10a

Das Postsche Korrespondenzproblem

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

Das Postsche Korrespondenzproblem

- Das Problem wurde vorgeschlagen von Emil Post 1946.
- ► Es ist ein einfaches aber unentscheidbares Problem.
- Es wird häufig verwendet, um es auf andere Probleme zu reduzieren und deren Unentscheidbarkeit zu zeigen.
- Es hat nichts mit Turingmaschinen und deren Akzeptanzverhalten zu tun (im Gegensatz zu den Varianten des Halteproblems).

Definition des Postschen Korrespondenzproblems

Definition

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \ldots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das Postsche Korrespondenzproblem (PCP) ist die Frage, ob es für die gegebene Folge K eine nichtleere Folge von Indizes i_1, \ldots, i_m mit $i_j \in \{1, \ldots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

Definition des Postschen Korrespondenzproblems

Definition

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \ldots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das Postsche Korrespondenzproblem (PCP) ist die Frage, ob es für die gegebene Folge K eine nichtleere Folge von Indizes i_1, \ldots, i_m mit $i_j \in \{1, \ldots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

Als formale Sprache:

$$\mathsf{PCP} = \{ \underbrace{\mathit{code}(K)} \in \Sigma^* \mid \mathsf{für} \ K = ((x_1, y_1), \dots, (x_k, y_k)) \ \mathsf{gibt} \ \mathsf{es} \ \mathsf{eine} \ \mathsf{nichtleere} \ \mathsf{Folge} \\ \mathsf{von} \ \mathsf{Indizes} \ i_1, \dots, i_m \ \mathsf{mit} \ i_j \in \{1, \dots, k\}, \\ \mathsf{sodass} \ x_{i_1} \cdots x_{i_m} = y_{i_1} \cdots y_{i_m} \}$$

PCP ist wie ein Domino-Spiel

Spielsteinarten:
$$\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right)$$
.

Gesucht ist eine Aneinanderreihung der Spielsteine, sodass oben wie unten dasselbe Wort abgelesen werden kann. Dabei dürfen beliebig (aber endlich) viele Spielsteine verwendet werden.

PCP ist wie ein Domino-Spiel

Spielsteinarten:
$$\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right)$$
.

Gesucht ist eine Aneinanderreihung der Spielsteine, sodass oben wie unten dasselbe Wort abgelesen werden kann. Dabei dürfen beliebig (aber endlich) viele Spielsteine verwendet werden.

Beispiel:

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

PCP ist wie ein Domino-Spiel

Spielsteinarten:
$$\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right)$$
.

Gesucht ist eine Aneinanderreihung der Spielsteine, sodass oben wie unten dasselbe Wort abgelesen werden kann. Dabei dürfen beliebig (aber endlich) viele Spielsteine verwendet werden.

Beispiel:

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

(1, 2, 3, 2) ist eine Lösung, da

Sei
$$K = \begin{pmatrix} \begin{bmatrix} ab \\ bba \end{bmatrix}, \begin{bmatrix} ba \\ baa \end{bmatrix}, \begin{bmatrix} ba \\ aba \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \end{pmatrix}$$
.

Sei
$$K = \begin{pmatrix} \begin{bmatrix} ab \\ bba \end{bmatrix}, \begin{bmatrix} ba \\ baa \end{bmatrix}, \begin{bmatrix} ba \\ aba \end{bmatrix}, \begin{bmatrix} bba \\ b \end{bmatrix} \end{pmatrix}$$
.

Die kürzeste Lösung benötigt 66 Wortpaare:

(2, 1, 3, 1, 1, 2, 4, 2, 1, 3, 1, 3, 1, 1, 3, 1, 1, 2, 4, 1, 1, 2, 4, 3, 1, 4, 4, 3, 1, 1, 1, 2, 4, 2, 4, 4, 4, 3, 1, 3, 1, 4, 2, 4, 1, 1, 2, 4, 1, 4, 4, 3, 1, 4, 4, 3, 4, 4, 3, 4, 2, 4, 1, 4, 4, 3).

Unentscheidbarkeit des PCP

Der Beweis von $H \leq PCP$ erfolgt in zwei Schritten:

- 1. MPCP < PCP
- 2. $H \leq MPCP$.

Unentscheidbarkeit des PCP

Der Beweis von $H \leq PCP$ erfolgt in zwei Schritten:

- 1. MPCP < PCP
- 2. $H \leq MPCP$.

MPCP ist das Modifizierte Postsche Korrespondenzproblem:

Zulässige Lösungen müssen mit dem Index 1 beginnen.

Unentscheidbarkeit des PCP

Der Beweis von $H \leq PCP$ erfolgt in zwei Schritten:

- 1. MPCP < PCP
- 2. $H \leq MPCP$.

MPCP ist das Modifizierte Postsche Korrespondenzproblem:

Zulässige Lösungen müssen mit dem Index 1 beginnen.

Damit folgt aus der Unentscheidbarkeit von H die Unentscheidbarkeit von MPCP und damit die Unentscheidbarkeit des PCP.

Modifiziertes PCP

Definition

Gegeben sei ein Alphabet Σ und eine Folge von Wortpaaren

$$K = ((x_1, y_1), \ldots, (x_k, y_k))$$

mit $x_i, y_i \in \Sigma^+$. Das modifizierte Postsche Korrespondenzproblem (MPCP) ist die Frage, ob es für die gegebene Folge K eine nichtleere Folge von Indizes $i_1 = 1, i_2, \ldots, i_m$ mit $i_i \in \{1, \ldots, k\}$ gibt, sodass

$$x_{i_1}\cdots x_{i_m}=y_{i_1}\cdots y_{i_m}$$

Lemma

 $MPCP \leq PCP$.

Lemma

 $MPCP \leq PCP$.

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar g.d.w. f(K) PCP-lösbar ist.

Lemma

MPCP < PCP.

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar q.d.w. f(K) PCP-lösbar ist.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 seien

$$\bar{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$$
 $\hat{w} = a_1 \# a_2 \# \cdots \# a_n \#$ $\hat{w} = \#a_1 \# a_2 \# \cdots \# a_n \#$

$$\dot{w} = a_1 \# a_2 \# \cdots \# a_n \#$$

$$\hat{w} = \#a_1\#a_2\#\cdots\#a_n$$

Lemma

MPCP < PCP.

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar g.d.w. f(K) PCP-lösbar ist.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 seien

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\dot{w} = a_1\#a_2\#\cdots\#a_n\#$ $\dot{w} = \#a_1\#a_2\#\cdots\#a_n$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}, \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}, \dots, \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}\right).$$

Sei
$$K = \begin{pmatrix} \begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \end{pmatrix}$$
.

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

(1, 2, 3, 2) ist eine MPCP-Lösung:

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

(1, 2, 3, 2) ist eine MPCP-Lösung:

$$f(K) = \left(\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix}, \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix} \right).$$

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

(1, 2, 3, 2) ist eine MPCP-Lösung:

$$\begin{bmatrix}
 a \\
 aba
 \end{bmatrix}
 \begin{bmatrix}
 baa \\
 aa
 \end{bmatrix}
 \begin{bmatrix}
 ab \\
 bb
 \end{bmatrix}
 \begin{bmatrix}
 baa \\
 aa
 \end{bmatrix}$$

$$f(K) = \left(\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix}, \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix} \right).$$

(1, 3, 4, 3, 5) ist eine PCP-Lösung:

$$\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}$$

Sei
$$K = \left(\begin{bmatrix} a \\ aba \end{bmatrix}, \begin{bmatrix} baa \\ aa \end{bmatrix}, \begin{bmatrix} ab \\ bb \end{bmatrix} \right)$$
.

(1, 2, 3, 2) ist eine MPCP-Lösung:

$$f(K) = \left(\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} a\# \\ \#a\#b\#a \end{bmatrix}, \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix}, \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix} \right).$$

(1, 3, 4, 3, 5) ist eine PCP-Lösung:

$$\begin{bmatrix} \#a\# \\ \#a\#b\#a \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} a\#b\# \\ \#b\#b \end{bmatrix} \begin{bmatrix} b\#a\#a\# \\ \#a\#a \end{bmatrix} \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}$$

So ist (1, 3, 4, 3, 5, 1, 3, 4, 3, 5).

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar g.d.w. f(K) PCP-lösbar ist.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 seien

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\hat{w} = a_1\#a_2\#\cdots\#a_n\#$ $\hat{w} = \#a_1\#a_2\#\cdots\#a_n$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}, \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}, \dots, \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}\right).$$

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar g.d.w. f(K) PCP-lösbar ist.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 seien

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\hat{w} = a_1\#a_2\#\cdots\#a_n\#$ $\hat{w} = \#a_1\#a_2\#\cdots\#a_n$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}, \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}, \dots, \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}\right).$$

 \implies Wenn $(1, i_2, ..., i_m)$ eine Lösung für K ist, dann ist $(1, i_2+1, ..., i_m+1, k+2)$ eine Lösung für f(K).

Beweis Gesucht ist ein totales und berechenbares f, sodass:

K ist MPCP-lösbar g.d.w. f(K) PCP-lösbar ist.

Für
$$w = a_1 \cdots a_n \in \Sigma^+$$
 seien

$$\bar{w} = \#a_1\#a_2\#\cdots\#a_n\#$$
 $\hat{w} = a_1\#a_2\#\cdots\#a_n\#$ $\hat{w} = \#a_1\#a_2\#\cdots\#a_n$

Sei
$$f\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \dots, \begin{bmatrix} x_k \\ y_k \end{bmatrix}\right) = \left(\begin{bmatrix} \bar{x}_1 \\ \dot{y}_1 \end{bmatrix}, \begin{bmatrix} \dot{x}_1 \\ \dot{y}_1 \end{bmatrix}, \dots, \begin{bmatrix} \dot{x}_k \\ \dot{y}_k \end{bmatrix}, \begin{bmatrix} \$ \\ \#\$ \end{bmatrix}\right).$$

- \implies Wenn $(1, i_2, ..., i_m)$ eine Lösung für K ist, dann ist $(1, i_2+1, ..., i_m+1, k+2)$ eine Lösung für f(K).
- Wenn (i_1, \ldots, i_m) eine Lösung für f(K) ist, dann muss $i_1 = 1$ und k + 2 muss in der Lösung vorkommen. Sei ℓ der kleinste Index mit $i_{\ell} = k + 2$. Dann ist $(1, i_2 - 1, \ldots, i_{\ell-1} - 1)$ eine Lösung für K.

Lemma

 $H \leq MPCP$.

Lemma

 $H \leq MPCP$.

Beweis Seien w eine Turingmaschinenbeschreibung und x eine Eingabe.

Gesucht ist ein totales und berechenbares f, sodass:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) MPCP-lösbar ist.

Lemma

 $H \leq MPCP$.

Beweis Seien w eine Turingmaschinenbeschreibung und x eine Eingabe.

Gesucht ist ein totales und berechenbares f, sodass:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) MPCP-lösbar ist.

Sei $M_w = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$.

Lemma

 $H \leq MPCP$.

Beweis Seien w eine Turingmaschinenbeschreibung und x eine Eingabe.

Gesucht ist ein totales und berechenbares f, sodass:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) MPCP-lösbar ist.

Sei $M_w = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$.

Als Alphabet für das MPCP nehmen wir $\Gamma \cup Z \cup \{\#\}$.

Lemma

 $H \leq MPCP$.

Beweis Seien w eine Turingmaschinenbeschreibung und x eine Eingabe.

Gesucht ist ein totales und berechenbares f, sodass:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) MPCP-lösbar ist.

Sei $M_w = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$.

Als Alphabet für das MPCP nehmen wir $\Gamma \cup Z \cup \{\#\}$.

Grundgedanke: Lösungen des MPCP simulieren Übergangsfolgen der DTM.

Lemma

H < MPCP.

Beweis Seien w eine Turingmaschinenbeschreibung und x eine Eingabe.

Gesucht ist ein totales und berechenbares f, sodass:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) MPCP-lösbar ist.

Sei $M_w = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$.

Als Alphabet für das MPCP nehmen wir $\Gamma \cup Z \cup \{\#\}$.

Grundgedanke: Lösungen des MPCP simulieren Übergangsfolgen der DTM.

Das erste Wortpaar (mit dem jede Lösung anfangen muss) ist $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} \# \\ \# z_0 w \# \end{bmatrix}$.

Weitere Paare lassen sich in Gruppen von "Regeln" aufteilen:

Kopierregeln, Übergangsregeln, Löschregeln, Abschlussregeln.

Die Kopierregeln

$$\begin{bmatrix}
za \\
z'c
\end{bmatrix}
 falls \delta(z, a) = (z', c, N)$$

$$\begin{bmatrix}
za \\
cz'
\end{bmatrix}
 falls \delta(z, a) = (z', c, R)$$

▶
$$\begin{bmatrix} bza \\ z'bc \end{bmatrix}$$
 falls $\delta(z,a) = (z',c,L)$ für alle $b \in \Gamma$

▶
$$\begin{bmatrix} bz\#\\ z'bc\# \end{bmatrix}$$
 falls $\delta(z, \Box) = (z', c, L)$ für alle $b \in \Gamma$

Die Löschregeln

- ▶ $\begin{bmatrix} az_e \\ z_e \end{bmatrix}$ für alle $a \in \Gamma$, $z_e \in E$ ▶ $\begin{bmatrix} z_e a \\ z_e \end{bmatrix}$ für alle $a \in \Gamma$, $z_e \in E$

Die Abschlussregeln

Beispiel für die Reduktion von H auf MPCP

 $z_0abc \vdash dz_1bc \vdash dez_2c \vdash defz_3 \Box \vdash defz_e \Box$

Beispiel für die Reduktion von H auf MPCP

$$z_0abc \vdash dz_1bc \vdash dez_2c \vdash defz_3 \Box \vdash defz_e \Box$$

Lösende Spielsteinfolge:

$$\begin{bmatrix} \# \\ \# z_0 a b c \# \end{bmatrix} \begin{bmatrix} z_0 a \\ b \end{bmatrix} \begin{bmatrix} c \\ c \end{bmatrix} \begin{bmatrix} \# \\ \# \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} z_1 b \\ e z_2 \end{bmatrix} \begin{bmatrix} c \\ \# \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} e \\ e \end{bmatrix} \begin{bmatrix} z_2 c \\ f z_3 \end{bmatrix} \begin{bmatrix} \# \\ d \end{bmatrix} \begin{bmatrix} d \\ e \end{bmatrix} \begin{bmatrix} e \\ f \end{bmatrix} \begin{bmatrix} z_3 \# \\ z_e \Box \# \end{bmatrix}$$

$$\begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} e \\ e \end{bmatrix} \begin{bmatrix} f \\ f \end{bmatrix} \begin{bmatrix} z_e \Box \\ \# \end{bmatrix} \begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} e \\ e \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix} \begin{bmatrix} f$$

Beweis (Fortsetzung)

Wir müssen zeigen:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) genau dann MPCP-lösbar ist.

 \implies Wenn M_w einen akzeptierenden Lauf hat, dann gibt es eine Folge

$$K_0 \vdash K_1 \vdash \cdots \vdash K_n$$

wobei $K_0 = z_0 x$ und $K_n = u z_e v$ für ein $z_e \in E$.

Beweis (Fortsetzung)

Wir müssen zeigen:

die DTM M_w auf Eingabe x anhält g.d.w. f(w#x) genau dann MPCP-lösbar ist.

 \implies Wenn M_w einen akzeptierenden Lauf hat, dann gibt es eine Folge

$$K_0 \vdash K_1 \vdash \cdots \vdash K_n$$

wobei $K_0 = z_0 x$ und $K_n = u z_e v$ für ein $z_e \in E$.

Dann hat das MPCP eine Lösung, die oben und unten das Wort

$$\#K_0\#K_1\#\cdots\#K_n\#K_{n+1}\#\cdots\#K_m\#\#$$

erzeugt, wobei $K_m = z_e$ und jedes K_i mit $i \in \{n+1, \ldots, m\}$ jeweils aus K_{i-1} entsteht durch Löschen eines der benachbarten Zeichen von z_e in $u'z_ev'$ entsteht.

Beweis (Fortsetzung)

Die obere Folge hinkt der unteren um eine Konfiguration hinterher:

$$\#K_1 \# K_2 \# \cdots \# K_i \#$$

 $\#K_1 \# K_2 \# \cdots \# K_i \# K_{i+1} \#$

Beweis (Fortsetzung)

Die obere Folge hinkt der unteren um eine Konfiguration hinterher:

$$\#K_1 \# K_2 \# \cdots \# K_i \#$$

 $\#K_1 \# K_2 \# \cdots \# K_i \# K_{i+1} \#$

Verlängerung bis K_n :

- 1. Wende Kopierregeln an bis in die Nähe des Zustands.
- 2. Wende Übergangsregeln an.
- 3. Wende Kopierregeln an zum Vervollständigen

Verlängerung ab K_n :

- 1. Löschregeln anwenden, um die Symbole auf dem Band zu löschen.
- 2. Wenn in unterer Folge $z_e\#$ steht, dann Abschlussregel anwenden.

Beweis (Fortsetzung)

Jede Lösung für das MPCP (welches ja mit dem ersten Spielstein beginnen muss) erzeugt einen akzeptierende Lauf, der bezeugt, dass die Turingmaschine bei Eingabe x hält.

Beweis (Fortsetzung)

Jede Lösung für das MPCP (welches ja mit dem ersten Spielstein beginnen muss) erzeugt einen akzeptierende Lauf, der bezeugt, dass die Turingmaschine bei Eingabe x hält.

Wegen der Kopienregeln können MPCP-Lösungen Wiederholungen von der Form #K#K# enthalten. Diese können vereinfacht werden, um einen Lauf zu erhalten.

Beweis (Fortsetzung)

Jede Lösung für das MPCP (welches ja mit dem ersten Spielstein beginnen muss) erzeugt einen akzeptierende Lauf, der bezeugt, dass die Turingmaschine bei Eingabe x hält.

Wegen der Kopienregeln können MPCP-Lösungen Wiederholungen von der Form #K#K# enthalten. Diese können vereinfacht werden, um einen Lauf zu erhalten.

Eine MPCP-Lösung kann auch mehreren Läufen hintereinander entsprechen. Dann betrachten wir nur den ersten Lauf.

Beweis (Fortsetzung)

Jede Lösung für das MPCP (welches ja mit dem ersten Spielstein beginnen muss) erzeugt einen akzeptierende Lauf, der bezeugt, dass die Turingmaschine bei Eingabe x hält.

Wegen der Kopienregeln können MPCP-Lösungen Wiederholungen von der Form #K#K# enthalten. Diese können vereinfacht werden, um einen Lauf zu erhalten.

Eine MPCP-Lösung kann auch mehreren Läufen hintereinander entsprechen. Dann betrachten wir nur den ersten Lauf.

Schließlich prüfen wir, dass f total und berechenbar ist.

Unentscheidbarkeit PCP und MPCP

Satz

Das Postsche Korrespondenzproblem (sowie das modifizierte Postsche Korrespondenzproblem) ist unentscheidbar.

Unentscheidbarkeit PCP und MPCP

Satz

Das Postsche Korrespondenzproblem (sowie das modifizierte Postsche Korrespondenzproblem) ist unentscheidbar.

Beweis Da H unentscheidbar ist und $H \leq MPCP \leq PCP$ gilt, folgt, dass MPCP und PCP unentscheidbar sind.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Sei $K = ((x_1, y_1), \dots, (x_k, y_k))$ eine Instanz des PCP über dem Alphabet $\{a_1, \dots, a_i\}$.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Sei $K = ((x_1, y_1), ..., (x_k, y_k))$ eine Instanz des PCP über dem Alphabet $\{a_1, ..., a_j\}$. O.B.d.A. sei $\Sigma = \{0, 1\}$.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Sei $K = ((x_1, y_1), \dots, (x_k, y_k))$ eine Instanz des PCP über dem Alphabet $\{a_1, \dots, a_j\}$. O.B.d.A. sei $\Sigma = \{0, 1\}$.

Sei $f(a_i) = 10^i$, $f(\varepsilon) = \varepsilon$, $f(a_i w) = f(a_i)f(w)$ und $f(K) = (f(x_1), f(y_1)), \dots, (f(x_k), f(y_k))$.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Sei $K = ((x_1, y_1), \dots, (x_k, y_k))$ eine Instanz des PCP über dem Alphabet $\{a_1, \dots, a_j\}$.

O.B.d.A. sei $\Sigma = \{0, 1\}$.

Sei $f(a_i) = 10^i$,

 $f(\varepsilon) = \varepsilon$, $f(a_i w) = f(a_i)f(w)$ und

 $f(K) = (f(x_1), f(y_1)), \ldots, (f(x_k), f(y_k)).$

Dann gilt: i_1, \ldots, i_n ist eine PCP-Lösung für K g.d.w. i_1, \ldots, i_n eine 01-PCP-Lösung für f(K) ist.

Lemma

Das Postsche Korrespondenzproblem über dem Alphabet Σ mit $|\Sigma|=2$ (01-PCP) ist unentscheidbar.

Beweis Wir reduzieren PCP auf 01-PCP.

Sei $K = ((x_1, y_1), \dots, (x_k, y_k))$ eine Instanz des PCP über dem Alphabet $\{a_1, \dots, a_j\}$.

O.B.d.A. sei $\Sigma = \{0, 1\}$.

Sei $f(a_i) = 10^i$,

$$f(\varepsilon) = \varepsilon$$
, $f(a_i w) = f(a_i) f(w)$ und

$$f(K) = (f(x_1), f(y_1)), \ldots, (f(x_k), f(y_k)).$$

Dann gilt: i_1, \ldots, i_n ist eine PCP-Lösung für K g.d.w. i_1, \ldots, i_n eine 01-PCP-Lösung für f(K) ist.

Schließlich ist f total und berechenbar.

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

(2, 1, 3, 1) ist eine PCP-Lösung:

$$\begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix} \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}$$

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

(2, 1, 3, 1) ist eine PCP-Lösung:

$$\begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix} \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}$$

$$f(K) = \left(\begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}, \begin{bmatrix} 1000 \\ 100010010 \end{bmatrix}, \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \right)$$

Sei
$$K = \left(\begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}, \begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix}, \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \right)$$

(2, 1, 3, 1) ist eine PCP-Lösung:

$$\begin{bmatrix} a_3 \\ a_3 a_2 a_1 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix} \begin{bmatrix} a_1 a_2 \\ a_2 a_2 \end{bmatrix} \begin{bmatrix} a_2 a_1 a_1 \\ a_1 a_1 \end{bmatrix}$$

$$f(K) = \left(\begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}, \begin{bmatrix} 1000 \\ 100010010 \end{bmatrix}, \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \right)$$

(2, 1, 3, 1) ist eine 01-PCP-Lösung:

$$\begin{bmatrix} 1000 \\ 100010010 \end{bmatrix} \begin{bmatrix} 1001010 \\ 1010 \end{bmatrix} \begin{bmatrix} 10100 \\ 100100 \end{bmatrix} \begin{bmatrix} 1001010 \\ 1010 \end{bmatrix}$$

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Beweis Alle Wortpaare sind von der Form $\begin{bmatrix} a^n \\ a^m \end{bmatrix}$.

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Beweis Alle Wortpaare sind von der Form $\begin{bmatrix} a^n \\ a^m \end{bmatrix}$.

Wenn $|x_i| < |y_i|$ für alle (x_i, y_i) gilt, dann gibt es keine Lösung.

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Beweis Alle Wortpaare sind von der Form $\begin{bmatrix} a^n \\ a^m \end{bmatrix}$.

Wenn $|x_i| < |y_i|$ für alle (x_i, y_i) gilt, dann gibt es keine Lösung.

Wenn $|x_i| > |y_i|$ für alle (x_i, y_i) gilt, dann gibt es keine Lösung.

Lemma

Das PCP für unäre Alphabete ist entscheidbar.

Beweis Alle Wortpaare sind von der Form $\begin{bmatrix} a^n \\ a^m \end{bmatrix}$.

Wenn $|x_i| < |y_i|$ für alle (x_i, y_i) gilt, dann gibt es keine Lösung.

Wenn $|x_i| > |y_i|$ für alle (x_i, y_i) gilt, dann gibt es keine Lösung.

Wenn $(x_i, y_i) = (a^n, a^{n+r})$ und $(x_j, y_j) = (a^{m+s}, a^m)$ mit $s, r \ge 0$, dann ist das PCP immer lösbar.

Die Lösung ist $\underline{i, \ldots, i}, \underline{j, \ldots, j}$, denn oben $a^{s \cdot n + r \cdot (m+s)}$ und unten $a^{s \cdot (n+r) + r \cdot m}$.

Daher oben wie unten sn + rm + rs viele a's.

Beispiel für PCP mit unärem Alphabet

Sei
$$K = \left(\begin{bmatrix} a \\ aaaa \end{bmatrix}, \begin{bmatrix} aaa \\ a \end{bmatrix} \right)$$

Beispiel für PCP mit unärem Alphabet

Sei
$$K = \left(\begin{bmatrix} a \\ aaaa \end{bmatrix}, \begin{bmatrix} aaa \\ a \end{bmatrix} \right)$$

(1, 1, 2, 2, 2) ist eine Lösung:

$$\left[\begin{array}{c}a\\aaaa\end{array}\right]\left[\begin{array}{c}a\\aaaa\end{array}\right]\left[\begin{array}{c}aaa\\a\end{array}\right]\left[\begin{array}{c}aaa\\a\end{array}\right]$$

Anzahl k der Spielsteinarten beschränken

PCP mit k vielen verschiedenen Spielsteinarten:

- k = 1 und k = 2: als entscheidbar gezeigt 1982
- ▶ $k \ge 5$: als unentscheidbar gezeigt 2015
- \triangleright k=3 und k=4: unbekannt.

Semi-Entscheidbarkeit des PCP

PCP ist semi-entscheidbar:

- 1. Probiere alle Folgen von *i* Wortpaaren aus.
- 2. Lasse i wachsen.

Diese Prozedur findet eine Lösung, wenn eine existiert, in endlich vielen Schritten, aber terminiert nicht, wenn keine Lösung existiert.

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

D.h. es gibt eine DTM, die sich bei Eingabe w # x so verhält wie M_w auf Eingabe x was das Halten betrifft.

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

D.h. es gibt eine DTM, die sich bei Eingabe w # x so verhält wie M_w auf Eingabe x was das Halten betrifft.

Ferner: Es gibt eine DTM U, die sich bei Eingabe w#x so verhält wie M_w auf Eingabe x.

Da $H \leq PCP$ folgt auch, dass H semi-entscheidbar ist.

D.h. es gibt eine DTM, die sich bei Eingabe w # x so verhält wie M_w auf Eingabe x was das Halten betrifft.

Ferner: Es gibt eine DTM U, die sich bei Eingabe w#x so verhält wie M_w auf Eingabe x.

U nennt man eine universelle Turingmaschine:

- U verhält sich wie ein Interpreter für Turingmaschinen.
- $lackbox{$lackbox{\lor}}$ U wird durch die Eingabe w programmiert und x ist dann die eigentliche Eingabe für das Programm.