Formale Sprachen und Komplexität Sommersemester 2025

6a

Die Greibach-Normalform und Eigenschaften

von kontextfreien Sprachen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

2/16

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG mit 1. Sonderregel.

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG mit 1. Sonderregel.

Prüfe zunächst, ob $S \to \varepsilon \in P$. Wenn ja, dann ist L(G) nicht leer.

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG mit 1. Sonderregel.

Prüfe zunächst, ob $S \to \varepsilon \in P$. Wenn ja, dann ist L(G) nicht leer.

Sonst: Sei $G' = (V', \Sigma, P', S')$ eine CFG in Chomsky-Normalform mit L(G') = L(G).

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG mit 1. Sonderregel.

Prüfe zunächst, ob $S \to \varepsilon \in P$. Wenn ja, dann ist L(G) nicht leer.

Sonst: Sei $G' = (V', \Sigma, P', S')$ eine CFG in Chomsky-Normalform mit L(G') = L(G).

Der folgende Algorithmus markiert alle $A \in V'$ mit $\{w \in \Sigma^* \mid A \Rightarrow_{G'}^* w\} \neq \emptyset$.

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG mit 1. Sonderregel.

Prüfe zunächst, ob $S \to \varepsilon \in P$. Wenn ja, dann ist L(G) nicht leer.

Sonst: Sei $G' = (V', \Sigma, P', S')$ eine CFG in Chomsky-Normalform mit L(G') = L(G).

Der folgende Algorithmus markiert alle $A \in V'$ mit $\{w \in \Sigma^* \mid A \Rightarrow_{C'}^* w\} \neq \emptyset$.

Prüfe, ob S' markiert wird. Wenn ja, dann ist L(G) = L(G') nicht leer.

Algorithmus 9: Markierung der "nichtleeren" Variablen

Eingabe: Grammatik $G = (V, \Sigma, P, S)$ in Chomsky-Normalform **Ausgabe:** Menge $W \subseteq V$ aller Variablen, die nicht die leere Sprache erzeugen **Beginn** $W := \{A \in V \mid A \rightarrow a \in P, a \in \Sigma\};$ wiederhole $W_{\mathsf{alt}} := W;$ $W := W_{\mathsf{alt}} \cup \{A \mid A \rightarrow BC \in P, B \in W_{\mathsf{alt}}, C \in W_{\mathsf{alt}}\};$ bis $W = W_{\text{alt}}$; return W

Sei $G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow XY, Z \rightarrow ZZ \mid a \mid b, X \rightarrow ZZ \mid YY, Y \rightarrow ZY\}).$

4/16

Sei
$$G = (\{S, X, Y, Z\}, \{a, b\}, \{S \rightarrow XY, Z \rightarrow ZZ \mid a \mid b, X \rightarrow ZZ \mid YY, Y \rightarrow ZY\}).$$

0.
$$W := \{ A \in V \mid A \to a \in P \} = \{ Z \}$$

Sei
$$G = (\{S, X, Y, Z\}, \{a, b\}, \{S \to XY, Z \to ZZ \mid a \mid b, X \to ZZ \mid YY, Y \to ZY\}).$$

0.
$$W := \{ A \in V \mid A \to a \in P \} = \{ Z \}$$

1.
$$W_{\text{alt}} := W = \{Z\}$$

 $W := W_{\text{alt}} \cup \{A \mid A \to BC \in P, B, C \in W_{\text{alt}}\} = \{Z\} \cup \{X, Z\} = \{X, Z\}$
 $W \neq W_{\text{alt}}$

Sei
$$G = (\{S, X, Y, Z\}, \{a, b\}, \{S \to XY, Z \to ZZ \mid a \mid b, X \to ZZ \mid YY, Y \to ZY\}).$$

- 0. $W := \{A \in V \mid A \to a \in P\} = \{Z\}$
- 1. $W_{alt} := W = \{Z\}$ $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{Z\} \cup \{X, Z\} = \{X, Z\}$ $W \neq W_{alt}$
- 2. $W_{alt} := W = \{X, Z\}$ $W := W_{\text{alt}} \cup \{A \mid A \to BC \in P, B, C \in W_{\text{alt}}\} = \{X, Z\} \cup \{X, Z\} = \{X, Z\}$ $W = W_{21}$

Sei
$$G = (\{S, X, Y, Z\}, \{a, b\}, \{S \to XY, Z \to ZZ \mid a \mid b, X \to ZZ \mid YY, Y \to ZY\}).$$

- 0. $W := \{A \in V \mid A \to a \in P\} = \{Z\}$
- 1. $W_{alt} := W = \{Z\}$ $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{Z\} \cup \{X, Z\} = \{X, Z\}$ $W \neq W_{alt}$
- 2. $W_{alt} := W = \{X, Z\}$ $W := W_{\text{alt}} \cup \{A \mid A \to BC \in P, B, C \in W_{\text{alt}}\} = \{X, Z\} \cup \{X, Z\} = \{X, Z\}$ $W = W_{21}$
- 3. return $W = \{X, Z\}$

Sei
$$G = (\{S, X, Y, Z\}, \{a, b\}, \{S \to XY, Z \to ZZ \mid a \mid b, X \to ZZ \mid YY, Y \to ZY\}).$$

Ausführung von Algorithmus 9:

0.
$$W := \{A \in V \mid A \to a \in P\} = \{Z\}$$

- 1. $W_{alt} := W = \{Z\}$ $W := W_{alt} \cup \{A \mid A \to BC \in P, B, C \in W_{alt}\} = \{Z\} \cup \{X, Z\} = \{X, Z\}$ $W \neq W_{alt}$
- 2. $W_{alt} := W = \{X, Z\}$ $W := W_{\text{alt}} \cup \{A \mid A \to BC \in P, B, C \in W_{\text{alt}}\} = \{X, Z\} \cup \{X, Z\} = \{X, Z\}$ $W = W_{21}$
- 3. return $W = \{X, Z\}$

Da $S \notin W$ folgt, dass G die leere Sprache erzeugt.

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Greibach-Normalform, falls alle Produktionen in P von der Form $A \to aB_1B_2 \dots B_j$ sind, mit $j \ge 0$, $a \in \Sigma$ und $A, B_1, \dots, B_j \in V$.

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Greibach-Normalform, falls alle Produktionen in P von der Form $A \to aB_1B_2 \dots B_i$ sind, mit $j \ge 0$, $a \in \Sigma$ und $A, B_1, \dots, B_i \in V$.

Die Normalform ist benannt nach Sheila A. Greibach

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Greibach-Normalform, falls alle Produktionen in P von der Form $A \to aB_1B_2 \dots B_i$ sind, mit $j \ge 0$, $a \in \Sigma$ und $A, B_1, \dots, B_i \in V$.

Die Normalform ist benannt nach Sheila A. Greibach

Reguläre Grammatiken sind ein Spezialfall der Greibach-Normalform:

Dort ist nur $i \in \{0, 1\}$ erlaubt.

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Greibach-Normalform, falls alle Produktionen in P von der Form $A \to aB_1B_2 \dots B_i$ sind, mit $j \ge 0$, $a \in \Sigma$ und $A, B_1, \dots, B_i \in V$.

Die Normalform ist benannt nach Sheila A. Greibach

Reguläre Grammatiken sind ein Spezialfall der Greibach-Normalform:

Dort ist nur $i \in \{0, 1\}$ erlaubt.

Die Greibach-Normalform wird u.a. verwendet, um zu zeigen, dass kontextfreie Sprachen genau von den nichtdeterministischen Kellerautomaten erkannt werden (nächste Vorlesung).

Satz

Für jede CFG G mit $\varepsilon \not\in L(G)$ kann eine CFG G' in Greibach-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Grundgedanke der Prozedur:

1. Bringe die Eingabe in Chomsky-Normalform.

Grundgedanke der Prozedur:

- 1. Bringe die Eingabe in Chomsky-Normalform.
- 2. Nummeriere die Variabeln A_1, \ldots, A_n durch.

Grundgedanke der Prozedur:

- 1. Bringe die Eingabe in Chomsky-Normalform.
- 2. Nummeriere die Variabeln A_1, \ldots, A_n durch.
- 3 Für i = 1 bis n
 - 3.1 Für jedes j := 1 bis i 1, ersetze A_i in $A_i \to A_i u$ durch alle möglichen rechten Seiten w von $A_i \rightarrow w$ ("Inlining von Produktionen").
 - 3.2 Ersetze jede Produktion $A_i \rightarrow A_i u$ ("Entfernen der Linksrekursion") mithilfe von B_i .

Grundgedanke der Prozedur:

- 1. Bringe die Eingabe in Chomsky-Normalform.
- 2. Nummeriere die Variabeln A_1, \ldots, A_n durch.
- 3 Für i = 1 bis n
 - 3.1 Für jedes j := 1 bis i 1, ersetze A_i in $A_i \to A_i u$ durch alle möglichen rechten Seiten w von $A_i \rightarrow w$ ("Inlining von Produktionen").
 - 3.2 Ersetze jede Produktion $A_i \rightarrow A_i u$ ("Entfernen der Linksrekursion") mithilfe von B_i . (Nun gilt für $A_i \rightarrow A_i u$ stets i < j. Damit gilt für $A_n \rightarrow u$, dass u mit einem

Terminal beginnt. Die nächste Schleife ersetzt alle restlichen $A_i \rightarrow A_i u$.)

Grundgedanke der Prozedur:

- 1. Bringe die Eingabe in Chomsky-Normalform.
- 2. Nummeriere die Variabeln A_1, \ldots, A_n durch.
- 3 Für i = 1 bis n
 - 3.1 Für jedes j := 1 bis i 1, ersetze A_i in $A_i \to A_i u$ durch alle möglichen rechten Seiten w von $A_i \rightarrow w$ ("Inlining von Produktionen").
 - 3.2 Ersetze jede Produktion $A_i \rightarrow A_i u$ ("Entfernen der Linksrekursion") mithilfe von B_i . (Nun gilt für $A_i \rightarrow A_i u$ stets i < j. Damit gilt für $A_n \rightarrow u$, dass u mit einem Terminal beginnt. Die nächste Schleife ersetzt alle restlichen $A_i \rightarrow A_i u$.)
- 4. Für i = n 1 bis 1:
 - 4.1 Ersetze A_i in $A_i o A_i u$ (wo i > i) durch alle möglichen rechten Seiten w von $A_i \rightarrow w$ ("Inlining von Produktionen"). (w fängt mit einem Terminal an, da die Schleife absteigend läuft.)

Grundgedanke der Prozedur:

- 1. Bringe die Eingabe in Chomsky-Normalform.
- 2. Nummeriere die Variabeln A_1, \ldots, A_n durch.
- 3. Für i := 1 bis n:
 - 3.1 Für jedes j := 1 bis i 1, ersetze A_j in $A_i \to A_j u$ durch alle möglichen rechten Seiten w von $A_i \to w$ ("Inlining von Produktionen").
 - 3.2 Ersetze jede Produktion $A_i \to A_i u$ ("Entfernen der Linksrekursion") mithilfe von B_i . (Nun gilt für $A_i \to A_j u$ stets i < j. Damit gilt für $A_n \to u$, dass u mit einem Terminal beginnt. Die nächste Schleife ersetzt alle restlichen $A_i \to A_j u$.)
- 4. Für i = n 1 bis 1:
 - 4.1 Ersetze A_j in $A_i \rightarrow A_j u$ (wo j > i) durch alle möglichen rechten Seiten w von $A_j \rightarrow w$ ("Inlining von Produktionen"). (w fängt mit einem Terminal an, da die Schleife absteigend läuft.)
- 5. Für jede Produktion $B_i \to A_j u$, ersetze A_j durch alle möglichen rechten Seiten w von $A_i \to w$ ("Inlining von Produktionen").

Sei
$$G_0 = (\{S, T\}, \{a\}, \{S \to TT, T \to TS \mid a\}, S)$$
 eine CFG.

1. G_0 befindet sich bereits in Chomsky-Normalform.

Sei
$$G_0 = (\{S, T\}, \{a\}, \{S \to TT, T \to TS \mid a\}, S)$$
 eine CFG.

- 1. G_0 befindet sich bereits in Chomsky-Normalform.
- 2 Das Durchnummerieren der Variablen führt z B zu $G_2 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow A_2A_1 \mid a\}, A_1).$

Sei
$$G_0 = (\{S, T\}, \{a\}, \{S \to TT, T \to TS \mid a\}, S)$$
 eine CFG.

- 1. G_0 befindet sich bereits in Chomsky-Normalform.
- 2 Das Durchnummerieren der Variablen führt z B zu $G_2 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow A_2A_1 \mid a\}, A_1).$
- 3. Ersetze linksrekursive $A_2 \rightarrow A_2 A_1 \mid a$ durch $A_2 \rightarrow aB_2 \mid a. B_2 \rightarrow A_1 B_2 \mid A_1$. Dies führt zu $G_3 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1B_2 \mid A_1\}, A_1).$

Sei
$$G_0 = (\{S, T\}, \{a\}, \{S \to TT, T \to TS \mid a\}, S)$$
 eine CFG.

- 1. G_0 befindet sich bereits in Chomsky-Normalform.
- 2 Das Durchnummerieren der Variablen führt z B zu $G_2 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow A_2A_1 \mid a\}, A_1).$
- 3. Ersetze linksrekursive $A_2 \rightarrow A_2 A_1 \mid a$ durch $A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1 B_2 \mid A_1$. Dies führt zu $G_3 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1B_2 \mid A_1\}, A_1).$
- 4. Ersetze mithilfe Inlining $A_1 \rightarrow A_2 A_2$ durch $A_1 \rightarrow aB_2 A_2 \mid aA_2$. Dies führt zu $G_4 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow aB_2A_2 \mid aA_2, A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1B_2 \mid A_1\}, A_1),$

Sei $G_0 = (\{S, T\}, \{a\}, \{S \to TT, T \to TS \mid a\}, S)$ eine CFG.

- 1. G_0 befindet sich bereits in Chomsky-Normalform.
- 2 Das Durchnummerieren der Variablen führt z B zu $G_2 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow A_2A_1 \mid a\}, A_1).$
- 3. Ersetze linksrekursive $A_2 \rightarrow A_2 A_1 \mid a$ durch $A_2 \rightarrow aB_2 \mid a. B_2 \rightarrow A_1 B_2 \mid A_1$. Dies führt zu $G_3 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow A_2A_2, A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1B_2 \mid A_1\}, A_1).$
- 4. Ersetze mithilfe Inlining $A_1 \rightarrow A_2 A_2$ durch $A_1 \rightarrow aB_2 A_2 \mid aA_2$. Dies führt zu $G_4 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow aB_2A_2 \mid aA_2, A_2 \rightarrow aB_2 \mid a, B_2 \rightarrow A_1B_2 \mid A_1\}, A_1).$
- 5. Ersetze mithilfe Inlining $B_2 \rightarrow A_1 B_2$ durch $B_2 \rightarrow aB_2 A_2 B_2 \mid aA_2 B_2$ und $B_2 \rightarrow A_1$ durch $B_2 \rightarrow aB_2A_2 \mid aA_2$. Dies führt zu $G_5 = (\{A_1, A_2\}, \{a\}, \{A_1 \rightarrow aB_2A_2 \mid aA_2, A_2 \rightarrow aB_2 \mid a, A_3 \mid aA_3, A_4 \mid aA_4 \mid aA_$ $B_2 \rightarrow aB_2A_2B_2 \mid aA_2B_2 \mid aB_2A_2 \mid aA_2\}, A_1).$

Links- und rechtsrekursive Produktion

Definition

Seien $G = (V, \Sigma, P, S), A \in V, u \in (V \cup \Sigma)^*$. Eine Produktion ist

- ▶ linksrekursiv, wenn sie von der Form $A \rightarrow Au$ ist
- rechtsrekursiv, wenn sie von der Form $A \rightarrow uA$ ist.

Entfernen der Linksrekursion

Lemma (Entfernen der Linksrekursion)

Sei
$$G = (V, \Sigma, Q \cup \underbrace{\{A \rightarrow Au_1 \mid \cdots \mid Au_n \mid w_1 \mid \cdots \mid w_m\}}_{R}, S)$$
 eine CFG mit

- R sind alle Produktionen mit A als linker Seite
- ightharpoonup die Satzformen w_1, \ldots, w_m beginnen alle nicht mit A.

Entfernen der Linksrekursion

Lemma (Entfernen der Linksrekursion)

Sei
$$G = (V, \Sigma, Q \cup \{\underbrace{A \rightarrow Au_1 \mid \cdots \mid Au_n \mid w_1 \mid \cdots \mid w_m\}}_{R}, S)$$
 eine CFG mit

- R sind alle Produktionen mit A als linker Seite
- \blacktriangleright die Satzformen w_1, \ldots, w_m beginnen alle nicht mit A.

Es gilt L(G') = L(G) für $G' = (V \cup \{B\}, \Sigma, Q \cup R', S)$, wobei B eine neue Variable ist und

$$R' := \{ A \to w_1 B \mid \cdots \mid w_m B \mid w_1 \mid \cdots \mid w_m, \\ B \to u_1 B \mid \cdots \mid u_n B \mid u_1 \mid \cdots \mid u_n \}$$

Entfernen der Linksrekursion

Lemma (Entfernen der Linksrekursion)

Sei
$$G = (V, \Sigma, Q \cup \{\underbrace{A \rightarrow Au_1 \mid \cdots \mid Au_n \mid w_1 \mid \cdots \mid w_m\}}_{R}, S)$$
 eine CFG mit

- R sind alle Produktionen mit A als linker Seite
- \blacktriangleright die Satzformen w_1, \ldots, w_m beginnen alle nicht mit A.

Es gilt L(G') = L(G) für $G' = (V \cup \{B\}, \Sigma, Q \cup R', S)$, wobei B eine neue Variable ist und

$$R' := \{ A \to w_1 B \mid \cdots \mid w_m B \mid w_1 \mid \cdots \mid w_m, \\ B \to u_1 B \mid \cdots \mid u_n B \mid u_1 \mid \cdots \mid u_n \}$$

Beweis Siehe Skript.

Beispiel für das Entfernen der Linksrekursion

Sei die CFG $G = (\{A, C\}, \{b, c, d\}, \{A \rightarrow ACA \mid bb, C \rightarrow Ccc \mid d\}, A).$

11/16

Beispiel für das Entfernen der Linksrekursion

Sei die CFG
$$G = (\{A, C\}, \{b, c, d\}, \{A \rightarrow ACA \mid bb, C \rightarrow Ccc \mid d\}, A).$$

Entfernen der Linksrekursion für A ergibt

$$G' = (\{A, B, C\}, \{b, c, d\}, \{A \rightarrow bbB \mid bb, B \rightarrow CAB \mid CA, C \rightarrow Ccc \mid d\}, A)$$

Beispiel für das Entfernen der Linksrekursion

Sei die CFG $G = (\{A, C\}, \{b, c, d\}, \{A \rightarrow ACA \mid bb, C \rightarrow Ccc \mid d\}, A).$

Entfernen der Linksrekursion für A ergibt

$$G' = (\{A, B, C\}, \{b, c, d\}, \{A \rightarrow bbB \mid bb, B \rightarrow CAB \mid CA, C \rightarrow Ccc \mid d\}, A)$$

Anschließendes Entfernen der Linksrekursion für C ergibt

$$G'' = (\{A, B, C, D\}, \{b, c, d\}, \{A \to bbB \mid bb, B \to CAB \mid CA, C \to dD \mid d, D \to ccD \mid cc\}, A)$$

Algorithmus 7: Herstellen der Greibach-Normalform

```
Eingabe: CFG G = (\{A_1, \ldots, A_n\}, \Sigma, P, A_i) in Chomsky-Normalform mit \varepsilon \notin L(G)
Ausgabe: CFG G' in Greibach-Normalform mit L(G) = L(G')
Beginn
    für i = 1 his n tue
        für i = 1 bis i - 1 tue
             für alle A_i \rightarrow A_i u \in P tue
                  Seien A_i \rightarrow w_1 \mid \cdots \mid w_m alle Produktionen in P mit A_i als linker Seite;
                 Ersetze A_i \rightarrow A_i u durch A_i \rightarrow w_1 u \mid \ldots \mid w_m u in P;
        wenn A_i \rightarrow A_i u \in P dann
             Eliminiere solche Produktionen mit der Operation "Entfernen der Linksrekursion";
             Sei B_i die dabei neu erzeugte Variable;
    für i = n - 1 bis 1 tue
        für alle A_i \rightarrow A_i u \in P, j > i tue
             Seien A_i \rightarrow w_1 \mid \cdots \mid w_m alle Produktionen in P mit A_i als linker Seite;
             Ersetze A_i \rightarrow A_i u durch A_i \rightarrow w_1 u \mid \cdots \mid w_m u in P;
    für i = 1 his n tue
        für alle B_i → A_iu ∈ P tue
             Seien A_i \rightarrow w_1 \mid \cdots \mid w_m alle Produktionen in P mit A_i als linker Seite;
             Ersetze B_i \rightarrow A_i u durch B_i \rightarrow w_1 u \mid \cdots \mid w_m u in P;
```

Korrektheit von Algorithmus 7

Satz

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Greibach-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Korrektheit von Algorithmus 7

Satz

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Greibach-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Beweis Korrektheit folgt durch Korrektheit der Operationen "Inlining von Produktionen" und "Entfernen der Linksrekursion", mithilfe von geeigneten Invarianten.

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss.

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss

Beweis Seien L_1, L_2 CFLs und $G_i = (V_i, \Sigma_i, P_i, S_i)$ CFGs mit $L(G_i) = L_i$ für i = 1, 2. O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss

Beweis Seien L_1, L_2 CFLs und $G_i = (V_i, \Sigma_i, P_i, S_i)$ CFGs mit $L(G_i) = L_i$ für i = 1, 2. O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Seien S, S' neue Variablen (d.h. $\{S, S'\} \cap (V_1 \cup V_2) = \emptyset$).

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss

Beweis Seien L_1, L_2 CFLs und $G_i = (V_i, \Sigma_i, P_i, S_i)$ CFGs mit $L(G_i) = L_i$ für i = 1, 2, ...O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Seien S, S' neue Variablen (d.h. $\{S, S'\} \cap (V_1 \cup V_2) = \emptyset$).

1. Vereinigung: Sei $G_{\cup} = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S)$. Dann gilt $L(G_{\square}) = L(G_1) \cup L(G_2) = L_1 \cup L_2$.

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss

Beweis Seien L_1, L_2 CFLs und $G_i = (V_i, \Sigma_i, P_i, S_i)$ CFGs mit $L(G_i) = L_i$ für i = 1, 2, ...O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Seien S, S' neue Variablen (d.h. $\{S, S'\} \cap (V_1 \cup V_2) = \emptyset$).

- 1. Vereinigung: Sei $G_{\cup} = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S)$. Dann gilt $L(G_1) = L(G_1) \cup L(G_2) = L_1 \cup L_2$.
- 2. Produkt: Sei $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S).$ Dann gilt $L(G_1) = L(G_1)L(G_2) = L_1L_2$.

Theorem

Die kontextfreien Sprachen sind abgeschlossen bezüglich Vereinigung, Produkt und Kleeneschem Abschluss

Beweis Seien L_1, L_2 CFLs und $G_i = (V_i, \Sigma_i, P_i, S_i)$ CFGs mit $L(G_i) = L_i$ für i = 1, 2, ...O.B.d.A. sei $V_1 \cap V_2 = \emptyset$.

Seien S, S' neue Variablen (d.h. $\{S, S'\} \cap (V_1 \cup V_2) = \emptyset$).

- 1. Vereinigung: Sei $G_{11} = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}, S)$. Dann gilt $L(G_1) = L(G_1) \cup L(G_2) = L_1 \cup L_2$.
- 2. Produkt: Sei $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S).$ Dann gilt $L(G_1) = L(G_1)L(G_2) = L_1L_2$.
- 3. Kleenescher Abschluss: Sei $G_* = (V_1 \cup \{S, S'\}, \Sigma, P', S')$ mit $P' = (P \setminus \{S_1 \to \varepsilon\}) \cup \{S' \to \varepsilon, S' \to S, S \to SS, S \to S_1\}.$ Dann gilt $L(G_*) = L(G_1)^*$.

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Beweis

1. Schnitt: Seien $L_1 = \{a^n b^m c^m \mid m, n \in \mathbb{N}\}$ und $L_2 = \{a^m b^m c^n \mid m, n \in \mathbb{N}\}$.

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Beweis

1. Schnitt: Seien $L_1 = \{a^n b^m c^m \mid m, n \in \mathbb{N}\}$ und $L_2 = \{a^m b^m c^n \mid m, n \in \mathbb{N}\}$. Seien

$$G_1 = (\{A, D, S\}, \{a, b, c\}, \{S \to AD, A \to \varepsilon \mid aA, D \to \varepsilon \mid bDc\}, S)$$

 $G_2 = (\{C, D, S\}, \{a, b, c\}, \{S \to DC, \varepsilon \mid C \to cC, D \to \varepsilon \mid aDb\}, S)$

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Beweis

1. Schnitt: Seien $L_1 = \{a^n b^m c^m \mid m, n \in \mathbb{N}\}$ und $L_2 = \{a^m b^m c^n \mid m, n \in \mathbb{N}\}$. Seien

$$G_1 = (\{A, D, S\}, \{a, b, c\}, \{S \to AD, A \to \varepsilon \mid aA, D \to \varepsilon \mid bDc\}, S)$$

 $G_2 = (\{C, D, S\}, \{a, b, c\}, \{S \to DC, \varepsilon \mid C \to cC, D \to \varepsilon \mid aDb\}, S)$

 $L(G_i) = L_i$ für $i \in \{1, 2\}$, daher sind L_1 und L_2 beide kontextfrei.

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Beweis

1. Schnitt: Seien $L_1 = \{a^n b^m c^m \mid m, n \in \mathbb{N}\}$ und $L_2 = \{a^m b^m c^n \mid m, n \in \mathbb{N}\}$. Seien

$$G_1 = (\{A, D, S\}, \{a, b, c\}, \{S \rightarrow AD, A \rightarrow \varepsilon \mid aA, D \rightarrow \varepsilon \mid bDc\}, S)$$

$$G_2 = (\{C, D, S\}, \{a, b, c\}, \{S \rightarrow DC, \varepsilon \mid C \rightarrow cC, D \rightarrow \varepsilon \mid aDb\}, S)$$

$$L(G_i) = L_i$$
 für $i \in \{1, 2\}$, daher sind L_1 und L_2 beide kontextfrei.
 $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ ist aber bekanntlich nicht kontextfrei.

Theorem

Die kontextfreien Sprachen sind nicht abgeschlossen unter Schnitt und Komplement.

Beweis

1. Schnitt: Seien $L_1 = \{a^n b^m c^m \mid m, n \in \mathbb{N}\}$ und $L_2 = \{a^m b^m c^n \mid m, n \in \mathbb{N}\}$. Seien

$$G_1 = (\{A, D, S\}, \{a, b, c\}, \{S \rightarrow AD, A \rightarrow \varepsilon \mid aA, D \rightarrow \varepsilon \mid bDc\}, S)$$

$$G_2 = (\{C, D, S\}, \{a, b, c\}, \{S \rightarrow DC, \varepsilon \mid C \rightarrow cC, D \rightarrow \varepsilon \mid aDb\}, S)$$

 $L(G_i) = L_i$ für $i \in \{1, 2\}$, daher sind L_1 und L_2 beide kontextfrei.

 $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ ist aber bekanntlich nicht kontextfrei.

Daher sind die CFLs nicht abgeschlossen bezüglich Schnitt.

Beweis (Fortsetzung)

2. Komplement: Durch Widerspruch. Wir nehmen an, dass wenn L CFL ist, dann ist auch \overline{I} CFL.

Beweis (Fortsetzung)

2. Komplement: Durch Widerspruch. Wir nehmen an, dass wenn L CFL ist, dann ist auch \overline{I} CFL.

Seien L_1, L_2 CFLs. Dann ist auch $\overline{L_1} \cup \overline{L_2}$ CFL (da CFLs abgeschlossen bezüglich $^-$ und \cup).

Beweis (Fortsetzung)

2. Komplement: Durch Widerspruch. Wir nehmen an, dass wenn L CFL ist, dann ist auch \overline{I} CFL.

Seien L_1, L_2 CFLs. Dann ist auch $\overline{L_1} \cup \overline{L_2}$ CFL (da CFLs abgeschlossen bezüglich $^-$ und \cup).

 $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$. Dies würde heißen, dass die CFLs abgeschlossen bezüglich Schnitt sind. Wir haben aber unter Punkt 1 genau das Gegenteil beweisen. Widerspruch.