Formale Sprachen und Komplexität Sommersemester 2025

8b

Entscheiden des Wortproblems für Typ 1-Grammatiken

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: Entscheidbarkeit

Definition

Eine Sprache L ist entscheidbar, wenn es einen Algorithmus gibt, der bei Eingabe eines Wortes w in endlicher Zeit feststellt, ob $w \in L$ gilt oder nicht.

Wortproblem für Typ 1-Grammatiken

Definition

Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.

Wortproblem für Typ 1-Grammatiken

Definition

Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.

Satz

Das Wortproblem für Typ 1-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 1-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht.

Wortproblem für Typ 1-Grammatiken

Definition

Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.

Satz

Das Wortproblem für Typ 1-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 1-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht.

Beweis Algorithmus 2 auf späterer Folie bewerkstelligt dies.

Ein naiver Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$.

- 1. Beginne mit der Menge $L_0 := \{S\}$.
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i an. Sei N das Ergebnis. Setze $L_{i+1} := L_i \cup N$.
 - 2.2 Falls $w \in L_{i+1}$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1} = L_i$, stoppe und gib nein aus.

Ein naiver Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$.

Schritte:

- 1. Beginne mit der Menge $L_0 := \{S\}$.
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i an. Sei N das Ergebnis. Setze $L_{i+1} := L_i \cup N$.
 - 2.2 Falls $w \in L_{i+1}$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1} = L_i$, stoppe und gib nein aus.

Problem: Der Ansatz terminiert nicht zwingend.

Ein naiver Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$.

Schritte:

- 1. Beginne mit der Menge $L_0 := \{S\}$.
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i an. Sei N das Ergebnis. Setze $L_{i+1} := L_i \cup N$.
 - 2.2 Falls $w \in L_{i+1}$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1} = L_i$, stoppe und gib nein aus.

Problem: Der Ansatz terminiert nicht zwingend.

Bei Nichtterminierung ist $w \notin L$ (aber das erfahren wir nie).

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

0.
$$L_0 := \{S\}$$

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$
- 4. $L_4 := L_3 \cup \{aaaaSBcBcBcBc, aaaabcBcBcBc, \dots, aabbcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$
- 4. $L_4 := L_3 \cup \{aaaaSBcBcBcBcBc, aaaabcBcBcBc, \dots, aabbcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$
- 4. $L_4 := L_3 \cup \{aaaaSBcBcBcBcBc, aaaabcBcBcBcBc, \dots, aabbcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$
- 4. $L_4 := L_3 \cup \{aaaaSBcBcBcBc, aaaabcBcBcBc, \dots, aabbcc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

Schritte:

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$
- 4. $L_4 := L_3 \cup \{aaaaSBcBcBcBcBc, aaaabcBcBcBc, \dots, aabbcc\}$

Aus $aabbcc \in L_4$ folgt $aabbcc \in L(G)$.

Weiteres Beispiel für den naiven Ansatz

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort cababa

Weiteres Beispiel für den naiven Ansatz

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort cababa
```

- $0. L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$:

Weiteres Beispiel für den naiven Ansatz

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort cababa
```

Schritte:

- 0. $L_0 := \{S\}$
- 1. $L_1 := L_0 \cup \{aSBc, abc\}$
- 2. $L_2 := L_1 \cup \{aaSBcBc, aabcBc\}$
- 3. $L_3 := L_2 \cup \{aaaSBcBcBc, aaabcBcBc, aaSBBcc, aabBcc\}$ \vdots

Der Ansatz terminiert nicht.

D.h. $cababa \notin L(G)$ (aber das erfahren wir nie).

Ein besserer Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ der Länge n. Schritte:

- 1. Beginne mit der Menge $L_0^n := \{S\}$. (Hier ist n ein Index und keine Potenz.)
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i^n an. Sei N das Ergebnis. Setze $L_{i+1}^n := L_i^n \cup N'$, wobei N' aus den Satzformen der Länge $\leq n$ aus N besteht.
 - 2.2 Falls $w \in L_{i+1}^n$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1}^n = L_i^n$, stoppe und gib nein aus.

Ein besserer Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ der Länge n. Schritte:

- 1. Beginne mit der Menge $L_0^n := \{S\}$. (Hier ist n ein Index und keine Potenz.)
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i^n an. Sei N das Ergebnis. Setze $L_{i+1}^n := L_i^n \cup N'$, wobei N' aus den Satzformen der Länge $\leq n$ aus N besteht.
 - 2.2 Falls $w \in L_{i+1}^n$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1}^n = L_i^n$, stoppe und gib nein aus.

Der Ansatz terminiert immer (Beweis später), hat aber exponentielle Laufzeitkomplexität.

Ein besserer Ansatz

Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ der Länge n. Schritte:

- 1. Beginne mit der Menge $L_0^n := \{S\}$. (Hier ist n ein Index und keine Potenz.)
- 2. Wiederhole für $i = 0, 1, 2, \ldots$:
 - 2.1 Wende die Produktionen von P auf die Satzformen in L_i^n an. Sei N das Ergebnis. Setze $L_{i+1}^n := L_i^n \cup N'$, wobei N' aus den Satzformen der Länge $\leq n$ aus N besteht.
 - 2.2 Falls $w \in L_{i+1}^n$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1}^n = L_i^n$, stoppe und gib nein aus.

Der Ansatz terminiert immer (Beweis später), hat aber exponentielle Laufzeitkomplexität.

Er ist auch inkorrekt für Typ 0-Grammatiken.

Deshalb fokussieren wir uns auf Typ 1-Grammatiken (mit 1. Sonderregel).

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

0.
$$L_0^6 := \{S\}$$

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0^6 := \{ 5 \}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0^6 := \{ S \}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort aabbcc

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\} \ aSBc \Rightarrow aaSBcBc$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$

Grammatik
$$G = (\{S, B\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort $aabbcc$

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$
- 5. $L_5^6 := L_4^6$

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort aabbcc
```

Schritte:

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$
- 5. $L_5^6 := L_4^6$

Aus $aabbcc \in L_4^6$ folgt $aabbcc \in L(G)$.

Weiteres Beispiel für den besseren Ansatz

Grammatik $G = (\{S, B\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\}$ und Wort cababa

Weiteres Beispiel für den besseren Ansatz

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort cababa
```

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$
- 5. $L_5^6 := L_4^6$

Weiteres Beispiel für den besseren Ansatz

```
Grammatik G = (\{S, B\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBc, S \rightarrow abc, cB \rightarrow Bc, bB \rightarrow bb\} und Wort cababa
```

Schritte:

- 0. $L_0^6 := \{S\}$
- 1. $L_1^6 := L_0^6 \cup \{aSBc, abc\}$
- 2. $L_2^6 := L_1^6 \cup \{aabcBc\}$
- 3. $L_3^6 := L_2^6 \cup \{aabBcc\}$
- 4. $L_4^6 := L_3^6 \cup \{aabbcc\}$
- 5. $L_5^6 := L_4^6$

Aus cababa $\notin L_4^6$ folgt cababa $\notin L(G)$.

Grammatik $G = (\{S\}, \{a, b\}, P, S)$ mit $P = \{S \rightarrow aaaa, aaaa \rightarrow bb\}$ und Wort bb

Grammatik
$$G = (\{S\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow aaaa, aaaa \rightarrow bb\}$ und Wort bb

0.
$$L_0^2 := \{S\}$$

Grammatik
$$G = (\{S\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow aaaa, aaaa \rightarrow bb\}$ und Wort bb

- 0. $L_0^2 := \{S\}$
- 1. $L_1^2 := L_0^2$

Grammatik
$$G = (\{S\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow aaaa, aaaa \rightarrow bb\}$ und Wort bb

Schritte:

0.
$$L_0^2 := \{S\}$$

1.
$$L_1^2 := L_0^2$$

 $bb \notin L_0^2$ und jedoch $bb \in L(G)$.

Formale Definition der Menge L_i^n

Definition

Sei $G=(V,\Sigma,P,S)$ eine Typ 1-Grammatik. Für $i,n\in\mathbb{N}$ sei

$$L_i^n := \{ w \in (V \cup \Sigma)^* \mid |w| \le n \text{ und } S \Rightarrow_G^k w \text{ mit } k \le i \}$$

Formale Definition der Menge L_i^n

Definition

Sei $G=(V,\Sigma,P,S)$ eine Typ 1-Grammatik. Für $i,n\in\mathbb{N}$ sei

$$L_i^n := \{ w \in (V \cup \Sigma)^* \mid |w| \le n \text{ und } S \Rightarrow_G^k w \text{ mit } k \le i \}$$

Informell:

 L_i^n = Menge aller Satzformen der Länge höchstens n, die in höchstens i Schritten von S aus ableitbar sind

Formale Definition der Prozedur

Seien eine Typ 1-Grammatik $G = (V, \Sigma, P, S)$ (mit 1. Sonderregel) und ein Wort $w \in \Sigma^*$.

Sei

$$next(L, n) := L \cup \{v \mid u \in L, u \Rightarrow_G v \text{ und } |v| \leq n\}$$

- 1. Beginne mit $L_0^n := \{S\}$.
- 2. Wiederhole für i = 0, 1, 2, ...:
 - 2.1 Setze $L_{i+1}^n := next(L_i^n, n)$.
 - 2.2 Falls $w \in L_{i+1}^n$, stoppe und gib ja aus.
 - 2.3 Falls $L_{i+1}^n = L_i^n$, stoppe und gib nein aus.

Satz

Die Prozedur terminiert.

Satz

Die Prozedur terminiert.

Beweis Durch Widerspruch. Wir nehmen an, dass die Berechnung nicht stoppt.

Satz

Die Prozedur terminiert.

Beweis Durch Widerspruch. Wir nehmen an, dass die Berechnung nicht stoppt.

Da $L_i^n \subseteq L_{i+1}^n$ und $L_i^n \neq L_{i+1}^n$, muss für alle $i \in \mathbb{N}$ gelten: $L_i^n \subset L_{i+1}^n$.

Satz

Die Prozedur terminiert.

Beweis Durch Widerspruch. Wir nehmen an, dass die Berechnung nicht stoppt.

Da $L_i^n \subseteq L_{i+1}^n$ und $L_i^n \neq L_{i+1}^n$, muss für alle $i \in \mathbb{N}$ gelten: $L_i^n \subset L_{i+1}^n$.

Daher gilt $|L_0^n| < |L_1^n| < |L_2^n| < \cdots$. Die Mengen werden also beliebig groß.

13/16

Satz

Die Prozedur terminiert.

Beweis Durch Widerspruch. Wir nehmen an, dass die Berechnung nicht stoppt.

Da $L_i^n \subseteq L_{i+1}^n$ und $L_i^n \neq L_{i+1}^n$, muss für alle $i \in \mathbb{N}$ gelten: $L_i^n \subset L_{i+1}^n$.

Daher gilt $|L_0^n| < |L_1^n| < |L_2^n| < \cdots$. Die Mengen werden also beliebig groß.

Gleichzeitig gibt es eine obere Schranke für die Mächtigkeit der Mengen:

$$|L_i^n| \le (|V \cup \Sigma| + 1)^n$$
 für alle $i \in \mathbb{N}$. Widerspruch.

Korrektheit der Prozedur

Satz

Die Prozedur ist korrekt: Sei w ein Wort der Länge $\leq n$.

Wenn $L_{i+1}^n = L_i^n$, dann ist $w \in L_i^n$ g.d.w. $w \in L(G)$.

Korrektheit der Prozedur

Satz

Die Prozedur ist korrekt: Sei w ein Wort der Länge $\leq n$. Wenn $L_{i+1}^n = L_i^n$, dann ist $w \in L_i^n$ g.d.w. $w \in L(G)$.

Beweis Zur Erinnerung:

 L_i^n = Menge aller Satzformen der Länge höchstens n, die in höchstens i Schritten von S aus ableitbar sind

Korrektheit der Prozedur

Satz

Die Prozedur ist korrekt: Sei w ein Wort der Länge $\leq n$. Wenn $L_{i+1}^n = L_i^n$, dann ist $w \in L_i^n$ g.d.w. $w \in L(G)$.

Beweis Zur Erinnerung:

 L_i^n = Menge aller Satzformen der Länge höchstens n, die in höchstens i Schritten von S aus ableitbar sind

Wenn $L_{i+1}^n = L_i^n$, dann gilt $L_{i+k}^n = L_i^n$ für alle $k \in \mathbb{N}$ und daher enthält L_i^n alle aus S ableitbaren Wörter der Länge höchstens n und keine anderen.

Algorithmus 2: Entscheiden des Wortproblems für Typ 1-Grammatiken

```
Eingabe: Typ 1-Grammatik G = (V, \Sigma, P, S) (mit 1. Sonderregel) und w \in \Sigma^*
Ausgabe: Ja, wenn w \in L(G), und Nein, wenn w \notin L(G)
Beginn
   n := |w|;
   L := \{S\};
   wiederhole
       L_{\text{old}} := L;
       L := next(L_{old}, n);
   bis w \in L oder L_{old} = L:
   wenn w \in L dann
       return Ja:
   sonst
       return Nein:
   Ende
Ende
```

Bemerkungen

▶ Das Wortproblem für Typ 0-Grammatiken ist unentscheidbar.

Bemerkungen

- Das Wortproblem für Typ 0-Grammatiken ist unentscheidbar.
- ▶ Der Algorithmus für Typ 1-Grammatiken hat exponentielle Laufzeitkomplexität.

Bemerkungen

- Das Wortproblem für Typ 0-Grammatiken ist unentscheidbar.
- ▶ Der Algorithmus für Typ 1-Grammatiken hat exponentielle Laufzeitkomplexität.
- ▶ Das Wortproblem für Typ 2- (und 3-)Grammatiken ist in polynomieller Zeit lösbar (durch den CYK-Algorithmus).