Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

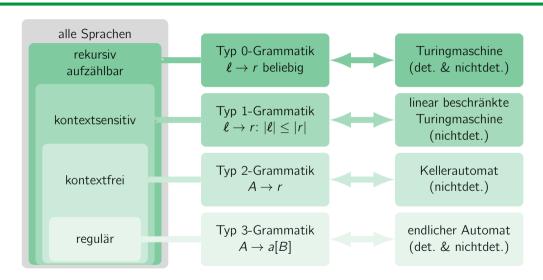
6c Kellerautomaten

Prof. Dr. Jasmin Blanchette

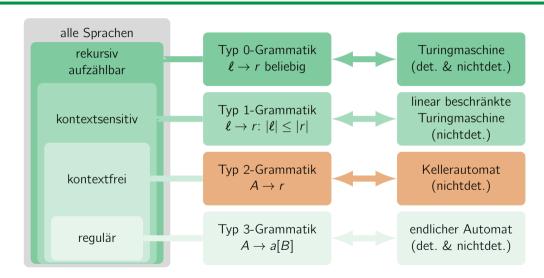
Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Überblick über Grammatiken und Maschinenmodelle



Überblick über Grammatiken und Maschinenmodelle



Begrenzungen der endlichen Automaten

DFAs und NFAs haben fast keinen Speicher:
 Der einzige Speicher dort sind die Zustände, daher endlicher Speicher.

Begrenzungen der endlichen Automaten

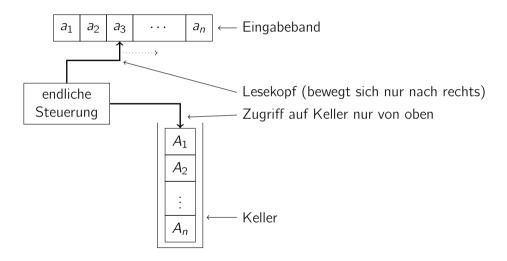
- DFAs und NFAs haben fast keinen Speicher:
 Der einzige Speicher dort sind die Zustände, daher endlicher Speicher.
- ▶ Daher ist es z.B. unmöglich, $\{w\$\overline{w} \mid w \in \{a,b,c\}^*\}$ zu erkennen: Man müsste beim Lesen von w alle gelesenen Zeichen speichern, um sie dann beim Lesen von \overline{w} (d.h. w rückwärts) zu vergleichen.

Informelle Kurzfassung:

- ► Kellerautomaten fügen einen beliebig großen Kellerspeicher hinzu (Stack, LIFO-Speicher, last-in-first-out-Speicher).
- ▶ Der Keller ist ein Stapel, auf den nur von oben zugegriffen werden kann.
- Zustandsübergang:

	NFA mit $arepsilon$ -Übergängen	Kellerautomat
Eingabe	Zustand und	Zustand, Zeichen-oder- $arepsilon$ und
	Zeichen-oder- $arepsilon$	oberstes Symbol im Keller
Ausgabe	nächster Zustand	nächster Zustand und Sequenz von
		Kellersymbolen, die das erste Sym-
		bol ersetzen

Illustration eines Kellerautomaten

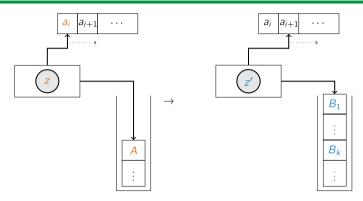


Ein (nichtdeterministischer) Kellerautomat (pushdown automaton, PDA) ist ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$, wobei:

- ► Z ist eine endliche Menge von Zuständen
- ► ∑ ist das (endliche) Eingabealphabet
- ► 「ist das (endliche) Kelleralphabet
- ▶ δ : $Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ ist die Überführungsfunktion
- \triangleright $z_0 \in Z$ ist der Startzustand
- ▶ $\# \in \Gamma$ ist das Startsymbol im Keller.

 $\mathcal{P}_e(X)$ steht für die Menge der endlichen Teilmengen von X.

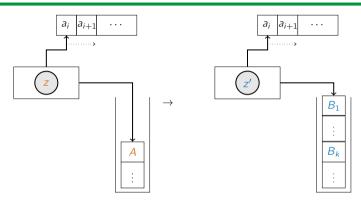
Illustration des Zustandsübergangs mit $a \in \Sigma$



 $(z', B_1 \cdots B_k) \in \delta(z, a_i, A)$ bedeutet:

Im Zustand z bei Eingabe a_i und A oben auf dem Keller darf der PDA in z' wechseln. Dabei wird A durch $B_1 \cdots B_k$ $(k \ge 0)$ ersetzt, wobei B_1 oben liegt.

Illustration des Zustandsübergangs mit arepsilon



$$(z', B_1 \cdots B_k) \in \delta(z, \varepsilon, A)$$
 bedeutet:

Im Zustand z bei A oben auf dem Keller darf der PDA in z' wechseln, ohne das der Lesekopf sich bewegt.

Dabei wird A durch $B_1 \cdots B_k$ $(k \ge 0)$ ersetzt, wobei B_1 oben liegt.

Bemerkungen

Mit unserer Definition:

- ► PDAs sind nichtdeterministisch.
- ▶ PDAs erlauben ε -Übergänge.
- PDAs haben keine Endzustände.

Bemerkungen

Mit unserer Definition:

- ► PDAs sind nichtdeterministisch.
- ▶ PDAs erlauben ε -Übergänge.
- ▶ PDAs haben keine Endzustände.

Zusätzlich:

- ▶ PDAs akzeptieren, wenn die Eingabe verarbeitet ist und der Keller leer ist.
- ► Am Anfang enthält der Keller #.

Konfigurationen

- ▶ Während einer Berechnung mit dem PDA werden der aktuelle Zustand, die Resteingabe und der aktuelle Kellerinhalt buchführt.
- Diese Informationen werden durch eine PDA-Konfiguration dargestellt.

- Während einer Berechnung mit dem PDA werden der aktuelle Zustand, die Resteingabe und der aktuelle Kellerinhalt buchführt.
- Diese Informationen werden durch eine PDA-Konfiguration dargestellt.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA.

Eine Konfiguration von M ist ein Tripel $(z, w, W) \in Z \times \Sigma^* \times \Gamma^*$, wobei:

- z ist der aktuelle Zustand
- ▶ w ist die Resteingabe
- ▶ W ist der aktuelle Kellerinhalt.

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA.

Die Relation $\vdash_M \subseteq (Z \times \Sigma^* \times \Gamma^*) \times (Z \times \Sigma^* \times \Gamma^*)$ ist definiert durch

- $(z, a_1 \cdots a_n, A_1 \cdots A_m) \vdash_M (z', a_2 \cdots a_n, WA_2 \cdots A_m) \text{ falls } (z', W) \in \delta(z, a_1, A_1)$
- $(z, a_1 \cdots a_n, A_1 \cdots A_m) \vdash_M (z', a_1 \cdots a_n, WA_2 \cdots A_m) \text{ falls } (z', W) \in \delta(z, \varepsilon, A_1).$

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA.

Die Relation $\vdash_M \subseteq (Z \times \Sigma^* \times \Gamma^*) \times (Z \times \Sigma^* \times \Gamma^*)$ ist definiert durch

- $(z, a_1 \cdots a_n, A_1 \cdots A_m) \vdash_M (z', a_2 \cdots a_n, WA_2 \cdots A_m) \text{ falls } (z', W) \in \delta(z, a_1, A_1)$
- $(z, a_1 \cdots a_n, A_1 \cdots A_m) \vdash_M (z', a_1 \cdots a_n, WA_2 \cdots A_m) \text{ falls } (z', W) \in \delta(z, \varepsilon, A_1).$

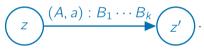
Weitere Notationen:

- ightharpoonup +* ist die reflexiv-transitive Hülle von \vdash_M .
- ightharpoonup ist die *i*-fache Anwendung von \vdash_M .
- ▶ Wenn M eindeutig ist, schreiben wir \vdash statt \vdash_M .

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA. Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid (z_0, w, \#) \vdash^* (z, \varepsilon, \varepsilon) \text{ für ein } z \in Z \}$$

- \blacktriangleright Die Darstellung als Zustandsgraph ist analog zu der der NFAs mit ε -Übergängen.
- ▶ Für $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ (mit $a \in \Sigma \cup \{\varepsilon\}$) zeichnen wir



▶ Beachte, dass das Startsymbol im Keller bekannt sein muss (üblicherweise #).

Beispiel für einen PDA

PDA
$$M = (\{z_0, z_1\}, \{a, b\}, \{B, \#\}, \delta, z_0, \#)$$
 mit

$$\delta(z_0, a, \#) = \{(z_0, B\#)\} \qquad \delta(z_0, b, B) = \{(z_1, \varepsilon)\} \qquad \delta(z_0, \varepsilon, \#) = \{(z_0, \varepsilon)\} \\
\delta(z_0, a, B) = \{(z_0, BB)\} \qquad \delta(z_1, b, B) = \{(z_1, \varepsilon)\} \qquad \delta(z_1, \varepsilon, \#) = \{(z_1, \varepsilon)\}$$

und $\delta(z_i, c, A) = \emptyset$ sonst (für $c \in \{a, b, \epsilon\}$).

Beispiel für einen PDA

PDA $M = (\{z_0, z_1\}, \{a, b\}, \{B, \#\}, \delta, z_0, \#)$ mit

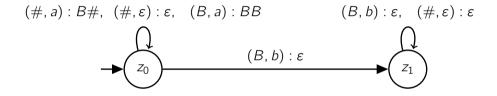
$$\delta(z_0, a, \#) = \{(z_0, B\#)\} \qquad \delta(z_0, b, B) = \{(z_1, \varepsilon)\} \qquad \delta(z_0, \varepsilon, \#) = \{(z_0, \varepsilon)\} \\
\delta(z_0, a, B) = \{(z_0, BB)\} \qquad \delta(z_1, b, B) = \{(z_1, \varepsilon)\} \qquad \delta(z_1, \varepsilon, \#) = \{(z_1, \varepsilon)\}$$

und $\delta(z_i, c, A) = \emptyset$ sonst (für $c \in \{a, b, \epsilon\}$).

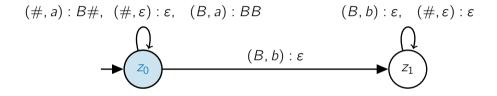
Zustandsgraph dazu:

$$(\#, a) : B\#, (\#, \varepsilon) : \varepsilon, (B, a) : BB$$
 $(B, b) : \varepsilon, (\#, \varepsilon) : \varepsilon$

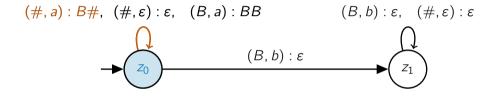
$$(B, b) : \varepsilon$$



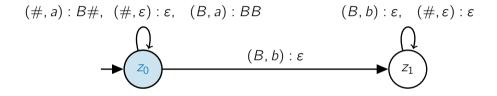
Eingabe: aabb



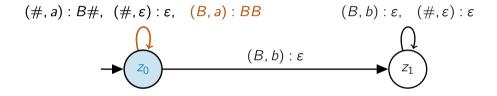
Eingabe: aabb



Eingabe: aabb

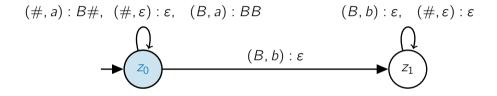


Eingabe: aabb



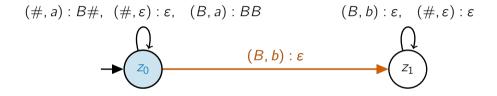
Eingabe: aabb

Keller: B#



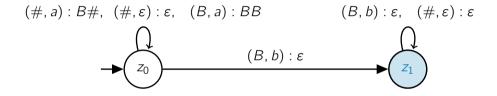
Eingabe: aabb

Keller: BB#

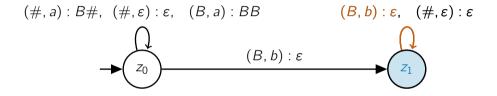


Eingabe: aabb

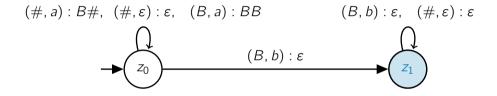
Keller: BB#



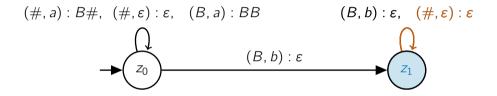
Eingabe: aabb



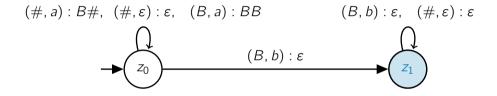
Eingabe: aabb



Eingabe: aabb



Eingabe: aabb



Eingabe: aabb

Keller: ε

$$(\#, a) : B\#, (\#, \varepsilon) : \varepsilon, (B, a) : BB$$
 $(B, b) : \varepsilon, (\#, \varepsilon) : \varepsilon$

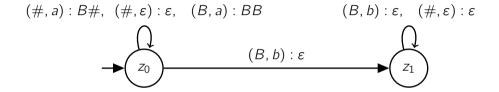
$$(B, b) : \varepsilon$$

$$Z_1$$

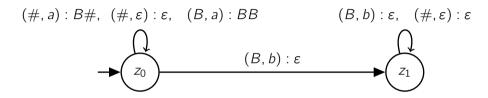
Eingabe: $aabb \in L(M)$

Keller: ε

Akzeptierte Sprache des Beispiels



Akzeptierte Sprache des Beispiels



 $L(M) = \{a^i b^i \mid i \in \mathbb{N}\}$ denn:

Akzeptierte Sprache des Beispiels

$$(\#, a) : B\#, (\#, \varepsilon) : \varepsilon, (B, a) : BB$$
 $(B, b) : \varepsilon, (\#, \varepsilon) : \varepsilon$

$$(B, b) : \varepsilon$$

 $L(M) = \{a^i b^i \mid i \in \mathbb{N}\}$ denn:

▶ M akzeptiert das Wort ε , denn $(z_0, \varepsilon, \#) \vdash (z_0, \varepsilon, \varepsilon)$.

Akzeptierte Sprache des Beispiels

$$(\#, a) : B\#, (\#, \varepsilon) : \varepsilon, (B, a) : BB$$
 $(B, b) : \varepsilon, (\#, \varepsilon) : \varepsilon$

$$(B, b) : \varepsilon$$

 $L(M) = \{a^i b^i \mid i \in \mathbb{N}\}$ denn:

- ▶ M akzeptiert das Wort ε , denn $(z_0, \varepsilon, \#) \vdash (z_0, \varepsilon, \varepsilon)$.
- ▶ *M* akzeptiert das Wort $a^i b^i$ für i > 0, da $(z_0, a^i b^i, \#) \vdash (z_0, a^{i-1} b^i, B\#) \vdash^* (z_0, b^i, B^i \#) \vdash (z_1, b^{i-1}, B^{i-1} \#) \vdash^* (z_1, \varepsilon, \#) \vdash (z_1, \varepsilon, \varepsilon)$.

Akzeptierte Sprache des Beispiels

$$(\#, a) : B\#, (\#, \varepsilon) : \varepsilon, (B, a) : BB$$
 $(B, b) : \varepsilon, (\#, \varepsilon) : \varepsilon$

$$(B, b) : \varepsilon$$

 $L(M) = \{a^i b^i \mid i \in \mathbb{N}\}$ denn:

- ▶ M akzeptiert das Wort ε , denn $(z_0, \varepsilon, \#) \vdash (z_0, \varepsilon, \varepsilon)$.
- ▶ *M* akzeptiert das Wort $a^i b^i$ für i > 0, da $(z_0, a^i b^i, \#) \vdash (z_0, a^{i-1} b^i, B\#) \vdash^* (z_0, b^i, B^i\#) \vdash (z_1, b^{i-1}, B^{i-1}\#) \vdash^* (z_1, \varepsilon, \#) \vdash (z_1, \varepsilon, \varepsilon)$.
- ► Andere Wörter werden nicht akzeptiert.

Weiteres Beispiel für einen PDA

Sei
$$M = (\{z_0, z_1\}, \{a, b\}, \{A, B, \#\}, \delta, z_0, \#)$$
 mit
$$\delta(z_0, a, \#) = \{(z_0, A\#), (z_1, \#)\}$$

$$\delta(z_0, b, \#) = \{(z_0, B\#), (z_1, \#)\}$$

$$\delta(z_0, e, B) = \{(z_1, A)\}$$

$$\delta(z_0, e, B) = \{(z_1, B)\}$$

$$\delta(z_0, e, B) = \{(z_1, \#)\}$$

$$\delta(z_0, e, B) = \{(z_1, \#)\}$$

$$\delta(z_0, e, B) = \{(z_1, \#)\}$$

$$\delta(z_1, e, A) = \{(z_1, e)\}$$

$$\delta(z_1, e, B) = \{(z_1, e)\}$$

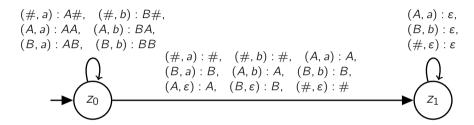
und $\delta(z_i, c, C) = \emptyset$ sonst (für $c \in \{a, b, \varepsilon\}$). Zustandsgraph dazu:

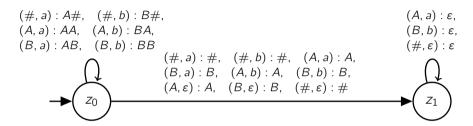
$$(\#, a) : A\#, \quad (\#, b) : B\#,$$

$$(A, a) : AA, \quad (A, b) : BA,$$

$$(B, a) : AB, \quad (B, b) : BB \quad (\#, a) : \#, \quad (\#, b) : \#, \quad (A, a) : A,$$

$$(\#, \varepsilon) : \varepsilon$$





 $L(M) = \{w \in \{a, b\}^* \mid w \text{ ist ein Palindrom}\}\ denn:$

▶ In z_0 werden die gelesenen Zeichen (als A, B) auf den Keller gelegt.

$$(\#, a) : A\#, \quad (\#, b) : B\#, \\ (A, a) : AA, \quad (A, b) : BA, \\ (B, a) : AB, \quad (B, b) : BB$$

$$(\#, a) : \#, \quad (\#, b) : \#, \quad (A, a) : A, \\ (B, a) : B, \quad (A, b) : A, \quad (B, b) : B, \\ (A, \varepsilon) : A, \quad (B, \varepsilon) : B, \quad (\#, \varepsilon) : \#$$

- ▶ In z_0 werden die gelesenen Zeichen (als A, B) auf den Keller gelegt.
- ▶ In z_1 werden sie dann wieder abgearbeitet (durch Lesen von a, b).

- ▶ In z_0 werden die gelesenen Zeichen (als A, B) auf den Keller gelegt.
- ▶ In z_1 werden sie dann wieder abgearbeitet (durch Lesen von a, b).
- Wechsel von z_0 zu z_1 mit einem Zeichen (für Palindrome $ua\overline{u}$, $ub\overline{u}$) oder mit ε (für Palindrome $u\overline{u}$).

- ln z_0 werden die gelesenen Zeichen (als A, B) auf den Keller gelegt.
- ▶ In z_1 werden sie dann wieder abgearbeitet (durch Lesen von a, b).
- Wechsel von z_0 zu z_1 mit einem Zeichen (für Palindrome $ua\overline{u}$, $ub\overline{u}$) oder mit ε (für Palindrome $u\overline{u}$).
- Der Nichtdeterminismus entdeckt den richtigen Zeitpunkt des Wechsels.

Lemma

Für jeden PDA $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ gibt es einen PDA $M' = (Z, \Sigma, \Gamma', \delta', z_0, \#)$ mit L(M') = L(M), sodass wenn $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$ (für $a \in \Sigma \cup \{\varepsilon\}$), dann ist $k \leq 2$.

Beweis Transformiere M in M' wie folgt.

Lemma

Für jeden PDA $M=(Z, \Sigma, \Gamma, \delta, z_0, \#)$ gibt es einen PDA $M'=(Z, \Sigma, \Gamma', \delta', z_0, \#)$ mit L(M')=L(M), sodass wenn $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$ (für $a \in \Sigma \cup \{\epsilon\}$), dann ist $k \leq 2$.

Beweis Transformiere M in M' wie folgt.

Sei $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ mit $A \in \Gamma$ und $a \in \Sigma \cup \{\varepsilon\}$.

Lemma

Für jeden PDA $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ gibt es einen PDA $M' = (Z, \Sigma, \Gamma', \delta', z_0, \#)$ mit L(M') = L(M), sodass wenn $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$ (für $a \in \Sigma \cup \{\epsilon\}$), dann ist $k \leq 2$.

Beweis Transformiere M in M' wie folgt.

Sei $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ mit $A \in \Gamma$ und $a \in \Sigma \cup \{\varepsilon\}$.

► Falls $k \le 2$, dann $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$.

Lemma

Für jeden PDA $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ gibt es einen PDA $M' = (Z, \Sigma, \Gamma', \delta', z_0, \#)$ mit L(M') = L(M), sodass wenn $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$ (für $a \in \Sigma \cup \{\epsilon\}$), dann ist $k \leq 2$.

Beweis Transformiere M in M' wie folgt.

Sei $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ mit $A \in \Gamma$ und $a \in \Sigma \cup \{\varepsilon\}$.

- ► Falls $k \le 2$, dann $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$.
- Falls k > 2, dann
 - $ightharpoonup (z, C_k B_k) \in \delta'(z, a, A)$
 - ▶ $\delta'(z, \varepsilon, C_i) = \{(z, C_{i-1}B_{i-1})\}$ für jedes i mit $4 \le i \le k$
 - ► $\delta'(z, \varepsilon, C_3) = \{(z', B_1B_2)\}$

wobei $C_3, \ldots, C_k \in \Gamma'$ neue Kellersymbole sind.

(Diese werden jeweils neu erzeugt pro ersetztem Eintrag.)

Definition

Ein (nichtdeterministischer) Kellerautomat mit Endzuständen (PDA mit Endzuständen) ist ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$, wobei:

- ► Z ist eine endliche Menge von Zuständen
- ► ∑ ist das (endliche) Eingabealphabet
- ► 「ist das (endliche) Kelleralphabet
- ▶ δ : $Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ ist die Überführungsfunktion
- $ightharpoonup z_0 \in Z$ ist der Startzustand
- ▶ $\# \in \Gamma$ ist das Startsymbol im Keller und
- $ightharpoonup E \subseteq Z$ ist die Menge der Endzustände.

Definition

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ ein PDA mit Endzuständen.

Die von M akzeptierte Sprache ist

 $L(M) := \{ w \in \Sigma^* \mid (z_0, w, \#) \vdash^* (z, \varepsilon, W) \text{ für } z \in E \text{ und } W \in \Gamma^* \}$

Äquivalenz von PDAs mit und ohne Endzustände

Lemma

Für jeden PDA mit Endzuständen M kann ein PDA M' ohne Endzustände konstruiert werden, sodass L(M') = L(M) gilt.

Lemma

Für jeden PDA M ohne Endzustände kann ein PDA mit Endzuständen M' konstruiert werden, sodass L(M') = L(M) gilt.

Satz

PDAs mit Endzuständen und PDAs ohne Endzustände sind äquivalente Formalismen.

Beweis Siehe Skript.

Anwendungen von Kellerautomaten

- ► Sie dienen als Implementierung für Tools wie yacc, ANTLR und PLY, die syntaktische Analysierer ("Parser") generieren.
- ► Sie werden für die Analyse von Netzwerken verwendet.
- ➤ Sie werden für die automatische Verifikation von (z.B. C++- oder Java-)Programmen, inklusive Prozeduren und Rekursion, verwendet.