Formale Sprachen und Komplexität Sommersemester 2025

9a

Primitiv und μ -rekursive Funktionen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Weitere Formalismen

Weitere Formalismen zur Definition der Berechenbarkeit:

- primitiv rekursive Funktionen
- \triangleright μ -rekursive Funktionen.

Weitere Formalismen

Weitere Formalismen zur Definition der Berechenbarkeit:

- primitiv rekursive Funktionen
- \triangleright μ -rekursive Funktionen.

Im Skript wird gezeigt:

- Primitiv rekursive Funktionen entsprechen genau den sogenannten LOOP-berechenbaren Funktionen.
- \blacktriangleright μ -rekursive Funktionen entsprechen genau den turingberechenbaren Funktionen.

Primitiv rekursive Funktionen

Definition

Eine (totale) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ ist primitiv rekursiv, wenn sie der folgenden Definition genügt:

- ▶ Jede konstante Funktion $f(x_1, ..., x_k) = c \in \mathbb{N}$ ist primitiv rekursiv.
- ▶ Die Projektionsfunktionen $\pi_i^k(x_1, ..., x_k) = x_i$ sind primitiv rekursiv.
- ▶ Die Nachfolgerfunktion succ(x) = x + 1 ist primitiv rekursiv.
- ► Komposition/Einsetzung: Wenn $g: \mathbb{N}^m \to \mathbb{N}$ und für i = 1, ..., m: $h_i: \mathbb{N}^k \to \mathbb{N}$ primitiv rekursiv sind, dann ist auch f mit $f(x_1, ..., x_k) = g(h_1(x_1, ..., x_k), ..., h_m(x_1, ..., x_k))$ primitiv rekursiv.

(Fortsetzung folgt.)

Primitiv rekursive Funktionen

Definition

▶ Rekursion: Wenn $g: \mathbb{N}^{k-1} \to \mathbb{N}$ und $h: \mathbb{N}^{k+1} \to \mathbb{N}$ primitiv rekursiv sind, dann ist auch f mit

$$f(x_1, \dots, x_k) = \begin{cases} g(x_2, \dots, x_k) & \text{falls } x_1 = 0 \\ h(f(x_1 - 1, x_2, \dots, x_k), x_1 - 1, x_2, \dots, x_k) & \text{sonst} \end{cases}$$

primitiv rekursiv.

Additionsfunktion

 $add(x_1, x_2) = x_1 + x_2$ ist primitiv rekursiv:

$$add(x_1, x_2) = \begin{cases} x_2 & \text{falls } x_1 = 0\\ succ(add(x_1 - 1, x_2)) & \text{sonst} \end{cases}$$

Grundgedanke: x_1 -mal 1 zu x_2 addieren.

Additionsfunktion

 $add(x_1, x_2) = x_1 + x_2$ ist primitiv rekursiv:

$$add(x_1, x_2) = \begin{cases} x_2 & \text{falls } x_1 = 0\\ succ(add(x_1 - 1, x_2)) & \text{sonst} \end{cases}$$

Grundgedanke: x_1 -mal 1 zu x_2 addieren.

Die verwendeten Funktionen g und h aus der Definition der primitiv rekursiven Funktionen sind hier

- $ightharpoonup g = \pi_1^1$
- $h(x_1, x_2, x_3) = succ(\pi_1^3(x_1, x_2, x_3))$

Komponenten eines Tupels entfernen/vertauschen/vervielfachen

Wenn $g: \mathbb{N}^4 \to \mathbb{N}$ primitiv rekursiv ist, dann ist auch z.B. $f: \mathbb{N}^3 \to \mathbb{N}$ mit

$$f(n_1, n_2, n_3) = g(n_2, n_3, n_3, n_2)$$

denn

$$f(n_1, n_2, n_3) = g(\pi_2^3(n_1, n_2, n_3), \pi_3^3(n_1, n_2, n_3), \pi_3^3(n_1, n_2, n_3), \pi_2^3(n_1, n_2, n_3))$$

Multiplikationsfunktion

 $mult(x_1, x_2) = x_1 \cdot x_2$ ist primitiv rekursiv:

$$mult(x_1, x_2) = \begin{cases} 0 & \text{falls } x_1 = 0\\ add(mult(x_1 - 1, x_2), x_2) & \text{sonst} \end{cases}$$

Grundgedanke: x_1 -mal x_2 zu 0 addieren.

Rekursion durch das i-te Argument

Für 1 < i < k kann man

$$f(x_1, \dots, x_k) = \begin{cases} g(x_1, \dots, x_{i-1}, x_{i+1}, x_k) & \text{falls } x_i = 0 \\ h(f(x_1, \dots, x_{i-1}, x_i - 1, x_{i+1}, \dots, x_k), x_1, \dots, x_{i-1}, x_i - 1, x_{i+1}, \dots, x_k) & \text{sonst} \end{cases}$$

$$\text{durch } f(x_1, \dots, x_k) = f'(x_i, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k) & \text{darstellen, wobei}$$

$$f'(y_1, \dots, y_k) = \begin{cases} g(y_2, \dots, y_k) & \text{falls } y_1 = 0 \\ h'(f'(y_1 - 1, y_2, \dots, y_k), y_1 - 1, y_2, \dots, y_k) & \text{sonst} \end{cases}$$

$$h'(y_0, \dots, y_k) = h(y_0, y_2, y_3, \dots, y_i, y_1, y_{i+1}, y_{i+2}, \dots, y_k)$$

Angepasste Differenz

Im Allgemeinen ist $x_1 - x_2$ nicht primitiv rekursiv, weil der undefinierte Fall $x_1 < x_2$ nicht darstellbar ist.

Angepasste Differenz

Im Allgemeinen ist $x_1 - x_2$ nicht primitiv rekursiv, weil der undefinierte Fall $x_1 < x_2$ nicht darstellbar ist.

Hingegen ist die angepasste Differenz, die 0 liefert falls $x_1 < x_2$, primitiv rekursiv:

$$sub(x_1, x_2) = \begin{cases} x_1 & \text{falls } x_2 = 0\\ pred(sub(x_1, x_2 - 1)) & \text{sonst} \end{cases}$$

wobei

$$pred(x_1) = \begin{cases} 0 & \text{falls } x_1 = 0 \\ x_1 - 1 & \text{sonst} \end{cases}$$

μ -Operator

Definition

Sei $h: \mathbb{N}^{k+1} \to \mathbb{N}$ eine (partielle oder totale) Funktion.

Dann ist $\mu h : \mathbb{N}^k \to \mathbb{N}$ definiert als

$$(\mu h)(x_1,\ldots,x_k) = \begin{cases} n & \text{falls } h(\underline{n},x_1,\ldots,x_k) = 0 \text{ und für} \\ & \text{alle } m < \underline{n}; \ h(m,x_1,\ldots,x_k) \text{ ist definiert} \\ & \text{und } h(m,x_1,\ldots,x_k) > 0 \end{cases}$$
 undefiniert sonst

Definition

Sei $h: \mathbb{N}^{k+1} \to \mathbb{N}$ eine (partielle oder totale) Funktion.

Dann ist $\mu h : \mathbb{N}^k \to \mathbb{N}$ definiert als

$$(\mu h)(x_1, \dots, x_k) = \begin{cases} n & \text{falls } h(\underline{n}, x_1, \dots, x_k) = 0 \text{ und für} \\ & \text{alle } m < \underline{n} \text{: } h(m, x_1, \dots, x_k) \text{ ist definiert} \\ & \text{und } h(m, x_1, \dots, x_k) > 0 \end{cases}$$
undefiniert sonst

Der μ -Operator "sucht" nach der ersten Nullstelle von h.

Wenn diese nicht existiert (entweder da h keine Nullstelle hat, oder da h undefiniert ist für Werte, die kleiner als die Nullstelle sind), dann ist auch μh undefiniert.

Beispiel für den μ -Operator

Sei
$$bus(x_1, x_2) = sub(x_2, x_1)$$
, wobei sub die angepasste Differenz berechnet. $(\mu bus)(5) = ?$

Beispiel für den μ -Operator

```
Sei bus(x_1, x_2) = sub(x_2, x_1), wobei sub die angepasste Differenz berechnet. (\mu bus)(5) = 5, weil bus(0, 5) = 5 bus(1, 5) = 4 bus(2, 5) = 3 bus(3, 5) = 2 bus(4, 5) = 1 bus(5, 5) = 0.
```

μ -rekursive Funktionen

Definition

Eine (partielle oder totale) Funktion $f: \mathbb{N}^k \to \mathbb{N}$ ist μ -rekursiv, wenn sie der folgenden Definition genügt:

- ▶ Jede konstante Funktion $f(x_1,...,x_k) = c \in \mathbb{N}$ ist μ -rekursiv.
- ▶ Die Projektionsfunktionen $\pi_i^k(x_1, ..., x_k) = x_i$ sind μ -rekursiv.
- ▶ Die Nachfolgerfunktion succ(x) = x + 1 ist μ -rekursiv.
- ► Komposition/Einsetzung: Wenn $g: \mathbb{N}^m \to \mathbb{N}$ und für $i = 1, ..., m: h_i: \mathbb{N}^k \to \mathbb{N}$ μ -rekursiv sind, dann ist auch f mit $f(x_1, ..., x_k) = g(h_1(x_1, ..., x_k), ..., h_m(x_1, ..., x_k))$ μ -rekursiv.

(Fortsetzung folgt.)

μ -rekursive Funktionen

Definition

▶ Rekursion: Wenn $g: \mathbb{N}^{k-1} \to \mathbb{N}$ und $h: \mathbb{N}^{k+1} \to \mathbb{N}$ μ -rekursiv sind, dann ist

$$f(x_1, \dots, x_k) = \begin{cases} g(x_2, \dots, x_k) & \text{falls } x_1 = 0 \\ h(f(x_1 - 1, x_2, \dots, x_k), x_1 - 1, x_2, \dots, x_k) & \text{sonst} \end{cases}$$

auch μ -rekursiv.

▶ μ -Operator: Wenn $h: \mathbb{N}^{k+1} \to \mathbb{N}$ μ -rekursiv ist, dann ist auch $f = \mu h$ μ -rekursiv.

Überblick über die Berechenbarkeitsformalismen im Skript

