Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

10c $\mathcal{NP} ext{-Vollständigkeit}$

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: \mathcal{P}

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse TIME(f(n)) genau die Menge der Sprachen L, für die es eine stets anhaltende Mehrband-DTM M gibt mit L(M) = L und $time_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$.

Definition

Die Klasse \mathcal{P} ist definiert als

$$\mathcal{P} := \bigcup_{p \text{ Polynom}} TIME(p(n))$$

Wiederholung: \mathcal{NP}

Definition

Für eine Funktion $f: \mathbb{N} \to \mathbb{N}$ sei die Klasse NTIME(f(n)) genau die Menge der Sprachen L, für die es eine stets anhaltende Mehrband-NTM M gibt mit L(M) = L und $ntime_M(w) \le f(|w|)$ für alle $w \in \Sigma^*$.

Definition

Die Klasse \mathcal{NP} ist definiert als

$$\mathcal{NP} := \bigcup_{p \text{ Polynom}} NTIME(p(n))$$

Wiederholung: \mathcal{P} vs. \mathcal{NP}

Die Frage "Gilt $\mathcal{P} = \mathcal{NP}$ oder $\mathcal{P} \neq \mathcal{NP}$?" ist bis heute ungelöst.

- $\triangleright \mathcal{P} \subseteq \mathcal{NP}$ ist klar.
- ► Es gibt gute Gründe, $P \neq \mathcal{NP}$ zu vermuten.

Obwohl man die \mathcal{P} -vs.- $\mathcal{N}\mathcal{P}$ -Frage nicht geklärt hat, will man wissen, wie schwer ein Problem ist:

Obwohl man die \mathcal{P} -vs.- \mathcal{NP} -Frage nicht geklärt hat, will man wissen, wie schwer ein Problem ist:

► Wenn man weiß, dass das Problem in \mathcal{P} liegt, dann existiert ein effizienter Algorithmus.

Obwohl man die \mathcal{P} -vs.- \mathcal{NP} -Frage nicht geklärt hat, will man wissen, wie schwer ein Problem ist:

- ▶ Wenn man weiß, dass das Problem in P liegt, dann existiert ein effizienter Algorithmus.
- Wenn man nur weiß, dass das Problem in \mathcal{NP} liegt, dann kennt man nur Algorithmen, die in deterministischer Exponentialzeit laufen.

Obwohl man die \mathcal{P} -vs.- $\mathcal{N}\mathcal{P}$ -Frage nicht geklärt hat, will man wissen, wie schwer ein Problem ist:

- ▶ Wenn man weiß, dass das Problem in P liegt, dann existiert ein effizienter Algorithmus.
- Wenn man nur weiß, dass das Problem in \mathcal{NP} liegt, dann kennt man nur Algorithmen, die in deterministischer Exponentialzeit laufen.

Heute: \mathcal{NP} -Vollständigkeit:

Zeige, dass ein gegebenes Problem zu den schwersten Problemen in \mathcal{NP} zählt.

Polynomialzeit-Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen. Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_p L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$. Die Funktion f nennt man Polynomialzeit-Reduktion.

Polynomialzeit-Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen. Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_p L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$. Die Funktion f nennt man Polynomialzeit-Reduktion.

Die Definition von $L_1 \leq_p L_2$ ist analog zu der von $L_1 \leq L_2$, mit dem Zusatz, dass f in deterministischer Polynomialzeit berechenbar sein muss.

Polynomialzeit-Reduktion

Definition

Seien $L_1 \subseteq \Sigma_1^*$ und $L_2 \subseteq \Sigma_2^*$ Sprachen. Dann sagen wir L_1 ist auf L_2 polynomiell reduzierbar (geschrieben $L_1 \leq_p L_2$), falls es eine totale und in deterministischer Polynomialzeit berechenbare Funktion $f: \Sigma_1^* \to \Sigma_2^*$ gibt, sodass für alle $w \in \Sigma_1^*$ gilt: $w \in L_1$ g.d.w. $f(w) \in L_2$. Die Funktion f nennt man Polynomialzeit-Reduktion.

Die Definition von $L_1 \leq_p L_2$ ist analog zu der von $L_1 \leq L_2$, mit dem Zusatz, dass f in deterministischer Polynomialzeit berechenbar sein muss.

Analogie:

$$L_1 \leq L_2$$
 und L_2 (semi-)entscheidbar $L_1 \leq_p L_2$ und $L_2 \in (\mathcal{N})\mathcal{P}$ $\Longrightarrow L_1$ (semi-)entscheidbar $\Longrightarrow L_1 \in (\mathcal{N})\mathcal{P}$

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Lemma

Falls $L_1 \leq_{\mathcal{P}} L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{P}$ und M_2 eine DTM, sodass $L(M_2) = L_2$,

wobei M₂ stets in deterministischer Polynomialzeit anhält.

Lemma

Falls $L_1 \leq_{\mathcal{P}} L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{P}$ und M_2 eine DTM, sodass $L(M_2) = L_2$,

wobei M_2 stets in deterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f und M_2 . Dann gilt $L(M_f; M_2) = L_1$.

Lemma

Falls $L_1 \leq_{\mathcal{P}} L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{P}$ und M_2 eine DTM, sodass $L(M_2) = L_2$, wobei M_2 stets in deterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f und M_2 . Dann gilt $L(M_f; M_2) = L_1$.

 M_f ; M_2 hält stets in deterministischer Polynomialzeit.

Lemma

Falls $L_1 \leq_{\mathcal{P}} L_2$ und $L_2 \in \mathcal{P}$, dann gilt $L_1 \in \mathcal{P}$.

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{P}$ und M_2 eine DTM, sodass $L(M_2) = L_2$,

wobei M_2 stets in deterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f und M_2 . Dann gilt $L(M_f; M_2) = L_1$.

 M_f ; M_2 hält stets in deterministischer Polynomialzeit.

Daher gilt $L_1 \in \mathcal{P}$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

8/15

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

8/15

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

8/15

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{NP}$ und M_2 eine NTM, sodass $L(M_2) = L_2$, wobei M_2 stets in nichtdeterministischer Polynomialzeit anhält.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 \leq_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{NP}$ und M_2 eine NTM, sodass $L(M_2) = L_2$, wobei M_2 stets in nichtdeterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f (deterministisch) und M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 <_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{NP}$ und M_2 eine NTM, sodass $L(M_2) = L_2$, wobei M_2 stets in nichtdeterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f (deterministisch) und M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$.

 M_f : M_2 hält stets in nichtdeterministischer Polynomialzeit.

Lemma

Falls $L_1 \leq_p L_2$ und $L_2 \in \mathcal{NP}$, dann gilt $L_1 \in \mathcal{NP}$.

Der Beweis ist analog:

Beweis Seien $L_1 <_p L_2$ und f in Polynomialzeit berechenbar.

Sei M_f die DTM, die f in Polynomialzeit berechnet.

Seien $L_2 \in \mathcal{NP}$ und M_2 eine NTM, sodass $L(M_2) = L_2$,

wobei M_2 stets in nichtdeterministischer Polynomialzeit anhält.

Sei M_f ; M_2 die Hintereinanderausführung von M_f (deterministisch) und

 M_2 (nichtdeterministisch). Dann gilt: $L(M_f; M_2) = L_1$.

 M_f : M_2 hält stets in nichtdeterministischer Polynomialzeit.

Daher gilt $L_1 \in \mathcal{NP}$.

Transitivität der Polynomialzeit-Reduktion

Lemma

Die Relation \leq_p ist transitiv, d.h. wenn $L_1 \leq_p L_2$ und $L_2 \leq_p L_3$, dann gilt auch $L_1 \leq_p L_3$.

Transitivität der Polynomialzeit-Reduktion

Lemma

Die Relation \leq_p ist transitiv, d.h. wenn $L_1 \leq_p L_2$ und $L_2 \leq_p L_3$, dann gilt auch $L_1 \leq_p L_3$.

Beweis Die Komposition von zwei Polynomen bleibt ein Polynom.

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

 \mathcal{NP} -vollständige Probleme sind die schwierigsten Probleme in \mathcal{NP} .

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

 \mathcal{NP} -vollständige Probleme sind die schwierigsten Probleme in \mathcal{NP} .

 \mathcal{NP} -Schwere besagt, dass man mit dem \mathcal{NP} -vollständigen Problem alle anderen Probleme aus \mathcal{NP} lösen kann.

Definition

Eine Sprache L heißt \mathcal{NP} -vollständig, wenn gilt

- 1. $L \in \mathcal{NP}$ und
- 2. L ist \mathcal{NP} -schwer: für alle $L' \in \mathcal{NP}$ gilt $L' \leq_p L$.

 \mathcal{NP} -vollständige Probleme sind die schwierigsten Probleme in \mathcal{NP} .

 \mathcal{NP} -Schwere besagt, dass man mit dem \mathcal{NP} -vollständigen Problem alle anderen Probleme aus \mathcal{NP} lösen kann.

 \mathcal{NP} -schwer wird manchmal auch \mathcal{NP} -hart genannt.

Nachweis der \mathcal{NP} -Vollständigkeit einer Sprache L:

1. Zugehörigkeit zu \mathcal{NP} : Gib eine Polynomialzeit-beschränkte NTM an, die L entscheidet. (Alternativ: Gib eine Polynomialzeit-Reduktion von $L \leq_{p} L_{1}$ an mit $L_{1} \in \mathcal{NP}$.)

Nachweis der \mathcal{NP} -Vollständigkeit einer Sprache L:

- 1. Zugehörigkeit zu \mathcal{NP} :
 Gib eine Polynomialzeit-beschränkte NTM an, die L entscheidet.
 (Alternativ: Gib eine Polynomialzeit-Reduktion von $L \leq_{p} L_{1}$ an mit $L_{1} \in \mathcal{NP}$.)
- 2. \mathcal{NP} -Schwere:

Statt jedes mal neu zu beweisen, dass alle Probleme aus \mathcal{NP} auf L polynomiell reduzierbar sind, wähle ein \mathcal{NP} -schweres Problem L_0 und zeige $L_0 \leq_p L$.

Nachweis der \mathcal{NP} -Vollständigkeit einer Sprache L:

1. Zugehörigkeit zu \mathcal{NP} :

Gib eine Polynomialzeit-beschränkte NTM an, die L entscheidet. (Alternativ: Gib eine Polynomialzeit-Reduktion von $L \leq_p L_1$ an mit $L_1 \in \mathcal{NP}$.)

2. \mathcal{NP} -Schwere:

Statt jedes mal neu zu beweisen, dass alle Probleme aus \mathcal{NP} auf L polynomiell reduzierbar sind, wähle ein \mathcal{NP} -schweres Problem L_0 und zeige $L_0 \leq_p L$.

Da L_0 \mathcal{NP} -schwer, gilt $L' \leq_p L_0$ für alle $L' \in \mathcal{NP}$ und damit $L' \leq_p L_0 \leq_p L$ und mit Transitivität: $L' \leq_p L$ für alle $L' \in \mathcal{NP}$.

Nachweis der \mathcal{NP} -Vollständigkeit einer Sprache L:

1. Zugehörigkeit zu \mathcal{NP} :

Gib eine Polynomialzeit-beschränkte NTM an, die L entscheidet. (Alternativ: Gib eine Polynomialzeit-Reduktion von $L \leq_p L_1$ an mit $L_1 \in \mathcal{NP}$.)

2. \mathcal{NP} -Schwere:

Statt jedes mal neu zu beweisen, dass alle Probleme aus \mathcal{NP} auf L polynomiell reduzierbar sind, wähle ein \mathcal{NP} -schweres Problem L_0 und zeige $L_0 \leq_p L$.

Da L_0 \mathcal{NP} -schwer, gilt $L' \leq_p L_0$ für alle $L' \in \mathcal{NP}$ und damit $L' \leq_p L_0 \leq_p L$ und mit Transitivität: $L' \leq_p L$ für alle $L' \in \mathcal{NP}$.

Daher ist $L \mathcal{NP}$ -schwer.

Nachweis der \mathcal{NP} -Schwere

Analog zum Vorgehen wie bei der Unentscheidbarkeit, wesentlicher Unterschied: Polynomialzeit-Reduktion:

$$L_1 \le L_2$$
 und L_1 unentscheidbar $\implies L_2$ unentscheidbar

$$L_1 \leq_p L_2$$
 und $L_1 \mathcal{NP}$ -schwer $\implies L_2 \mathcal{NP}$ -schwer

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Beweis

Offensichtlich.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Beweis

Offensichtlich.

 \implies Sei L \mathcal{NP} -vollständig und $L \in \mathcal{P}$.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Beweis

Offensichtlich.

 \implies Sei $L \mathcal{NP}$ -vollständig und $L \in \mathcal{P}$.

Aus \mathcal{NP} -Schwere von L folgt:

Für alle $L' \in \mathcal{NP}$: $L' \leq_p L$ und damit $L' \in \mathcal{P}$.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Beweis

Offensichtlich.

 \implies Sei L \mathcal{NP} -vollständig und $L \in \mathcal{P}$.

Aus \mathcal{NP} -Schwere von L folgt:

Für alle $L' \in \mathcal{NP}$: $L' \leq_p L$ und damit $L' \in \mathcal{P}$.

Da dies für alle $L' \in \mathcal{NP}$ gilt, folgt $\mathcal{P} = \mathcal{NP}$.

Satz

Sei L ein \mathcal{NP} -vollständiges Problem. Dann gilt $L \in \mathcal{P}$ g.d.w. $\mathcal{P} = \mathcal{NP}$.

Beweis

Offensichtlich.

 \implies Sei L \mathcal{NP} -vollständig und $L \in \mathcal{P}$.

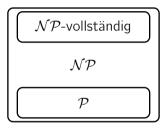
Aus \mathcal{NP} -Schwere von L folgt:

Für alle $L' \in \mathcal{NP}$: $L' \leq_p L$ und damit $L' \in \mathcal{P}$.

Da dies für alle $L' \in \mathcal{NP}$ gilt, folgt $\mathcal{P} = \mathcal{NP}$.

Also: Es reicht aus nachzuweisen, dass ein \mathcal{NP} -vollständiges Problem in \mathcal{P} bzw. nicht in \mathcal{P} liegt, um die \mathcal{P} -vs.- \mathcal{NP} -Frage ein für allemal beantworten zu können.

Vermutete Lage der Probleme



Unter der Annahme $\mathcal{P} \neq \mathcal{NP}$ gibt es Probleme in \mathcal{NP} , die nicht in \mathcal{P} liegen und nicht \mathcal{NP} -vollständig sind (Ladner 1975).

Ausblick

Was fehlt noch? Ein erstes Problem L_0 , dass man direkt als \mathcal{NP} -vollständig beweist. Ein solches L_0 und den \mathcal{NP} -Vollständigkeitsbeweis sehen wir in der nächsten Vorlesung.

Ausblick

Was fehlt noch? Ein erstes Problem L_0 , dass man direkt als \mathcal{NP} -vollständig beweist. Ein solches L_0 und den \mathcal{NP} -Vollständigkeitsbeweis sehen wir in der nächsten Vorlesung.

Danach können wir \mathcal{NP} -Vollständigkeit von L zeigen durch

- 1. $I \in \mathcal{NP}$
- $2. L_0 \leq_p L.$

Ausblick

Was fehlt noch? Ein erstes Problem L_0 , dass man direkt als \mathcal{NP} -vollständig beweist. Ein solches L_0 und den \mathcal{NP} -Vollständigkeitsbeweis sehen wir in der nächsten Vorlesung.

Danach können wir \mathcal{NP} -Vollständigkeit von L zeigen durch

- 1. $L \in \mathcal{NP}$
- 2. $L_0 \leq_p L$.

Danach lernen wir eine Auswahl an \mathcal{NP} -vollständigen Problemen kennen.