Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

6bDer CYK-Algorithmus

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

Wiederholung: Entscheidbarkeit

Definition

Eine Sprache L ist entscheidbar, wenn es einen Algorithmus gibt, der bei Eingabe eines Wortes w in endlicher Zeit feststellt, ob $w \in L$ gilt oder nicht.

Wortproblem für Typ 2-Grammatiken

Definition

Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.

Wortproblem für Typ 2-Grammatiken

Definition

Das Wortproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $w \in \Sigma^*$ $w \in L(G)$ gilt oder nicht.

Satz

Das Wortproblem für Typ 2-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 2-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht. Zudem entscheidet er das Wortproblem in Polynomialzeit.

Der CYK-Algorithmus von Cocke, Younger und Kasami ist ein Polynomialzeitalgorithmus für das Wortproblem für Typ 2-Grammatiken.

Der CYK-Algorithmus von Cocke, Younger und Kasami ist ein Polynomialzeitalgorithmus für das Wortproblem für Typ 2-Grammatiken.

Eingabe: Eine CFG $G = (V, \Sigma, P, S)$ in Chomsky-Normalform und ein Wort $w \in \Sigma^+$.

Der CYK-Algorithmus von Cocke, Younger und Kasami ist ein Polynomialzeitalgorithmus für das Wortproblem für Typ 2-Grammatiken.

Eingabe: Eine CFG $G = (V, \Sigma, P, S)$ in Chomsky-Normalform und ein Wort $w \in \Sigma^+$.

G ist in Chomsky-Normalform, wenn für jede Produktion $A \to w \in P$ gilt:

 $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine Chomsky-Normalform G' mit L(G') = L(G) berechnet werden.

Der CYK-Algorithmus von Cocke, Younger und Kasami ist ein Polynomialzeitalgorithmus für das Wortproblem für Typ 2-Grammatiken.

Eingabe: Eine CFG $G = (V, \Sigma, P, S)$ in Chomsky-Normalform und ein Wort $w \in \Sigma^+$.

G ist in Chomsky-Normalform, wenn für jede Produktion $A \rightarrow w \in P$ gilt:

 $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine Chomsky-Normalform G' mit L(G') = L(G) berechnet werden.

Ausgabe: ja, wenn $w \in L(G)$, sonst nein.

Der CYK-Algorithmus von Cocke, Younger und Kasami ist ein Polynomialzeitalgorithmus für das Wortproblem für Typ 2-Grammatiken.

Eingabe: Eine CFG $G = (V, \Sigma, P, S)$ in Chomsky-Normalform und ein Wort $w \in \Sigma^+$.

G ist in Chomsky-Normalform, wenn für jede Produktion $A \to w \in P$ gilt: $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine Chomsky-Normalform G' mit L(G') = L(G) berechnet werden.

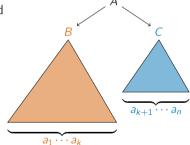
Ausgabe: ja, wenn $w \in L(G)$, sonst nein.

Grober Ansatz:

- 1. Teste für jede Variable A und Teilwort u von w, ob sie es erzeugt.
- 2. Verwende Test zum Prüfen, ob das Startsymbol *S* das Wort *w* erzeugt.

Prüfe, ob $A \in V$ ein Wort $u = a_1 \cdots a_n \ (n \ge 1)$ erzeugt:

- ▶ Wenn $u = a_1 \in \Sigma$, dann prüfe ob $A \rightarrow a_1 \in P$.
- Anderenfalls (n > 1) kann u nur erzeugt werden, wenn
 - ▶ es eine Produktion $A \rightarrow BC \in P$ gibt und
 - es einen Index $1 \le k < n$ gibt, sodass • B erzeugt $a_1 \cdots a_k$ und • C erzeugt $a_{k+1} \cdots a_n$.



▶ Daher prüfe für alle $A \to BC \in P$ und alle k mit $1 \le k < n$ rekursiv, ob B das Wort $a_1 \cdots a_k$ und C das Wort $a_{k+1} \cdots a_n$ erzeugt.

Seien die CFG $G = (V, \Sigma, P, S)$ mit

$$P = \{S \rightarrow AB \mid BA, A \rightarrow AA \mid AB \mid a, B \rightarrow BB \mid b\}$$

und das Wort bbbaab.

Seien die CFG $G = (V, \Sigma, P, S)$ mit

$$P = \{S \rightarrow AB \mid BA, A \rightarrow AA \mid AB \mid a, B \rightarrow BB \mid b\}$$

und das Wort bbbaab.

S erzeugt bbbaab, denn $S \rightarrow BA \in P$ und

- ▶ B erzeugt bbb, denn $B \rightarrow BB \in P$ und
 - ▶ B erzeugt bb, denn $B \rightarrow BB \in P$ und
 - \triangleright B erzeugt b, denn $B \rightarrow b \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$
 - \triangleright B erzeugt b, denn $B \rightarrow b \in P$
- ▶ A erzeugt aab, denn $A \rightarrow AB \in P$ und
 - ightharpoonup A erzeugt aa, denn $A \rightarrow AA \in P$ und
 - ightharpoonup A erzeugt a, denn $A \rightarrow a \in P$ und
 - ▶ A erzeugt a, denn $A \rightarrow a \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$.

Seien die CFG $G = (V, \Sigma, P, S)$ mit

$$P = \{S \rightarrow AB \mid BA, A \rightarrow AA \mid AB \mid a, B \rightarrow BB \mid b\}$$

und das Wort bbbaab.

S erzeugt *bbbaab*, denn $S \rightarrow BA \in P$ und

- ▶ B erzeugt bbb, denn $B \rightarrow BB \in P$ und
 - ▶ B erzeugt bb, denn $B \rightarrow BB \in P$ und
 - ightharpoonup B erzeugt b, denn $B \to b \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$
- ightharpoonup A erzeugt aab, denn $A \rightarrow AB \in P$ und
 - ▶ A erzeugt aa, denn $A \rightarrow AA \in P$ und
 - ightharpoonup A erzeugt a, denn $A \rightarrow a \in P$ und
 - ▶ A erzeugt a, denn $A \rightarrow a \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$.

Seien die CFG $G = (V, \Sigma, P, S)$ mit

$$P = \{S \rightarrow AB \mid BA, A \rightarrow AA \mid AB \mid a, B \rightarrow BB \mid b\}$$

und das Wort bbbaab.

S erzeugt bbbaab, denn $S \rightarrow BA \in P$ und

- ▶ B erzeugt bbb, denn $B \to BB \in P$ und
 - ▶ B erzeugt bb, denn $B \to BB \in P$ und
 - ightharpoonup B erzeugt b, denn $B \to b \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$
- ightharpoonup A erzeugt aab, denn $A \rightarrow AB \in P$ und
 - ▶ A erzeugt aa, denn $A \rightarrow AA \in P$ und
 - ightharpoonup A erzeugt a, denn $A \rightarrow a \in P$ und
 - ightharpoonup A erzeugt a, denn $A \rightarrow a \in P$
 - ▶ B erzeugt b, denn $B \rightarrow b \in P$.

Um an Effizienz zu gewinnen: Statt Rekursion verwende dynamische Programmierung.

Der Algorithmus berechnet Mengen $V(i,j) \subseteq V$, sodass

$$V(i,j) := \{A \in V \mid A \Rightarrow^* a_i \cdots a_{i+j-1}\}$$

Informell: V(i,j) enthält alle Variablen $A \in V$, die $a_i \cdots a_{i+j-1}$ (= das Teilwort von w ab Position i mit Länge j) erzeugen.

Der Algorithmus berechnet Mengen $V(i,j) \subseteq V$, sodass

$$V(i,j) := \{A \in V \mid A \Rightarrow^* a_i \cdots a_{i+j-1}\}$$

Informell: V(i,j) enthält alle Variablen $A \in V$, die $a_i \cdots a_{i+j-1}$ (= das Teilwort von w ab Position i mit Länge j) erzeugen.

Schritte:

1. Beginne mit $V(i, 1) = \{A \mid A \rightarrow a_i \in P\}$.

Der Algorithmus berechnet Mengen $V(i,j) \subseteq V$, sodass

$$V(i,j) := \{ A \in V \mid A \Rightarrow^* a_i \cdots a_{i+j-1} \}$$

Informell: V(i,j) enthält alle Variablen $A \in V$, die $a_i \cdots a_{i+j-1}$ (= das Teilwort von w ab Position i mit Länge j) erzeugen.

Schritte:

- 1. Beginne mit $V(i, 1) = \{A \mid A \rightarrow a_i \in P\}$.
- 2. Berechne V(i,j) für j=2 bis n. Für j>1 gilt:

$$A \in V(i,j)$$
 g.d.w. es gibt $k \in \{1, 2, ..., j-1\}$, sodass $A \to BC \in P$, $B \in V(i,k)$ und $C \in V(i+k,j-k)$

Der Algorithmus berechnet Mengen $V(i,j) \subseteq V$, sodass

$$V(i,j) := \{ A \in V \mid A \Rightarrow^* a_i \cdots a_{i+j-1} \}$$

Informell: V(i,j) enthält alle Variablen $A \in V$, die $a_i \cdots a_{i+j-1}$ (= das Teilwort von w ab Position i mit Länge j) erzeugen.

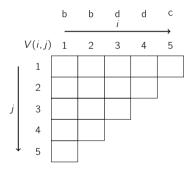
Schritte:

- 1. Beginne mit $V(i, 1) = \{A \mid A \rightarrow a_i \in P\}$.
- 2. Berechne V(i,j) für j=2 bis n. Für j>1 gilt:

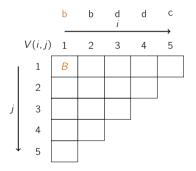
$$A \in V(i,j)$$
 g.d.w. es gibt $k \in \{1, 2, ..., j-1\}$, sodass $A \to BC \in P$, $B \in V(i,k)$ und $C \in V(i+k,j-k)$

3. Prüfe, ob $S \in V(1, n)$.

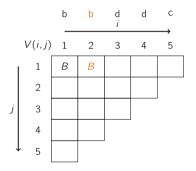
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



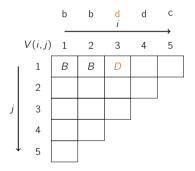
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



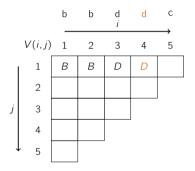
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



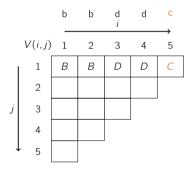
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



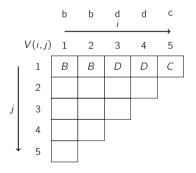
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



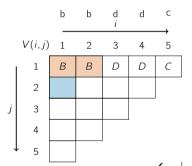
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



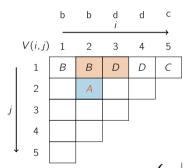
Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$



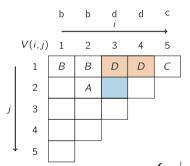
2. Schritt:



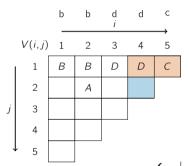
2. Schritt:
$$j = 2$$
, $i = 1$, $k = 1$: $V(1, 2) := V(1, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 1), \\ C \in V(2, 1) \end{array} \right\}$



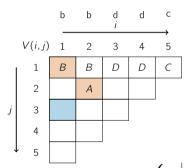
2. Schritt:
$$j = 2$$
, $i = 2$, $k = 1$: $V(2, 2) := V(2, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 1), \\ C \in V(3, 1) \end{array} \right\}$



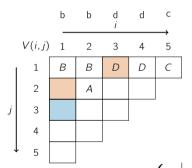
2. Schritt:
$$j = 2$$
, $i = 3$, $k = 1$: $V(3, 2) := V(3, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(3, 1), \\ C \in V(4, 1) \end{array} \right\}$



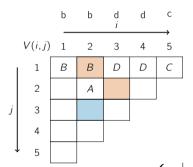
2. Schritt:
$$j = 2$$
, $i = 4$, $k = 1$: $V(4, 2) := V(4, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(4, 1), \\ C \in V(5, 1) \end{array} \right\}$



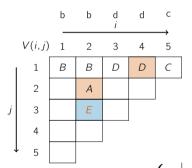
2. Schritt:
$$j = 3$$
, $i = 1$, $k = 1$: $V(1,3) := V(1,3) \cup \left\{ A \middle| \begin{array}{l} A \to BC, \\ B \in V(1,1), \\ C \in V(2,2) \end{array} \right\}$



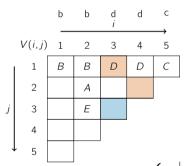
2. Schritt:
$$j = 3$$
, $i = 1$, $k = 2$: $V(1,3) := V(1,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,2), \\ C \in V(3,1) \end{array} \right\}$



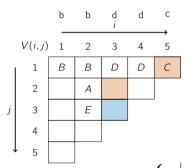
2. Schritt:
$$j = 3$$
, $i = 2$, $k = 1$: $V(2,3) := V(2,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2,1), \\ C \in V(3,2) \end{array} \right\}$



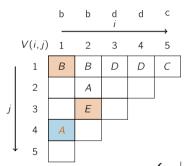
2. Schritt:
$$j = 3$$
, $i = 2$, $k = 2$: $V(2,3) := V(2,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2,2), \\ C \in V(4,1) \end{array} \right\}$



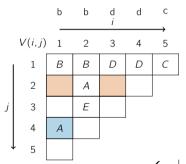
2. Schritt:
$$j = 3$$
, $i = 3$, $k = 1$: $V(3,3) := V(3,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(3,1), \\ C \in V(4,2) \end{array} \right\}$



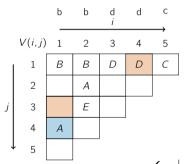
2. Schritt:
$$j = 3$$
, $i = 3$, $k = 2$: $V(3,3) := V(3,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(3,2), \\ C \in V(5,1) \end{array} \right\}$



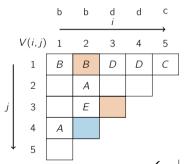
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 1$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 1), \\ C \in V(2, 3) \end{array} \right\}$



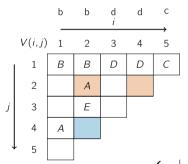
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 2$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 2), \\ C \in V(3, 2) \end{array} \right\}$



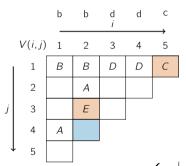
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 3$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 3), \\ C \in V(4, 1) \end{array} \right\}$



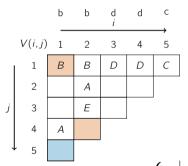
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 1$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 1), \\ C \in V(3, 3) \end{array} \right\}$



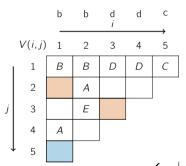
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 2$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 2), \\ C \in V(4, 2) \end{array} \right\}$



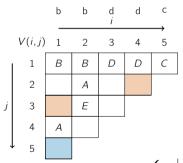
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 3$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 3), \\ C \in V(5, 1) \end{array} \right\}$



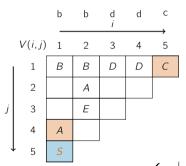
2. Schritt:
$$j = 5$$
, $i = 1$, $k = 1$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,1), \\ C \in V(2,4) \end{array} \right\}$



2. Schritt:
$$j = 5$$
, $i = 1$, $k = 2$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,2), \\ C \in V(3,3) \end{array} \right\}$

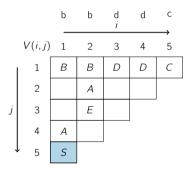


2. Schritt:
$$j = 5$$
, $i = 1$, $k = 3$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,3), \\ C \in V(4,2) \end{array} \right\}$



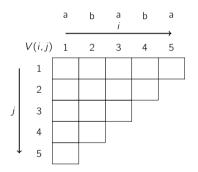
2. Schritt:
$$j = 5$$
, $i = 1$, $k = 4$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,4), \\ C \in V(5,1) \end{array} \right\}$

Seien
$$w = bbddc$$
 und $G = (\{S, A, B, C, D, E\}, \{b, c, d\}, P, S)$ mit $P = \{S \rightarrow AC, A \rightarrow BE, A \rightarrow BD, E \rightarrow AD, C \rightarrow c, B \rightarrow b, D \rightarrow d\}.$

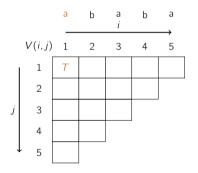


3. Schritt: Da $S \in V(1,5)$, gilt $w \in L(G)$.

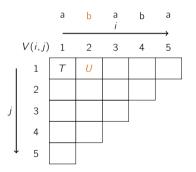
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



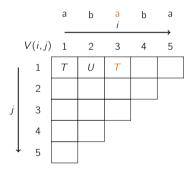
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



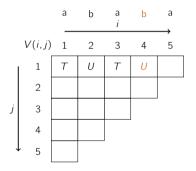
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



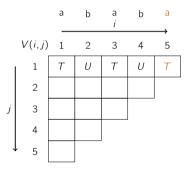
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



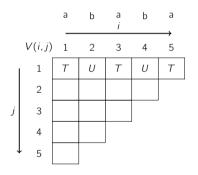
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$

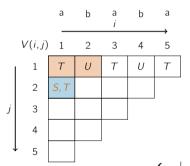


Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



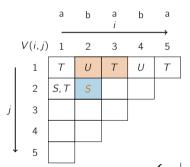
2. Schritt:

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



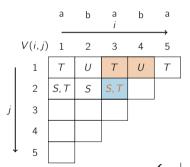
2. Schritt:
$$j = 2$$
, $i = 1$, $k = 1$: $V(1, 2) := V(1, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 1), \\ C \in V(2, 1) \end{array} \right\}$

Seien w = ababa und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



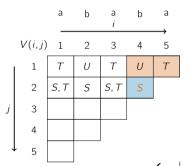
2. Schritt:
$$j = 2$$
, $i = 2$, $k = 1$: $V(2, 2) := V(2, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 1), \\ C \in V(3, 1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



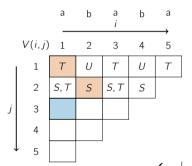
2. Schritt:
$$j = 2$$
, $i = 3$, $k = 1$: $V(3, 2) := V(3, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(3, 1), \\ C \in V(4, 1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



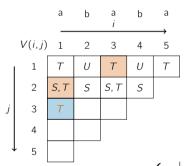
2. Schritt:
$$j = 2$$
, $i = 4$, $k = 1$: $V(4, 2) := V(4, 2) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(4, 1), \\ C \in V(5, 1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



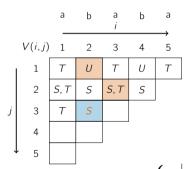
2. Schritt:
$$j = 3$$
, $i = 1$, $k = 1$: $V(1,3) := V(1,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,1), \\ C \in V(2,2) \end{array} \right\}$

Seien w = ababa und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



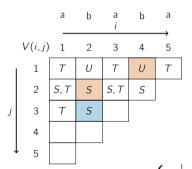
2. Schritt:
$$j = 3$$
, $i = 1$, $k = 2$: $V(1,3) := V(1,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,2), \\ C \in V(3,1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



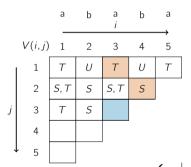
2. Schritt:
$$j = 3$$
, $i = 2$, $k = 1$: $V(2,3) := V(2,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2,1), \\ C \in V(3,2) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



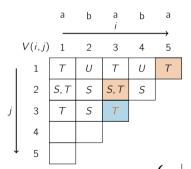
2. Schritt:
$$j = 3$$
, $i = 2$, $k = 2$: $V(2,3) := V(2,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2,2), \\ C \in V(4,1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



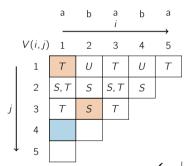
2. Schritt:
$$j = 3$$
, $i = 3$, $k = 1$: $V(3,3) := V(3,3) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(3,1), \\ C \in V(4,2) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



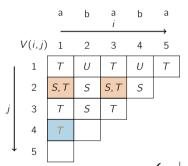
2. Schritt:
$$j = 3$$
, $i = 3$, $k = 2$: $V(3,3) := V(3,3) \cup \left\{ A \middle| \begin{array}{l} A \to BC, \\ B \in V(3,2), \\ C \in V(5,1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



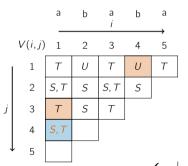
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 1$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 1), \\ C \in V(2, 3) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



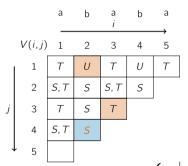
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 2$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 2), \\ C \in V(3, 2) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



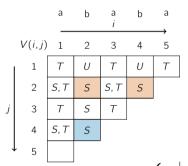
2. Schritt:
$$j = 4$$
, $i = 1$, $k = 3$: $V(1, 4) := V(1, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1, 3), \\ C \in V(4, 1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



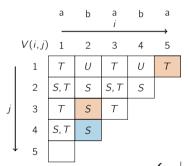
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 1$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 1), \\ C \in V(3, 3) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



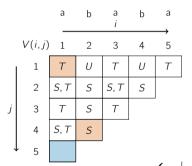
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 2$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 2), \\ C \in V(4, 2) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



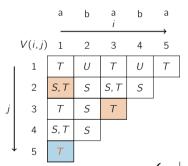
2. Schritt:
$$j = 4$$
, $i = 2$, $k = 3$: $V(2, 4) := V(2, 4) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(2, 3), \\ C \in V(5, 1) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



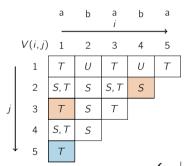
2. Schritt:
$$j = 5$$
, $i = 1$, $k = 1$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,1), \\ C \in V(2,4) \end{array} \right\}$

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



2. Schritt:
$$j = 5$$
, $i = 1$, $k = 2$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,2), \\ C \in V(3,3) \end{array} \right\}$

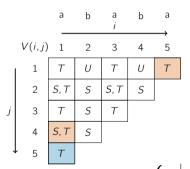
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



2. Schritt:
$$j = 5$$
, $i = 1$, $k = 3$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,3), \\ C \in V(4,2) \end{array} \right\}$

Weiteres Beispiel für den CYK-Algorithmus

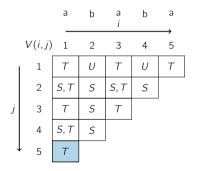
Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



2. Schritt:
$$j = 5$$
, $i = 1$, $k = 4$: $V(1,5) := V(1,5) \cup \left\{ A \middle| \begin{array}{c} A \to BC, \\ B \in V(1,4), \\ C \in V(5,1) \end{array} \right\}$

Weiteres Beispiel für den CYK-Algorithmus

Seien
$$w = ababa$$
 und $G = (\{S, T, U\}, \{a, b, c\}, P, S)$ mit $P = \{S \rightarrow TU, S \rightarrow UT, T \rightarrow TT, T \rightarrow TU, T \rightarrow a, U \rightarrow UU, U \rightarrow b\}.$



3. Schritt: Da $S \notin V(1,5)$, gilt $w \notin L(G)$.

Algorithmus 8: CYK-Algorithmus

Eingabe: CFG $G = (V, \Sigma, P, S)$ in Chomsky-Normalform und Wort $w = a_1 \cdots a_n \in \Sigma^+$ **Ausgabe:** Ja, wenn $w \in L(G)$, und Nein, wenn $w \notin L(G)$ **Beginn**

```
für i = 1 bis n tue
   V(i, 1) := \{A \in V \mid A \to a_i \in P\}
 für i = 2 bis n tue
        für i = 1 bis n + 1 - i tue
V(i,j) := \emptyset;
\mathbf{f\ddot{u}r} \ k = 1 \ bis \ j - 1 \ \mathbf{tue}
V(i,j) := V(i,j) \cup \left\{ A \in V \middle| \begin{array}{c} A \to BC \in P, \\ B \in V(i,k), \\ C \in V(i+k,j-k) \end{array} \right\}
 wenn S \in V(1, n) dann
        return Ja
 sonst
   return Nein
```

Laufzeit des CYK-Algorithmus

Theorem

Das Wortproblem für Typ 2-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 2-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht. Zudem entscheidet er das Wortproblem in Polynomialzeit.

Laufzeit des CYK-Algorithmus

Theorem

Das Wortproblem für Typ 2-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 2-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht. Zudem entscheidet er das Wortproblem in Polynomialzeit.

Beweis Algorithmus 8 ist eine Entscheidungsprozedur.

Laufzeit des CYK-Algorithmus

Theorem

Das Wortproblem für Typ 2-Grammatiken ist entscheidbar:

Es gibt einen Algorithmus, der bei Eingabe von Typ 2-Grammatik G und Wort w nach endlicher Zeit entscheidet, ob $w \in L(G)$ gilt oder nicht. Zudem entscheidet er das Wortproblem in Polynomialzeit.

Beweis Algorithmus 8 ist eine Entscheidungsprozedur.

Er besteht aus drei geschachtelte für-Schleifen. Im Inneren wird noch über alle Produktionen aus P iteriert. Die Laufzeitkomplexität kann daher mit $O(n^3 \cdot |P|)$ abgeschätzt werden.

Der CYK-Algorithmus

Online-Tool

Tobias Lindebar hat ein Web-Tool zum Üben und Anschauen entwickelt:

www.cip.ifi.lmu.de/~lindebar/

Das Endlichkeitsproblem

Das Endlichkeitsproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik G die Ungleichheit $|L(G)| < \infty$ gilt.

Das Endlichkeitsproblem

Das Endlichkeitsproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik G die Ungleichheit $|L(G)| < \infty$ gilt.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

Das Endlichkeitsproblem

Das Endlichkeitsproblem für Typ *i*-Grammatiken ist die Frage, ob für eine gegebene Typ *i*-Grammatik G die Ungleichheit $|L(G)| < \infty$ gilt.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

Wir brauchen zuerst ein Lemma.

Lemma

Sei G eine CFG in Chomsky-Normalform.

Sei *n* die Zahl aus dem Pumping-Lemma für kontextfreie Sprachen.

Es gilt $|L(G)| = \infty$ g.d.w. es ein Wort $z \in L(G)$ mit $n \le |z| < 2n$ gibt.

Lemma

Sei G eine CFG in Chomsky-Normalform.

Sei n die Zahl aus dem Pumping-Lemma für kontextfreie Sprachen.

Es gilt $|L(G)| = \infty$ g.d.w. es ein Wort $z \in L(G)$ mit $n \le |z| < 2n$ gibt.

Beweis Siehe Skript (nur FSK).

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis Entscheidungsprozedur:

1. Berechne die Zahl n.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

- 1. Berechne die Zahl n.
- 2. Teste mit dem CYK-Algorithmus für alle Wörter $w \in \Sigma^+$ der Länge $n \le |w| < 2n$, ob $w \in L(G)$ gilt.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

- 1. Berechne die Zahl n.
- 2. Teste mit dem CYK-Algorithmus für alle Wörter $w \in \Sigma^+$ der Länge $n \leq |w| < 2n$, ob $w \in L(G)$ gilt.
- 3. Wenn $w \in L(G)$ für eines der Wörter gilt, dann $|L(G)| = \infty$.

Satz

Das Endlichkeitsproblem für kontextfreie Grammatiken ist entscheidbar.

- 1. Berechne die Zahl n.
- 2. Teste mit dem CYK-Algorithmus für alle Wörter $w \in \Sigma^+$ der Länge $n \leq |w| < 2n$, ob $w \in L(G)$ gilt.
- 3. Wenn $w \in L(G)$ für eines der Wörter gilt, dann $|L(G)| = \infty$.
- 4. Sonst $|L(G)| < \infty$.