Formale Sprachen und Komplexität Sommersemester 2025

7a

Äquivalenz von kontextfreien Sprachen und von Kellerautomaten

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: PDAs

Definition

Ein (nichtdeterministischer) Kellerautomat (pushdown automaton, PDA) ist ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$, wobei:

- ► Z ist eine endliche Menge von Zuständen
- ► ∑ ist das (endliche) Eingabealphabet
- ► 「ist das (endliche) Kelleralphabet
- ▶ $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ ist die Überführungsfunktion
- $ightharpoonup z_0 \in Z$ ist der Startzustand
- \blacktriangleright # $\in \Gamma$ ist das Startsymbol im Keller.

Kontextfreie Sprachen werden von PDAs akzeptiert

Satz

Für jede kontextfreie Sprache L gibt es einen PDA M mit L(M) = L.

Beweis Sei $G = (V, \Sigma, P, S)$ mit $L(G) = L \setminus \{\varepsilon\}$ eine kontextfreie Grammatik in Greibach-Normalform.

Kontextfreie Sprachen werden von PDAs akzeptiert

Satz

Für jede kontextfreie Sprache L gibt es einen PDA M mit L(M) = L.

Beweis Sei $G = (V, \Sigma, P, S)$ mit $L(G) = L \setminus \{\varepsilon\}$ eine kontextfreie Grammatik in Greibach-Normalform.

Grundgedanke:

- ▶ Wir definieren M, sodass er eine Linksableitung $S \Rightarrow^* a_1 \cdots a_n$ simuliert.
- ▶ Da G in Greibach-Normalform ist, ist eine Linksableitung nach i Schritten immer von der Form $S \Rightarrow^i a_1 \cdots a_i B_1 \cdots B_j$.
- ▶ Beginne Simulation mit Eingabe $a_1 \cdots a_n$ und S auf dem Keller.
- Nach i Schritten ist $a_1 \cdots a_i$ verarbeitet und $B_1 \cdots B_j$ auf dem Keller.
- ▶ Insbesondere ist nach n Schritten $a_1 \cdots a_n$ verarbeitet und ε auf dem Keller.

Kontextfreie Sprachen werden von PDAs akzeptiert

Beweis (Fortsetzung) Sei $G = (V, \Sigma, P, S)$ mit $L(G) = L \setminus \{\varepsilon\}$ eine kontextfreie Grammatik in Greibach-Normalform.

Sei $M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$ ein PDA, sodass

$$\delta(z_0, a, A) := \{ (z_0, B_1 \cdots B_n) \mid (A \to aB_1 \cdots B_n) \in P \}$$

$$\delta(z_0, \varepsilon, A) := \begin{cases} \{ (z_0, \varepsilon) \} & \text{falls } \varepsilon \in L \text{ und } A = S \\ \emptyset & \text{sonst} \end{cases}$$

Im Skript wird L(M) = L gezeigt.

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S)$$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B)$$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \to aB, B \to b \mid aBC, C \to b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \to aB, B \to b \mid aBC, C \to b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC)$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \to aB, B \to b \mid aBC, C \to b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\begin{array}{ll} \delta(z_0, a, S) := \{(z_0, B)\} & \delta(z_0, b, B) := \{(z_0, \varepsilon)\} & \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} & \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\}) \end{array}$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC)$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC) \vdash (z_0, b, C)$

Kontextfreie Grammatik in Greibach-Normalform:

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

PDA zu
$$G: M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\delta(z_0, a, S) := \{(z_0, B)\} \quad \delta(z_0, b, B) := \{(z_0, \varepsilon)\} \quad \delta(z_0, a, B) := \{(z_0, BC)\} \\ \delta(z_0, b, C) := \{(z_0, \varepsilon)\} \quad \delta(z_0, c, A) := \emptyset \text{ sonst (für } c \in \Sigma \cup \{\varepsilon\})$$

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC) \vdash (z_0, b, C) \vdash (z_0, \varepsilon, \varepsilon)$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S)$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B)$$

$$S \Rightarrow aB$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \to aB, B \to b \mid aBC, C \to b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

$$S \Rightarrow aB \Rightarrow aaBC$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC)$

$$S \Rightarrow aB \Rightarrow aaBC \Rightarrow aaaBCC$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC)$

$$S \Rightarrow aB \Rightarrow aaBC \Rightarrow aaaBCC \Rightarrow aaabCC$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC) \vdash (z_0, b, C)$

$$S \Rightarrow aB \Rightarrow aaBC \Rightarrow aaaBCC \Rightarrow aaabCC \Rightarrow aaabbC$$

Kontextfreie Grammatik in Greibach-Normalform

$$G = (\{S, B, C\}, \{a, b\}, \{S \to aB, B \to b \mid aBC, C \to b\}, S)$$

Eine Konfigurationsfolge von M für die Eingabe aaabbb ist

$$(z_0, aaabbb, S) \vdash (z_0, aabbb, B) \vdash (z_0, abbb, BC)$$

 $\vdash (z_0, bbb, BCC) \vdash (z_0, bb, CC) \vdash (z_0, b, C) \vdash (z_0, \varepsilon, \varepsilon)$

$$S \Rightarrow aB \Rightarrow aaBC \Rightarrow aaaBCC \Rightarrow aaabbC \Rightarrow aaabbC \Rightarrow aaabbb$$

Satz

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Dann ist L(M) kontextfrei.

Satz

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Dann ist L(M) kontextfrei.

Beweis Grundgedanke:

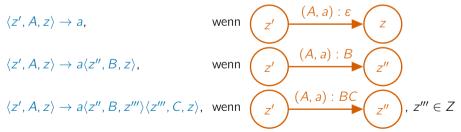
- ▶ Nehme o.B.d.A. an, dass *M* maximal 2 Kellersymbole erzeugt.
- Definiere Grammatik mit der sogenannten Tripelkonstruktion:
 - ▶ Die Variablen der Grammatik sind Tripel $\langle z', A, z \rangle$, die alle Wörter w erzeugen, die den PDA von z' mit Kellerinhalt A und Wort w zu z und leeren Keller führen

Satz

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Dann ist L(M) kontextfrei.

Beweis (Fortsetzung)

▶ Die Produktionen sind (für $a \in \Sigma \cup \{\varepsilon\}$)



Satz

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Dann ist L(M) kontextfrei.

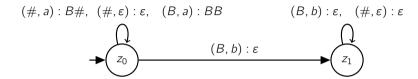
Beweis (Fortsetzung) Nehme o.B.d.A. an, dass M ein PDA mit k < 2 für alle $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ (und $a \in \Sigma \cup \{\varepsilon\}$) ist.

Satz

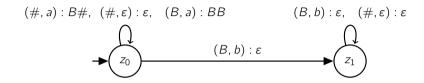
Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Dann ist L(M) kontextfrei.

Beweis (Fortsetzung) Nehme o.B.d.A. an, dass M ein PDA mit k < 2 für alle $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ (und $a \in \Sigma \cup \{\varepsilon\}$) ist. Konstruiere $G = (V, \Sigma, P, S)$ (mit 2. Sonderregel), wobei S ein neues Symbol ist und $V := \{S\} \cup \{\langle z_i, A, z_i \rangle \mid z_i, z_i \in Z, A \in \Gamma\}$ $P := \{S \rightarrow \langle z_0, \#, z \rangle \mid z \in Z\}$ $\cup \{\langle z', A, z \rangle \rightarrow a\}$ $|(z,\varepsilon)| \in \delta(z',a,A), a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\}$ $\cup \{\langle z', A, z \rangle \rightarrow a \langle z'', B, z \rangle$ $(z'', B) \in \delta(z', a, A), z \in Z, a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\}$ $\bigcup \{\langle z', A, z \rangle \rightarrow a \langle z'', B, z''' \rangle \langle z''', C, z \rangle$ $(z'', BC) \in \delta(z', a, A), z, z''' \in Z, a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\}$

PDA M:



PDA M:



Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

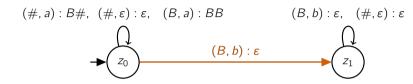
$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_0, B, z_1 \rangle$$

 $\langle z_0, B, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle$

PDA M:



Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

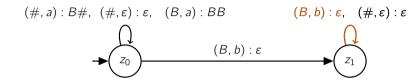
$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle,$$

 $\langle z_0, B, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle$

PDA M:



Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

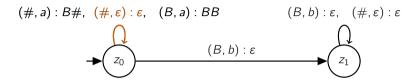
$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_1, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_1, \#, z_1 \rangle \rightarrow a \langle z_1, \#, z_1 \rangle, \langle z_1, \#, z_1 \rangle \rightarrow a \langle z_1, \#, z_1 \rangle, \langle z_1, \#, z_1 \rangle \rightarrow a \langle z_1, \#, z_1 \rangle, \langle z_1,$$

 $\langle z_0, B, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle$

PDA M:



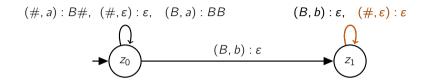
Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_0, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

PDA M:



Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

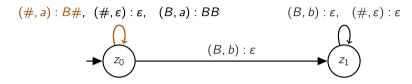
$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle, \langle z_0, \#, z_0 \rangle,$$

 $\langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, B, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_1, B, z_1 \rangle \langle z_1, B, z$

PDA M:



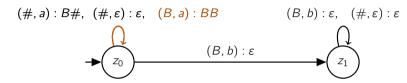
Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, B, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

PDA M:



Grammatik zu
$$M: G = (V, \Sigma, P, S)$$
 mit
$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

$$P = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_0, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

Diese Grammatik kann man noch vereinfachen, indem man untersucht, welche Produktionen nie in einer erfolgreichen Ableitung verwendet werden können. Das Ergebnis ist $G' = (V', \Sigma, P', S)$, wobei

$$V' = \{S, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_1 \rangle, \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_1 \rangle\}$$

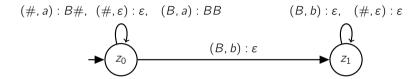
$$P' = \{S \rightarrow \langle z_0, \#, z_0 \rangle, S \rightarrow \langle z_0, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_1, B, z_1 \rangle \rightarrow b, \langle z_0, \#, z_0 \rangle \rightarrow \varepsilon, \langle z_1, \#, z_1 \rangle \rightarrow \varepsilon\}$$

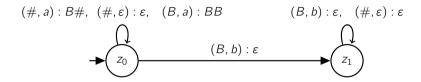
$$\cup \{\langle z_0, \#, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, B, z_1 \rangle \rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

Diese Grammatik kann man noch weiter vereinfachen (siehe Skript).

PDA M:



PDA M:

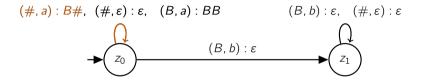


Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle$$

PDA M:

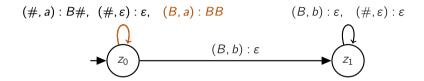


Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#) \vdash (z_0, abb, B\#)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle \Rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$

PDA M:

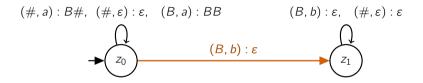


Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#) \vdash (z_0, abb, B\#) \vdash (z_0, bb, BB\#)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle \Rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aa \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$

PDA M:

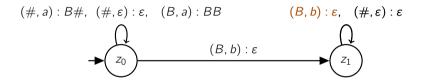


Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#) \vdash (z_0, abb, B\#) \vdash (z_0, bb, BB\#) \vdash (z_1, b, B\#)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle \Rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aa \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$
$$\Rightarrow aab \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$

PDA M:

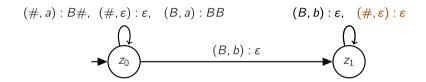


Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#) \vdash (z_0, abb, B\#) \vdash (z_0, bb, BB\#) \vdash (z_1, b, B\#) \vdash (z_1, \varepsilon, \#)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle \Rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aa \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$
$$\Rightarrow aab \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aabb \langle z_1, \#, z_1 \rangle$$

PDA M:



Eine Konfigurationsfolge von M für die Eingabe aabb ist

$$(z_0, aabb, \#) \vdash (z_0, abb, B\#) \vdash (z_0, bb, BB\#) \vdash (z_1, b, B\#) \vdash (z_1, \varepsilon, \#) \vdash (z_1, \varepsilon, \varepsilon)$$

$$S \Rightarrow \langle z_0, \#, z_1 \rangle \Rightarrow a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aa \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle$$
$$\Rightarrow aab \langle z_1, B, z_1 \rangle \langle z_1, \#, z_1 \rangle \Rightarrow aabb \langle z_1, \#, z_1 \rangle \Rightarrow aabb$$

Beweis (Fortsetzung) Wir zeigen die Verallgemeinerung:

 $\langle z', A, z \rangle \Rightarrow_{\mathcal{C}}^* w \text{ g.d.w. } (z', w, A) \vdash_{\mathcal{M}}^* (z, \varepsilon, \varepsilon).$

Beweis (Fortsetzung) Wir zeigen die Verallgemeinerung:

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

 \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - Fall i = 0: Unmöglich.

```
\langle z', A, z \rangle \Rightarrow_{c}^{*} w \text{ g.d.w. } (z', w, A) \vdash_{M}^{*} (z, \varepsilon, \varepsilon).
```

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
 - Fall i > 1: Sei $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$ mit i 1 > 0.

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
 - Fall i > 1: Sei $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$ mit i 1 > 0.
 - ▶ Wenn $u = a \in \Sigma \cup \{\varepsilon\}$, dann kann i 1 > 0 nicht gelten.

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
 - Fall i > 1: Sei $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$ mit i 1 > 0.
 - ▶ Wenn $u = a \in \Sigma \cup \{\varepsilon\}$, dann kann i 1 > 0 nicht gelten.
 - ► Wenn $u = a\langle z'', B, z \rangle$, dann $(z'', B) \in \delta(z', a, A)$ und $u = a\langle z'', B, z \rangle \Rightarrow^{i-1} aw' = w$.

$$\langle z', A, z \rangle \Rightarrow_{G}^{*} w \text{ g.d.w. } (z', w, A) \vdash_{M}^{*} (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
 - Fall i > 1: Sei $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$ mit i 1 > 0.
 - ▶ Wenn $u = a \in \Sigma \cup \{\varepsilon\}$, dann kann i 1 > 0 nicht gelten.
 - ► Wenn $u = a\langle z'', B, z \rangle$, dann $(z'', B) \in \delta(z', a, A)$ und $u = a\langle z'', B, z \rangle \Rightarrow^{i-1} aw' = w$. Dann gilt $\langle z'', B, z \rangle \Rightarrow^{i-1} w'$ und die Induktionshypothese liefert $(z'', w', B) \vdash_{M}^{*} (z, \varepsilon, \varepsilon)$. Mit $(z'', B) \in \delta(z', a, A)$ zeigt dies $(z', aw', A) \vdash_M (z'', w', B) \vdash_M^* (z, \varepsilon, \varepsilon).$

$$\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w. } (z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$$

Da
$$S \to \langle z_0, \#, z \rangle \in P$$
 folgt: $w \in L(G)$ g.d.w. $w \in L(M)$, d.h. $L(G) = L(M)$.

- \implies Sei $\langle z', A, z \rangle \Rightarrow_{G}^{i} w$ eine Linksableitung. Wir verwenden Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ▶ Fall i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$. Die verwendete Produktion muss $\langle z', A, z \rangle \rightarrow a$ sein. Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
 - Fall i > 1: Sei $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$ mit i 1 > 0.
 - ▶ Wenn $u = a \in \Sigma \cup \{\varepsilon\}$, dann kann i 1 > 0 nicht gelten.
 - \blacktriangleright Wenn $u = a\langle z'', B, z \rangle$, dann $(z'', B) \in \delta(z', a, A)$ und $u = a\langle z'', B, z \rangle \Rightarrow^{i-1} aw' = w$. Dann gilt $\langle z'', B, z \rangle \Rightarrow^{i-1} w'$ und die Induktionshypothese liefert $(z'', w', B) \vdash_{M}^{*} (z, \varepsilon, \varepsilon)$. Mit $(z'', B) \in \delta(z', a, A)$ zeigt dies $(z', aw', A) \vdash_M (z'', w', B) \vdash_M^* (z, \varepsilon, \varepsilon).$
 - ▶ Der Fall $u = a\langle z'', B, z''' \rangle \langle z''', C, z \rangle$ ist komplizierter aber ähnlich (siehe Skript).

 \longleftarrow Sei $(z', w, A) \vdash_M^i (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_G^* w$ mit Induktion über i.

- \longleftarrow Sei $(z', w, A) \vdash_M^i (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_G^* w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.

- \leftarrow Sei $(z', w, A) \vdash_{M}^{i} (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_{G}^{*} w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ► Fall i = 1: Dann gilt $w = a \in \Sigma \cup \{\varepsilon\}$ und $(z, \varepsilon) \in \delta(z', a, A)$. Damit gibt es $\langle z', A, z \rangle \rightarrow a \in P$ und daher $\langle z', A, z \rangle \Rightarrow_G a$.

- \leftarrow Sei $(z', w, A) \vdash_{M}^{i} (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_{G}^{*} w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ► Fall i = 1: Dann gilt $w = a \in \Sigma \cup \{\varepsilon\}$ und $(z, \varepsilon) \in \delta(z', a, A)$. Damit gibt es $\langle z', A, z \rangle \rightarrow a \in P$ und daher $\langle z', A, z \rangle \Rightarrow_G a$.
 - Fall i > 1: Dann w = aw', $(z', aw', A) \vdash (z'', w', W) \vdash_M^{i-1} (z, \varepsilon, \varepsilon)$ für i 1 > 0, $a \in \Sigma \cup \{\varepsilon\}$ und $W = \varepsilon$, W = B oder W = BC.

- \leftarrow Sei $(z', w, A) \vdash_{M}^{i} (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_{G}^{*} w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ► Fall i = 1: Dann gilt $w = a \in \Sigma \cup \{\varepsilon\}$ und $(z, \varepsilon) \in \delta(z', a, A)$. Damit gibt es $\langle z', A, z \rangle \rightarrow a \in P$ und daher $\langle z', A, z \rangle \Rightarrow_G a$.
 - Fall i > 1: Dann w = aw', $(z', aw', A) \vdash (z'', w', W) \vdash_M^{i-1} (z, \varepsilon, \varepsilon)$ für i 1 > 0, $a \in \Sigma \cup \{\varepsilon\}$ und $W = \varepsilon$, W = B oder W = BC.

Wir betrachten alle drei Fälle für W einzeln:

Fall $W = \varepsilon$: Dieser Fall ist nicht möglich, da i-1>0 nicht gelten kann.

- \leftarrow Sei $(z', w, A) \vdash_{M}^{i} (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_{G}^{*} w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ► Fall i = 1: Dann gilt $w = a \in \Sigma \cup \{\varepsilon\}$ und $(z, \varepsilon) \in \delta(z', a, A)$. Damit gibt es $\langle z', A, z \rangle \rightarrow a \in P$ und daher $\langle z', A, z \rangle \Rightarrow_G a$.
 - ► Fall i > 1: Dann w = aw', $(z', aw', A) \vdash (z'', w', W) \vdash_{M}^{i-1} (z, \varepsilon, \varepsilon)$ für i 1 > 0, $a \in \Sigma \cup \{\varepsilon\}$ und $W = \varepsilon$, W = B oder W = BC.

Wir betrachten alle drei Fälle für W einzeln:

- Fall $W = \varepsilon$: Dieser Fall ist nicht möglich, da i-1>0 nicht gelten kann.
- ► Fall W = B: Dann ist $\langle z', A, z \rangle \rightarrow a \langle z'', B, z \rangle \in P$. Da $(z'', w', B) \vdash_{M}^{i-1} (z, \varepsilon, \varepsilon)$, liefert die Induktionshypothese $\langle z'', B, z \rangle \Rightarrow_{G}^{*} w'$ und daher: $\langle z', A, z \rangle \Rightarrow_G a \langle z'', B, z \rangle \Rightarrow_G^* a w' = w$.

- \leftarrow Sei $(z', w, A) \vdash_{M}^{i} (z, \varepsilon, \varepsilon)$. Wir zeigen $\langle z', A, z \rangle \Rightarrow_{G}^{*} w$ mit Induktion über i.
 - ightharpoonup Fall i=0: Unmöglich.
 - ► Fall i = 1: Dann gilt $w = a \in \Sigma \cup \{\varepsilon\}$ und $(z, \varepsilon) \in \delta(z', a, A)$. Damit gibt es $\langle z', A, z \rangle \rightarrow a \in P$ und daher $\langle z', A, z \rangle \Rightarrow_G a$.
 - ► Fall i > 1: Dann w = aw', $(z', aw', A) \vdash (z'', w', W) \vdash_M^{i-1} (z, \varepsilon, \varepsilon)$ für i 1 > 0, $a \in \Sigma \cup \{\varepsilon\}$ und $W = \varepsilon$, W = B oder W = BC.

Wir betrachten alle drei Fälle für W einzeln:

- Fall $W = \varepsilon$: Dieser Fall ist nicht möglich, da i-1>0 nicht gelten kann.
- ► Fall W = B: Dann ist $\langle z', A, z \rangle \rightarrow a \langle z'', B, z \rangle \in P$. Da $(z'', w', B) \vdash_{M}^{i-1} (z, \varepsilon, \varepsilon)$, liefert die Induktionshypothese $\langle z'', B, z \rangle \Rightarrow_{G}^{*} w'$ und daher: $\langle z', A, z \rangle \Rightarrow_G a \langle z'', B, z \rangle \Rightarrow_G^* a w' = w$.
- Fall W = BC: Dieser Fall ist komplizierter aber ähnlich (siehe Skript).

Aguivalenz von kontextfreien Sprachen und von Kellerautomaten

Theorem

Kellerautomaten erkennen genau die kontextfreien Sprachen.

Aguivalenz von kontextfreien Sprachen und von Kellerautomaten

Theorem

Kellerautomaten erkennen genau die kontextfreien Sprachen.

Beweis Dies folgt aus den obigen Sätzen.

Ausdruckskraft von PDAs mit einem Zustand

Die bisherigen Beweise zeigen auch, dass man PDAs auf PDAs mit genau einem Zustand einschränken kann.

Ausdruckskraft von PDAs mit einem Zustand

Die bisherigen Beweise zeigen auch, dass man PDAs auf PDAs mit genau einem Zustand einschränken kann

Sei M ein PDA.

- 1. Transformiere PDA M in Grammatik G mit L(G) = L(M).
- 2. Transformiere Grammatik G in Grammatik G' in Greibach-Normalform (mit $L(G') = L(G) \setminus \{\varepsilon\}$).
- 3. Transformiere Grammatik G' in PDA M' mit L(M') = L(G).

PDA M' hat nur einen Zustand