Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

7c Turingmaschinen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: Typ 1- und Typ 0-Grammatiken

- ▶ Im Gegensatz zu Typ 2 ist die Linke Seite von Typ 0- und Typ 1-Produktionen eine Satzform $\ell \in (V \cup \Sigma)^+$.
- ▶ Mit Typ 1-Grammatiken gilt $|\ell| \le |r|$ für alle Produktionen $\ell \to r$.
- ► Typ 1-Grammatiken nennen wir auch kontextsensitiv.

Hintergrund zu Turingmaschinen

Nun führen wir ein Maschinenmodell ein, das zu Typ 1 und Typ 0 passt: die Turingmaschinen (für Typ 1: mit Einschränkungen).

Hintergrund zu Turingmaschinen

Nun führen wir ein Maschinenmodell ein, das zu Typ 1 und Typ 0 passt: die Turingmaschinen (für Typ 1: mit Einschränkungen).

Einschränkungen der Kellerautomaten:

- ► PDAs erkennen genau die kontextfreien Sprachen, daher müssen Automaten für Typ 1- und Typ 0-Sprachen "mehr können".
- Wesentliche Beschränkung bei PDAs:
 Der Zugriff auf den Speicher ist nur von oben möglich.

Hintergrund zu Turingmaschinen

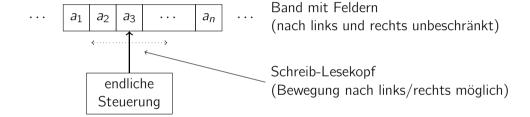
Nun führen wir ein Maschinenmodell ein, das zu Typ 1 und Typ 0 passt: die Turingmaschinen (für Typ 1: mit Einschränkungen).

Einschränkungen der Kellerautomaten:

- ▶ PDAs erkennen genau die kontextfreien Sprachen, daher müssen Automaten für Typ 1- und Typ 0-Sprachen "mehr können".
- Wesentliche Beschränkung bei PDAs:
 Der Zugriff auf den Speicher ist nur von oben möglich.
- ▶ Z.B. kann man $\{a^ib^ic^i\mid i\in\mathbb{N}_{>0}\}$ nicht mit einem PDA erkennen, da man die Anzahl i
 - beim Lesen der a's im Keller speichert
 - beim Lesen der *b's* vergleichen muss und das geht nur durch sukzessives Entnehmen aus dem Keller
 - beim Lesen der c's nicht mehr hat.

Mit beliebigem Lesen des Speichers wäre es kein Problem, $a^i b^i c^i$ zu erkennen.

Illustration einer Turingmaschine



Definition einer Turingmaschine

Definition

Eine Turingmaschine (TM) ist ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$, wobei:

- ► Z ist eine endliche Menge von Zuständen
- ► ∑ ist das (endliche) Eingabealphabet
- ▶ $\Gamma \supset \Sigma$ ist das (endliche) Bandalphabet
- ▶ δ ist die Überführungsfunktion
 - ▶ für deterministische TM (DTM): δ : $(Z \setminus E) \times \Gamma \rightarrow Z \times \Gamma \times \{L, R, N\}$
 - ▶ für nichtdeterministische TM (NTM): δ : $(Z \setminus E) \times \Gamma \rightarrow \mathcal{P}(Z \times \Gamma \times \{L, R, N\})$
- \triangleright $z_0 \in Z$ ist der Startzustand
- ▶ $\square \in \Gamma \setminus \Sigma$ ist das Blank-Symbol
- $ightharpoonup E \subseteq Z$ ist die Menge der Endzustände.

Zustandsübergang

Für deterministische Turingmaschinen:

- ► Ein Eintrag $\delta(z, a) = (z', b, x)$ bedeutet: Falls die TM im Zustand z ist und das Zeichen a an der aktuellen Position des Schreib-Lesekopfs ist, dann
 - 1. We chsle in Zustand z'.
 - 2. Ersetze a durch b auf dem Band.
 - 3. Falls x = L: Verschiebe den Schreib-Lesekopf ein Position nach links.
 - 4. Falls x = R: Verschiebe den Schreib-Lesekopf ein Position nach rechts.
 - 5. Falls x = N: Lasse Schreib-Lesekopf unverändert (Neutral).

Zustandsübergang

Für deterministische Turingmaschinen:

- ► Ein Eintrag $\delta(z, a) = (z', b, x)$ bedeutet: Falls die TM im Zustand z ist und das Zeichen a an der aktuellen Position des Schreib-Lesekopfs ist, dann
 - 1. We chsle in Zustand z'.
 - 2. Ersetze a durch b auf dem Band.
 - 3. Falls x = L: Verschiebe den Schreib-Lesekopf ein Position nach links.
 - 4. Falls x = R: Verschiebe den Schreib-Lesekopf ein Position nach rechts.
 - 5. Falls x = N: Lasse Schreib-Lesekopf unverändert (Neutral).

Für nichtdeterministische Turingmaschinen:

 $\delta(z, a)$ ist eine Menge solcher möglichen Schritte und die NTM macht in einem Lauf irgendeinen davon (nichtdeterministisch).

Konfigurationen

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine Turingmaschine.

Eine Konfiguration von M ist ein Wort $wzw' \in \Gamma^*Z\Gamma^*$, wobei:

- z ist der aktuelle Zustand von M
- $ightharpoonup \cdots \square \square w w' \square \square \cdots$ steht auf dem Band
- \blacktriangleright der Schreib-Lesekopf steht auf dem ersten Symbol von w'.

Konfigurationen

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine Turingmaschine.

Eine Konfiguration von M ist ein Wort $wzw' \in \Gamma^*Z\Gamma^*$, wobei:

- z ist der aktuelle Zustand von M
- $ightharpoonup \cdots \Box ww' \Box \Box \cdots$ steht auf dem Band
- ightharpoonup der Schreib-Lesekopf steht auf dem ersten Symbol von w'.

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine Turingmaschine.

Für ein Eingabewort w ist die Startkonfiguration $Start_M(w)$ von M das Wort z_0w . Im Spezialfall $w = \varepsilon$ ist die Startkonfiguration $z_0\square$.

D.h. am Anfang steht der Schreib-Lesekopf auf dem ersten Symbol der Eingabe.

Übergangsrelation einer deterministischen Turingmaschine

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine deterministische Turingmaschine.

Die Relation $\vdash_M \subseteq \Gamma^* Z \Gamma^* \times \Gamma^* Z \Gamma^*$ ist definiert durch

- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m z' c a_2 \cdots a_n,$ wenn $\delta(z, a_1) = (z', c, N), m \ge 0, n \ge 1 \text{ und } z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_{m-1} z' b_m c a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L), m \ge 1, n \ge 1$ und $z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m c z' a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, R), m \ge 0, n \ge 2$ und $z \notin E$

Übergangsrelation einer deterministischen Turingmaschine

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine deterministische Turingmaschine.

Die Relation $\vdash_M \subseteq \Gamma^* Z \Gamma^* \times \Gamma^* Z \Gamma^*$ ist definiert durch

- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m z' c a_2 \cdots a_n,$ wenn $\delta(z, a_1) = (z', c, N), m \ge 0, n \ge 1 \text{ und } z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_{m-1} z' b_m c a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L), m \ge 1, n \ge 1$ und $z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m c z' a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, R), m \ge 0, n \ge 2$ und $z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \vdash_M b_1 \cdots b_m c z' \Box$, wenn $\delta(z, a_1) = (z', c, R)$, $m \ge 0$ und $z \notin E$
- $ightharpoonup za_1 \cdots a_n \vdash_M z' \Box ca_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L)$, $n \ge 1$ und $z \notin E$.

Übergangsrelation einer nichtdeterministischen Turingmaschine

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine nichtdeterministische Turingmaschine.

Die Relation $\vdash_M \subseteq \Gamma^* Z \Gamma^* \times \Gamma^* Z \Gamma^*$ ist definiert durch

- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m z' c a_2 \cdots a_n$, wenn $(z', c, N) \in \delta(z, a_1)$, $m \ge 0$, $n \ge 1$ und $z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_{m-1} z' b_m c a_2 \cdots a_n$, wenn $(z', c, L) \in \delta(z, a_1)$, $m \ge 1$, $n \ge 1$ und $z \notin E$
- ▶ $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m c z' a_2 \cdots a_n$, wenn $(z', c, R) \in \delta(z, a_1)$, $m \ge 0$, $n \ge 2$ und $z \notin E$
- $lackbrack b_1 \cdots b_m z a_1 \vdash_M b_1 \cdots b_m c z' \Box$, wenn $(z', c, R) \in \delta(z, a_1)$, $m \geq 0$ und $z \notin E$
- $ightharpoonup za_1 \cdots a_n \vdash_M z' \Box ca_2 \cdots a_n$, wenn $(z', c, L) \in \delta(z, a_1)$, $n \ge 1$ und $z \notin E$.

Übergangsrelation einer Turingmaschine

Weitere Notationen:

- ightharpoonup + ho_M ist die reflexiv-transitive Hülle von \vdash_M .
- ightharpoonup ist die *i*-fache Anwendung von \vdash_M .
- ▶ Wenn M eindeutig ist, schreiben wir \vdash statt \vdash_M .

Übergangsrelation einer Turingmaschine

Weitere Notationen:

- ightharpoonup + ho_M ist die reflexiv-transitive Hülle von \vdash_M .
- ightharpoonup ist die *i*-fache Anwendung von \vdash_M .
- ▶ Wenn M eindeutig ist, schreiben wir \vdash statt \vdash_M .

Bemerkung:

 Mit unserer Definition hält die Turingmaschine an, sobald sie einen Endzustand erreicht hat.
 (Das Buch von Schöning erlaubt weiterrechnen.)

Akzeptierte Sprache einer Turingmaschine

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine Turingmaschine.

Die von M akzeptierte Sprache L(M) ist definiert als

$$L(M) := \{ w \in \Sigma^* \mid Start_M(w) \vdash_M^* uzv \text{ für } u, v \in \Gamma^*, z \in E \}$$

Akzeptierte Sprache einer Turingmaschine

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ eine Turingmaschine.

Die von M akzeptierte Sprache L(M) ist definiert als

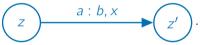
$$L(M) := \{ w \in \Sigma^* \mid Start_M(w) \vdash_M^* uzv \text{ für } u, v \in \Gamma^*, z \in E \}$$

Weitere Begriffe:

- ▶ Die TM akzeptiert heißt, die TM erreicht einen Endzustand.
- ▶ Die TM verwirft heißt, die TM erreicht keinen Endzustand.

Notation als Zustandsgraph

- Die graphische Darstellung ist ähnlich der von DFAs, NFAs und PDAs.
- Für $\delta(z, a) = (z', b, x)$ bzw. $(z', b, x) \in \delta(z, a)$ zeichnen wir



▶ Beachte, dass das Blank-Symbol bekannt sein muss (üblicherweise □).

Beispiel für eine deterministische Turingmaschine

DTM $M = (\{z_0, z_1, z_2, z_3\}, \{0, 1\}, \{0, 1, \square\}, \delta, z_0, \square, \{z_3\})$ mit

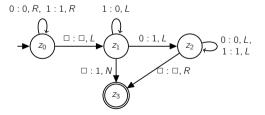
$$\delta(z_0, 0) = (z_0, 0, R)$$
 $\delta(z_0, 1) = (z_0, 1, R)$ $\delta(z_0, \square) = (z_1, \square, L)$
 $\delta(z_1, 0) = (z_2, 1, L)$ $\delta(z_1, 1) = (z_1, 0, L)$ $\delta(z_1, \square) = (z_3, 1, N)$
 $\delta(z_2, 0) = (z_2, 0, L)$ $\delta(z_2, 1) = (z_2, 1, L)$ $\delta(z_2, \square) = (z_3, \square, R)$

Beispiel für eine deterministische Turingmaschine

DTM
$$M = (\{z_0, z_1, z_2, z_3\}, \{0, 1\}, \{0, 1, \square\}, \delta, z_0, \square, \{z_3\})$$
 mit

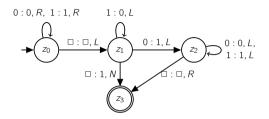
$$\delta(z_0, 0) = (z_0, 0, R) & \delta(z_0, 1) = (z_0, 1, R) & \delta(z_0, \square) = (z_1, \square, L) \\
\delta(z_1, 0) = (z_2, 1, L) & \delta(z_1, 1) = (z_1, 0, L) & \delta(z_1, \square) = (z_3, 1, N) \\
\delta(z_2, 0) = (z_2, 0, L) & \delta(z_2, 1) = (z_2, 1, L) & \delta(z_2, \square) = (z_3, \square, R)$$

Zustandsgraph zu M:



turingmachinesimulator.com/shared/istktezldr

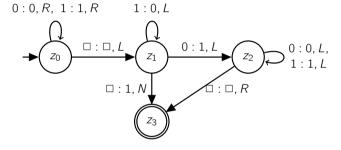
Beispiel für eine deterministische Turingmaschine



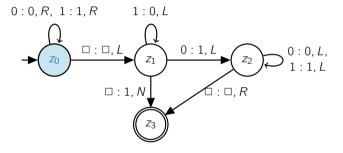
M interpretiert die Eingabe $w \in \{0, 1\}^*$ als Binärzahl und addiert 1:

- ▶ In z_0 wird das rechte Ende gesucht, dann in z_1 gewechselt.
- In z_1 wird versucht, 1 zur aktuellen Ziffer hinzu zu addieren: Gelingt das ohne Übertrag, dann wird in z_2 gewechselt. Bei Übertrag: Weitermachen in z_1 und +1 zur nächsten Ziffer links.
- ▶ In z_2 wird bis zum Anfang links gelaufen, dann in z_3 gewechselt.
- ► In z₃ wird akzeptiert.

DTM M: Eingabe: 0011

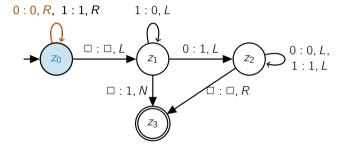


DTM M: Eingabe: 0011



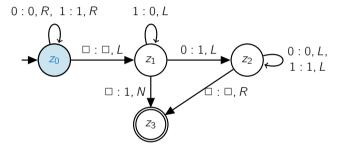
z∩0011

DTM M: Eingabe: 0011



z₀0011

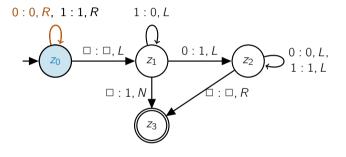
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$

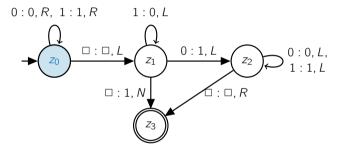
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$

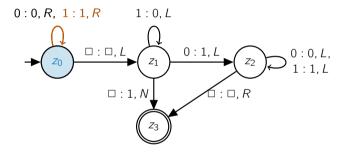
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$

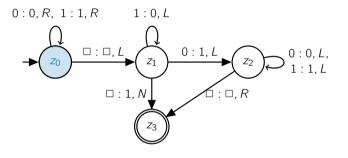
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$

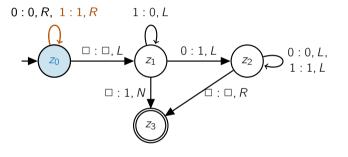
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$

DTM M:

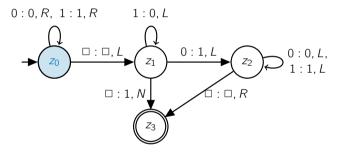


Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$

 $\vdash 001z_01$

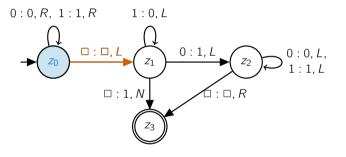
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\square$

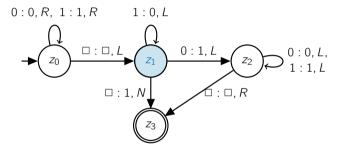
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\square$

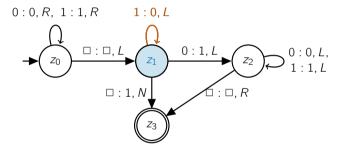
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_1\Box\Box$

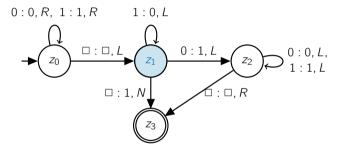
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_1\Box$

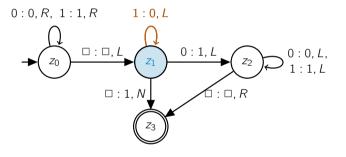
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ $\vdash 00z_11\Box$

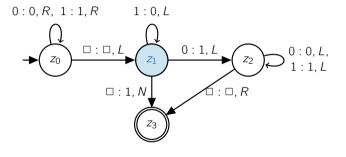
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_1\Box\Box$ $\vdash 00z_11\Box\Box$

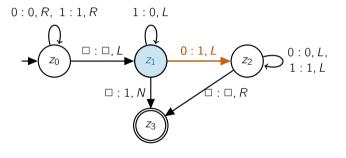
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ $\vdash 00z_110\Box$ $\vdash 0z_1000\Box$

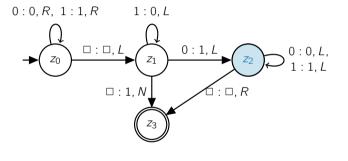
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0$ $\vdash 001z_11$ $\vdash 00z_110$ $\vdash 0z_1000$

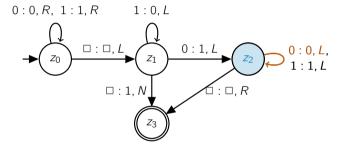
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0$ $\vdash 001z_11$ $\vdash 00z_110$ $\vdash 0z_1000$ $\vdash z_20100$

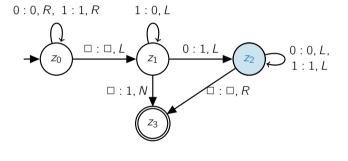
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0$ $\vdash 001z_11$ $\vdash 00z_110$ $\vdash 0z_1000$ $\vdash z_20100$

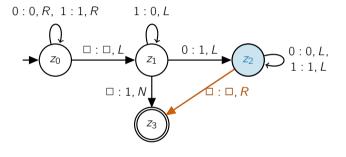
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ ⊢ 00*z*₁10□ $\vdash 0z_1000□$ $\vdash z_20100\square$ $\vdash z_2 \square 0100 \square$

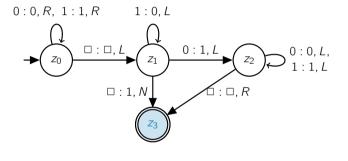
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ ⊢ 00*z*₁10□ $\vdash 0z_1000□$ $\vdash z_20100\square$ $\vdash z_2 \square 0100 \square$

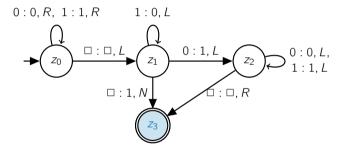
DTM M:



Eingabe: 0011

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ ⊢ 00*z*₁10□ $\vdash 0z_1000□$ $\vdash z_20100\square$ $\vdash z_2 \square 0100 \square$ $\vdash \Box z_3 0100 \Box$

DTM M:



Eingabe: $0011 \in L(M)$

 z_00011 $\vdash 0z_0011$ $\vdash 00z_011$ $\vdash 001z_01$ $\vdash 0011z_0\Box$ $\vdash 001z_11\Box$ $\vdash 00z_110□$ $\vdash 0z_1000□$ $\vdash z_20100\square$ $\vdash z_2 \square 0100 \square$ $\vdash \Box z_3 0100 \Box$

Linear beschränkte Turingmaschinen

Grundgedanke:

- ► Linear beschränkte Turingmaschinen (*linear bounded automata*, LBAs) sind spezielle Turingmaschinen.
- Der Schreib-Lesekopf darf den Bereich der Eingabe auf dem Band nicht verlassen.
- ▶ Zum Erkennen des Anfangs und des Endes wird die Eingabe in spitzen Klammern gesetzt: Statt w ist die Eingabe nun $\langle w \rangle$.

Definition eines LBA

Definition

Eine linear beschränkte Turingmaschine (*linear bounded automaton*, LBA) ist ein 8-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \langle, \rangle, E)$, wobei:

- \triangleright Z, Σ , Γ , δ , z_0 und E sind wie bei nichtdeterministischen Turingmaschinen
- ▶ $\langle , \rangle \in \Sigma$ sind Start- bzw. Endmarker
- \triangleright δ überschreibt keinen der Marker
- bei \langle gibt δ nie L aus und bei \rangle gibt δ nie R aus.

Definition

Eine linear beschränkte Turingmaschine (*linear bounded automaton*, LBA) ist ein 8-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \langle, \rangle, E)$, wobei:

- \triangleright Z, Σ , Γ , δ , z_0 und E sind wie bei nichtdeterministischen Turingmaschinen
- ▶ $\langle , \rangle \in \Sigma$ sind Start- bzw. Endmarker
- \triangleright δ überschreibt keinen der Marker
- **b**ei \langle gibt δ nie L aus und bei \rangle gibt δ nie R aus.

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \langle, \rangle, E)$ ein LBA.

Die von M akzeptierte Sprache L(M) ist definiert als

$$L(M) := \{ w \in (\Sigma - \{\langle, \rangle\})^* \mid z_0 \langle w \rangle \vdash_M^* uzv \text{ für } u, v \in \Gamma^*, z \in E \}$$

Satz von Kuroda

Theorem (Satz von Kuroda)

Die LBAs akzeptieren genau die kontextsensitiven Sprachen.

Satz

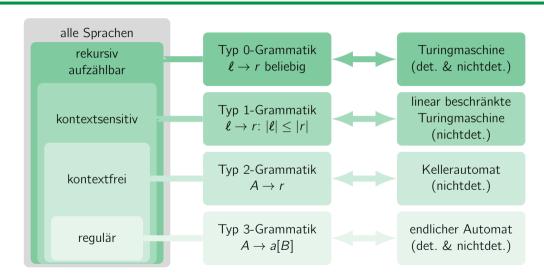
Die nichtdeterministischen Turingmaschinen akzeptierten genau die Typ 0-Sprachen.

Beweise Nächste Vorlesung (nur FSK).

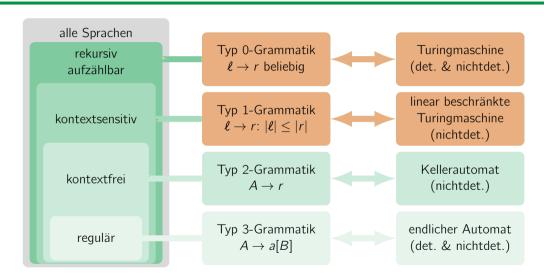
Deterministische vs. nichtdeterministische Turingmaschinen

- Nichtdeterministische Turingmaschinen können durch deterministische Turingmaschinen simuliert werden (mithilfe von Dovetailing).
- ▶ Daher gilt der letzte Satz auch für deterministische Turingmaschinen, d.h. die deterministischen Turingmaschinen akzeptierten genau die Typ 0-Sprachen.
- ▶ Der Unterschied zwischen NTMs und DTMs kommt erst zum Tragen, wenn wir das Laufzeitverhalten betrachten (im Kursteil zur Komplexitätstheorie).

Überblick über Grammatiken und Maschinenmodelle



Überblick über Grammatiken und Maschinenmodelle



Trennende Beispiele

- ▶ Die Sprache $\{a^nb^n \mid n \in \mathbb{N}\}$ ist vom Typ 2 aber nicht vom Typ 3.
- ▶ Die Sprache $\{a^nb^nc^n \mid n \in \mathbb{N}\}$ ist vom Typ 1 aber nicht vom Typ 2.
- Die Sprache

 $H = \{M\#w \mid \text{die durch } M \text{ beschriebene}$ Turingmaschine hält bei Eingabe $w\}$

ist vom Typ 0 aber nicht vom Typ 1.

(Die Sprache H ist das Halteproblem, welches wir später noch genauer betrachten und erläutern.)

Das Komplement von H ist nicht vom Typ 0.

Deterministisch vs. nichtdeterministisch

De	terministischer	Nichtdeterministischer	Aquivalent?
Au	tomat	Automat	
DF	A	NFA	ja
DP	'DA	PDA	nein
DL	BA	LBA	unbekannt
DT	M	NTM	ja

Abschlusseigenschaften

Sprachklasse	Schnitt	Vereinigung	Komplement	Produkt	Kleenescher Abschluss
Typ 3	ja	ja	ja	ja	ja
Det. kontextfrei	nein	nein	ja	nein	nein
Typ 2	nein	ja	nein	ja	ja
Typ 1	ja	ja	ja	ja	ja
Typ 0	ja	ja	nein	ja	ja

Entscheidbarkeiten

Sprachklasse	Wortproblem	Leerheits- problem	Äquivalenz- problem	Schnittproblem
Typ 3	ja	ja	ja	ja
Det. kontextfrei	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

Komplexität des Wortproblems

Sprachklasse	Komplexität
Typ 3, DFA gegeben	lineare Komplexität
deterministisch kontextfrei, DPDA gegeben	lineare Komplexität
Typ 2, Chomsky-Normalform gegeben	$O(n^3)$
Typ 1	exponentiell (nächste Vorlesung, FSK)
Typ 0	unlösbar