \lor \neg (x_3 \Longrightarrow \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor \neg (\neg x_3 \lor \neg x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor (x_3 \land x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor (x_3 \land x_1))$$

$$\rightsquigarrow W \land (W \lor \neg X \lor x_2) \land (\neg W \lor X) \land (\neg W \lor \neg x_2) \land (\neg X \lor \neg x_3 \lor \neg x_1) \land (X \lor x_3) \land (X \lor x_1)$$

Die erzeugte Formel f(F) ist erfüllbarkeitsäquivalent zu $F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$. Zum Beispiel:

Berechnung der CNFs der kleinen Teilformeln:

$$W \wedge (W \Longleftrightarrow (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg (X \wedge \neg x_2)) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee (x_3 \Longrightarrow \neg x_1)) \wedge (X \vee \neg (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee \neg (\neg x_3 \vee \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee (x_3 \wedge x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee (x_3 \wedge x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee x_3) \wedge (X \vee x_1)$$

Die erzeugte Formel f(F) ist erfüllbarkeitsäquivalent zu $F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$. Zum Beispiel:

Erfüllende Belegung
$$I$$
 für $f(F)$: $I(x_1) = 0$, $I(x_2) = 0$, $I(x_3) = 1$, $I(W) = 1$, $I(X) = 1$

Berechnung der CNFs der kleinen Teilformeln:

$$W \wedge (W \Longleftrightarrow (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg (X \wedge \neg x_2)) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee (X \wedge \neg x_2)) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (X \Longleftrightarrow (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee (x_3 \Longrightarrow \neg x_1)) \wedge (X \vee \neg (x_3 \Longrightarrow \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee \neg (\neg x_3 \vee \neg x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee (x_3 \wedge x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee (x_3 \wedge x_1))$$

$$\sim W \wedge (W \vee \neg X \vee x_2) \wedge (\neg W \vee X) \wedge (\neg W \vee \neg x_2) \wedge (\neg X \vee \neg x_3 \vee \neg x_1) \wedge (X \vee x_3) \wedge (X \vee x_1)$$

Die erzeugte Formel f(F) ist erfüllbarkeitsäquivalent zu $F = \neg(\neg(x_3 \Longrightarrow \neg x_1) \lor x_2)$. Zum Beispiel:

Erfüllende Belegung I für f(F):

$$I(x_1) = 0$$
, $I(x_2) = 0$, $I(x_3) = 1$, $I(W) = 1$, $I(X) = 1$

Erfüllende Belegung I' für F:

$$I'(x_1) = 0$$
, $I'(x_2) = 0$, $I'(x_3) = 1$

Erfüllbarkeitsäquivalenz der Tseitin-Transformation

Beweis (Fortsetzung)

Wir zeigen: F ist erfüllbar g.d.w. f(F) ist erfüllbar.

Erfüllbarkeitsäquivalenz der Tseitin-Transformation

Beweis (Fortsetzung)

```
Wir zeigen: F ist erfüllbar g.d.w. f(F) ist erfüllbar.
```

```
\leftarrow Sei / eine Belegung mit I(f(F)) = 1.
```

Für die Restriktion I' von I auf die Variablen von F gilt I'(F) = 1.

Erfüllbarkeitsäquivalenz der Tseitin-Transformation

Beweis (Fortsetzung)

Wir zeigen: F ist erfüllbar g.d.w. f(F) ist erfüllbar.

- Sei / eine Belegung mit I(f(F)) = 1. Für die Restriktion / von / auf die Variablen von F gilt I'(F) = 1.
- \implies Sei / eine Belegung mit I(F) = 1. Sei /' die Belegung mit
 - I'(x) = I(x) für alle Variablen x, die in F vorkommen
 - $I'(X) = I'(L_1 \otimes L_2)$ für

Dann gilt I'(f(F)) = 1.

Komplexität der Tseitin-Transformation

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass f polynomiell berechenbar ist.

Komplexität der Tseitin-Transformation

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass f polynomiell berechenbar ist.

Die Größe der Teilformeln, die in CNF gebracht werden, ist konstant.

Die Anzahl der Teilformeln, die erzeugt werden, ist proportional zur Größe des Syntaxbaums.

Die Größe der 3-CNF ist also polynomiell in der ursprünglichen Formel F.

Die Berechnung in Polynomialzeit geht.

Komplexität der Tseitin-Transformation

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass f polynomiell berechenbar ist.

Die Größe der Teilformeln, die in CNF gebracht werden, ist konstant.

Die Anzahl der Teilformeln, die erzeugt werden, ist proportional zur Größe des Syntaxbaums.

Die Größe der 3-CNF ist also polynomiell in der ursprünglichen Formel F.

Die Berechnung in Polynomialzeit geht.

Daher: SAT \leq_p 3-CNF-SAT.

Da SAT \mathcal{NP} -schwer ist, folgt dass 3-CNF-SAT \mathcal{NP} -schwer ist.