Formale Sprachen und Komplexität Sommersemester 2025

5c

Das Pumping-Lemma für kontextfreie Sprachen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

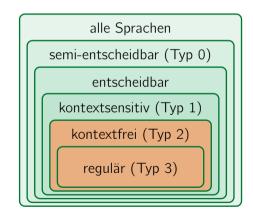
Stand: 21. Juli 2025
Basierend auf Folien von PD Dr. David Sabel

Hintergrund zum Pumping-Lemma

Wir lernen eine Methode kennen zum Widerlegen der Kontextfreiheit: das Pumping-Lemma für kontextfreie Sprachen.

Es gibt allgemeinere Formulierungen, z.B.

- Ogdens Lemma (ist im Skript, aber kein Prüfungsstoff)
- das Interchange-Lemma.



▶ Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft für reguläre Sprachen.

- ▶ Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft für reguläre Sprachen.
- ▶ Pumping-Lemma für kontextfreie Sprachen: Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen.

- Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft für reguläre Sprachen.
- ▶ Pumping-Lemma für kontextfreie Sprachen: Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen.
- Pumping-Eigenschaft für reguläre Sprachen, informell: Man kann Wörter an einer Stelle aufpumpen und in der Sprache verbleiben ($uv^iw \in L$ für alle $i \in \mathbb{N}$).

- Pumping-Lemma für reguläre Sprachen:
 Jede reguläre Sprache erfüllt die Pumping-Eigenschaft für reguläre Sprachen.
- ▶ Pumping-Lemma für kontextfreie Sprachen: Jede kontextfreie Sprache erfüllt die Pumping-Eigenschaft für kontextfreie Sprachen.
- Pumping-Eigenschaft für reguläre Sprachen, informell: Man kann Wörter an einer Stelle aufpumpen und in der Sprache verbleiben ($uv^iw \in L$ für alle $i \in \mathbb{N}$).
- Pumping-Eigenschaft für kontextfreie Sprachen, informell: Man kann Wörter an zwei Stellen gleichzeitig aufpumpen und in der Sprache verbleiben $(uv^iwx^iy \in L$ für alle $i \in \mathbb{N}$).

Die Pumping-Eigenschaft für kontextfreie Sprachen

Definition

Eine Sprache L hat die Pumping-Eigenschaft (für kontextfreie Sprachen), wenn gilt: Es gibt eine Zahl $n \in \mathbb{N}_{>0}$, sodass jedes Wort $z \in L$, welches Mindestlänge n hat (d.h. |z| > n), als z = uvwxv geschrieben werden kann, sodass gilt:

- 1. $|\mathbf{v}\mathbf{x}| \ge 1$ 2. $|\mathbf{v}\mathbf{w}\mathbf{x}| \le n$ 3. für alle $i \in \mathbb{N}$: $u\mathbf{v}^i\mathbf{w}\mathbf{x}^i\mathbf{v} \in L$.

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$.

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$. Wir wählen $n = 2^{|V|}$.

Lemma (Pumping-Lemma)

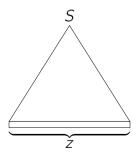
Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$.

Wir wählen $n = 2^{|V|}$.

Sei $z \in L$ ein beliebiges Wort mit |z| > n.

Betrachte den Syntaxbaum von z.



Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

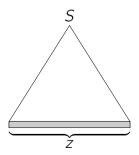
Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$.

Wir wählen $n = 2^{|V|}$.

Sei $z \in L$ ein beliebiges Wort mit $|z| \ge n$.

Betrachte den Syntaxbaum von z.

Da G in Chomsky-Normalform ist, ist der Syntaxbaum binär, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.



Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$.

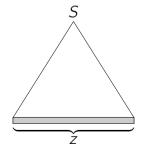
Wir wählen $n = 2^{|V|}$.

Sei $z \in L$ ein beliebiges Wort mit $|z| \ge n$.

Betrachte den Syntaxbaum von z.

Da G in Chomsky-Normalform ist, ist der Syntaxbaum binär, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.

Der Baum ohne letzte Schicht hat $|z| \ge n = 2^{|V|}$ Blätter.



Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis Sei $G = (V, \Sigma, P, S)$ eine CFG in Chomsky-Normalform mit $L(G) = L \setminus \{\varepsilon\}$.

Wir wählen $n = 2^{|V|}$.

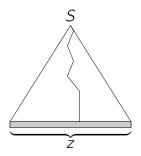
Sei $z \in L$ ein beliebiges Wort mit $|z| \ge n$.

Betrachte den Syntaxbaum von z.

Da G in Chomsky-Normalform ist, ist der Syntaxbaum binär, bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.

Der Baum ohne letzte Schicht hat $|z| \ge n = 2^{|V|}$ Blätter.

Daher hat der längste Pfad von der Wurzel zu einem Blatt eine Länge $\geq |V|$ (siehe Lemma). Dieser besteht aus $\geq |V|+1$ Knoten und jeder Knoten ist mit einer Variablen markiert.



Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Beweis Durch Induktion über k.

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Beweis Durch Induktion über k.

► Fall k = 0: Ein Baum mit $2^k = 2^0 = 1$ Blatt besteht genau aus diesem Blatt und hat einen Pfad der Länge $0 \ge 0$.

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Beweis Durch Induktion über k.

▶ Fall k = 0: Ein Baum mit $2^k = 2^0 = 1$ Blatt besteht genau aus diesem Blatt und hat einen Pfad der Länge 0 > 0.

▶ Fall k > 0: Einer der beiden Teilbäume unter der Wurzel hat. $> 2^{k-1}$ Blätter.

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Beweis Durch Induktion über k.

▶ Fall k = 0: Ein Baum mit $2^k = 2^0 = 1$ Blatt besteht genau aus diesem Blatt und hat einen Pfad der Länge 0 > 0.

▶ Fall k > 0: Einer der beiden Teilbäume unter der Wurzel hat. $> 2^{k-1}$ Blätter. Per Induktionshypothese hat dieser einen Pfad der Länge > k - 1.

Lemma

Sei B ein Binärbaum mit $\geq 2^k$ Blättern. Dann hat B einen Pfad der Länge $\geq k$.

Beweis Durch Induktion über k.

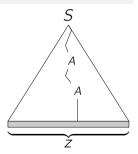
▶ Fall k = 0: Ein Baum mit $2^k = 2^0 = 1$ Blatt besteht genau aus diesem Blatt und hat einen Pfad der Länge 0 > 0.

▶ Fall k > 0: Einer der beiden Teilbäume unter der Wurzel hat. $> 2^{k-1}$ Blätter. Per Induktionshypothese hat dieser einen Pfad der Länge > k-1. Daher hat der gesamte Baum einen Pfad der Länge > k.

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis (Fortsetzung) Wir erinnern uns, dass der längste Pfad von der Wurzel aus $\geq |V| + 1$ Knoten besteht und dass jeder Knoten mit einer Variablen markiert ist.

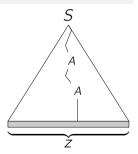


Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis (Fortsetzung) Wir erinnern uns, dass der längste Pfad von der Wurzel aus $\geq |V| + 1$ Knoten besteht und dass jeder Knoten mit einer Variablen markiert ist.

Da es nur |V| Variablen gibt, kommt mindestens eine Variable mehrfach auf diesem Pfad vor.



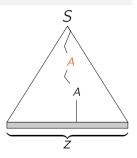
Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

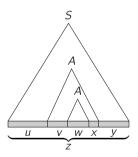
Beweis (Fortsetzung) Wir erinnern uns, dass der längste Pfad von der Wurzel aus $\geq |V| + 1$ Knoten besteht und dass jeder Knoten mit einer Variablen markiert ist.

Da es nur |V| Variablen gibt, kommt mindestens eine Variable mehrfach auf diesem Pfad vor.

Wähle die Vorkommen der Variablen so, dass das obere Vorkommen am tiefsten ist. Sei A die Variable.

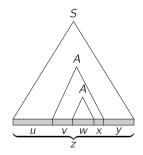


Beweis (Fortsetzung) Betrachte die Teilbäume, die jeweils *A* als Wurzel haben.



Beweis (Fortsetzung) Betrachte die Teilbäume, die jeweils *A* als Wurzel haben.

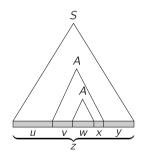
Sie entsprechen Ableitungen von Teilwörtern von z.



Beweis (Fortsetzung) Betrachte die Teilbäume, die jeweils *A* als Wurzel haben.

Sie entsprechen Ableitungen von Teilwörtern von z.

Der Teilbaum mit dem unteren A als Wurzel erzeugt ein Teilwort des Teilbaums mit dem oberen A als Wurzel.

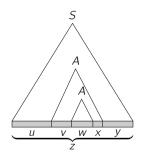


Beweis (Fortsetzung) Betrachte die Teilbäume, die jeweils *A* als Wurzel haben.

Sie entsprechen Ableitungen von Teilwörtern von z.

Der Teilbaum mit dem unteren A als Wurzel erzeugt ein Teilwort des Teilbaums mit dem oberen A als Wurzel.

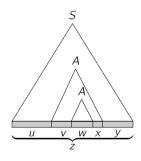
Wir wählen die Zerlegung z = uvwxy, wobei vwx vom oberen A und w vom unteren A erzeugt wird.



Beweis (Fortsetzung) Wir zeigen nun die drei geforderten Eigenschaften der Zerlegung.

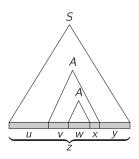
▶ $|vx| \ge 1$: Es gilt $|w| \ge 1$, da Variablen einer Grammatik in Chomsky-Normalform nur Wörter mit Länge ≥ 1 ableiten.

vwx muss echt länger sein als w, da das obere A über dem unteren A steht. Daher folgt $|v| \ge 1$ oder $|x| \ge 1$, d.h. $|vx| \ge 1$.



Beweis (Fortsetzung)

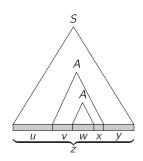
|vwx| < n: Da wir das tiefste Vorkommen der wiederholten Variable gewählt haben, kann der Pfad vom oberen A bis zur Blattebene nur aus < |V| + 1 Knoten bestehen und die Länge < |V| haben.



Beweis (Fortsetzung)

|vwx| < n: Da wir das tiefste Vorkommen der wiederholten Variable gewählt haben, kann der Pfad vom oberen A bis zur Blattebene nur aus < |V| + 1 Knoten bestehen und die Länge < |V| haben.

Da der Pfad von der Wurzel maximaler Länge ist. müssen andere Pfade vom oberen A his zur Blattebene kürzer oder gleich lang sein.

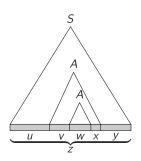


Beweis (Fortsetzung)

|vwx| < n: Da wir das tiefste Vorkommen der wiederholten Variable gewählt haben, kann der Pfad vom oberen A bis zur Blattebene nur aus < |V| + 1 Knoten bestehen und die Länge < |V| haben.

Da der Pfad von der Wurzel maximaler Länge ist. müssen andere Pfade vom oberen A bis zur Blattebene kürzer oder gleich lang sein.

Daraus folgt: $|vwx| < 2^{|V|} = n$ (siehe Lemma).



Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben.

Dann hat $B \leq 2^k$ Blätter.

Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben. Dann hat $B \leq 2^k$ Blätter.

Beweis Durch Induktion über k.

Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben. Dann hat $B \leq 2^k$ Blätter.

Beweis Durch Induktion über k.

► Fall k = 0: B besteht nur aus $2^0 = 1$ Blatt.

Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben. Dann hat $B < 2^k$ Blätter.

Beweis Durch Induktion über k.

- ► Fall k = 0: B besteht nur aus $2^0 = 1$ Blatt.
- ▶ Fall k > 0: B hat zwei Teilbäume unter der Wurzel, von denen alle Pfade eine Länge $\leq k 1$ haben.

Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben. Dann hat $B \leq 2^k$ Blätter.

Beweis Durch Induktion über k.

- ► Fall k = 0: B besteht nur aus $2^0 = 1$ Blatt.
- ▶ Fall k > 0: B hat zwei Teilbäume unter der Wurzel, von denen alle Pfade eine Länge $\leq k 1$ haben.

Durch die Induktionshypothese haben die beiden Teilbäume jeweils $\leq 2^{k-1}$ Blätter.

Lemma über Binärbäume

Lemma

Sei B ein Binärbaum von dem alle Pfade eine Länge $\leq k$ haben. Dann hat $B < 2^k$ Blätter.

Beweis Durch Induktion über k.

- ► Fall k = 0: B besteht nur aus $2^0 = 1$ Blatt.
- ▶ Fall k > 0: B hat zwei Teilbäume unter der Wurzel, von denen alle Pfade eine Länge $\leq k 1$ haben.

Durch die Induktionshypothese haben die beiden Teilbäume jeweils $\leq 2^{k-1}$ Blätter.

B als Ganzes hat dann $\leq 2^{k-1} + 2^{k-1} = 2^k$ Blätter.

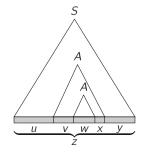
Das Pumping-Lemmas für kontextfreie Sprachen

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis (Fortsetzung)

▶ für alle $i \in \mathbb{N}$: $uv^iwx^iy \in L$: Aus dem Baum folgt: $A \Rightarrow^* w$ und $A \Rightarrow^* vAx$ und daher kann man auch $A \Rightarrow^* v^iwx^i$ für alle $i \in \mathbb{N}$ ableiten.



Das Pumping-Lemmas für kontextfreie Sprachen

Lemma (Pumping-Lemma)

Jede kontextfreie Sprache hat die Pumping-Eigenschaft.

Beweis (Fortsetzung)

▶ für alle $i \in \mathbb{N}$: $uv^iwx^iy \in L$: Aus dem Baum folgt: $A \Rightarrow^* w$ und $A \Rightarrow^* vAx$ und daher kann man auch $A \Rightarrow^* v^iwx^i$ für alle $i \in \mathbb{N}$ ableiten.

Schließlich folgt daraus $S \Rightarrow^* uv^i wx^i y$ für alle $i \in \mathbb{N}$.

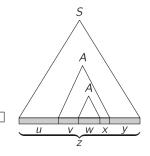
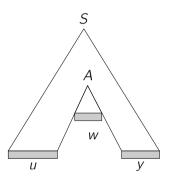
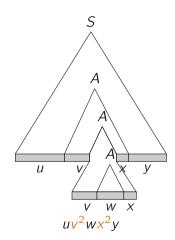


Illustration des Aufpumpens



$$uv^0wx^0y$$



Sei L eine Sprache, die wir als nicht kontextfrei beweisen wollen.

Sei L eine Sprache, die wir als nicht kontextfrei beweisen wollen.

Pumping-Lemma:

L ist kontextfrei $\Longrightarrow L$ hat die Pumping-Eigenschaft

Sei *L* eine Sprache, die wir als nicht kontextfrei beweisen wollen.

Pumping-Lemma:

L ist kontextfrei $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft $\Longrightarrow L$ ist nicht kontextfrei

Sei L eine Sprache, die wir als nicht kontextfrei beweisen wollen.

Pumping-Lemma:

L ist kontextfrei $\Longrightarrow L$ hat die Pumping-Eigenschaft

Kontraposition:

L hat nicht die Pumping-Eigenschaft \implies L ist nicht kontextfrei

Beweisstrategie für die Aussage "L ist nicht kontextfrei":

- 1. Durch die Kontraposition reicht es zu zeigen, dass *L* die Pumping-Eigenschaft nicht hat.
- 2. Zeige dies durch Widerspruch: Nehme an, dass L die Pumping-Eigenschaft hat.
- 3. Leite einen Widerspruch her.
- 4. D.h. L ist nicht kontextfrei.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n$ mit $|z| \ge n$.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n$ mit $|z| \ge n$.

Sei z = uvwxy eine beliebige Zerlegung von z, sodass $|vx| \ge 1$, $|vwx| \le n$ und $uv^iwx^iy \in L$ für jedes $i \in \mathbb{N}$. Wir wählen i = 0.

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n$ mit $|z| \ge n$.

Sei z = uvwxy eine beliebige Zerlegung von z, sodass $|vx| \ge 1$, $|vwx| \le n$ und $uv^iwx^iy \in L$ für jedes $i \in \mathbb{N}$. Wir wählen i = 0.

- ► Fall 1: vwx ist von der Form a^ib^j , $i+j \le n$. Da $|vx| \ge 1$, gilt $\#_a(vx) \ge 1$ oder $\#_b(vx) \ge 1$, aber $\#_c(vx) = 0$. Damit folgt $uv^0wx^0y \not\in L$. Widerspruch.
- Fall 2: vwx ist von der Form $b^i c^j$, $i + j \le n$. Da $|vx| \ge 1$, gilt $\#_b(vx) \ge 1$ oder $\#_c(vx) \ge 1$, aber $\#_a(vx) = 0$. Damit folgt $uv^0wx^0y \not\in L$. Widerspruch.

Andere Fälle sind nicht möglich.

Das Pumping-Lemma als Spiel

Sei L die Sprache.

Schritte:

- 1. Der Gegner wählt die Zahl $n \in \mathbb{N}_{>0}$.
- 2. Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvwxy mit $|vx| \ge 1$ und $|vwx| \le n$.
- 4. Wir gewinnen das Spiel, wenn wir ein $i \in \mathbb{N}$ angeben können, sodass $uv^iwx^iy \notin L$.

Das Pumping-Lemma als Spiel

Sei L die Sprache.

Schritte:

- 1. Der Gegner wählt die Zahl $n \in \mathbb{N}_{>0}$.
- 2. Wir wählen das Wort $z \in L$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvwxy mit $|vx| \ge 1$ und $|vwx| \le n$.
- 4. Wir gewinnen das Spiel, wenn wir ein $i \in \mathbb{N}$ angeben können, sodass $uv^iwx^iy \notin L$.

Wenn wir das Spiel für alle Wahlmöglichkeiten des Gegners gewinnen, dann haben wir nachgewiesen, dass *L* nicht kontextfrei ist.

Das Pumping-Lemma als Spiel

Satz

Die Sprache $L = \{a^j b^j c^j \mid j \in \mathbb{N}\}$ ist nicht kontextfrei.

Beweis Wir zeigen, dass wir das eben eingeführte Spiel stets gewinnen:

- 1. Sei $n \in \mathbb{N}_{>0}$ vom Gegner gewählt.
- 2. Wir wählen $z \in L$ als $z = a^n b^n c^n$ mit $|z| \ge n$.
- 3. Der Gegner wählt die Zerlegung z = uvwxy, sodass $|vx| \ge 1$ und $|vwx| \le n$.
- 4. Wir wählen i = 0.
 - ► Fall 1: vwx ist von der Form a^ib^j , $i+j \le n$. Da $|vx| \ge 1$, gilt $\#_a(vx) \ge 1$ oder $\#_b(vx) \ge 1$, aber $\#_c(vx) = 0$. Damit folgt $uv^0wx^0y \notin L$.
 - Fall 2: vwx ist von der Form $b^i c^j$, $i+j \le n$. Da $|vx| \ge 1$, gilt $\#_b(vx) \ge 1$ oder $\#_c(vx) \ge 1$, aber $\#_a(vx) = 0$. Damit folgt $uv^0 wx^0 y \notin L$.

Andere Fälle sind nicht möglich. Also gewinnen wir.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n d^n$ mit $|z| \ge n$.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n d^n$ mit $|z| \ge n$.

Sei z = uvwxy eine beliebige Zerlegung von z, sodass $|vx| \ge 1$, $|vwx| \le n$ und $uv^iwx^iy \in L$ für jedes $i \in \mathbb{N}$. Wir wählen i = 0.

Satz

Die Sprache $L = \{a^i b^j c^i d^j \mid i, j \in \mathbb{N}_{>0}\}$ ist nicht kontextfrei.

Beweis Mit dem Pumping-Lemma.

Sei $n \in \mathbb{N}_{>0}$ beliebig.

Wir wählen $z \in L$ als $z = a^n b^n c^n d^n$ mit $|z| \ge n$.

Sei z = uvwxy eine beliebige Zerlegung von z, sodass $|vx| \ge 1$, $|vwx| \le n$ und $uv^iwx^iy \in L$ für jedes $i \in \mathbb{N}$. Wir wählen i = 0.

Fall 1: $vwx = a^i b^j$ mit $i + j \le n$. Da $|vx| \ge 1$, gilt $\#_a(vx) + \#_b(vx) \ge 1$ und $uv^0 wx^0 y = uwy = a^{i'} b^{j'} c^n d^n$ und i' < n oder j' < n, d.h. $uv^0 wx^0 y \not\in L$. Widerspruch.

Beweis (Fortsetzung)

- Fall 2: $vwx = b^i c^j$ mit $i + j \le n$. Da $|vx| \ge 1$, gilt $\#_b(vx) + \#_c(vx) \ge 1$ und $uv^0wx^0y = uwy = a^nb^{i'}c^{j'}d^n$ und i' < n oder j' < n, d.h. $uv^0wx^0y \not\in L$. Widerspruch.
- Fall 3: $vwx = c^i d^j$ mit $i + j \le n$. Da $|vx| \ge 1$, gilt $\#_c(vx) + \#_d(vx) \ge 1$ und $uv^0 wx^0 y = uwy = a^n b^n c^{i'} d^{j'}$ und i' < n oder j' < n, d.h. $uv^0 wx^0 y \not\in L$. Widerspruch.

19/23

Andere Fälle sind nicht möglich.

Unäres Alphabet

Satz

Sei L eine Sprache über einem unären Alphabet (d.h. $|\Sigma| = 1$). Dann ist L genau dann regulär, wenn L kontextfrei ist.

Beweis:

- ▶ Wenn *L* regulär ist, dann ist *L* auch kontextfrei.
- ▶ Die Rückrichtung ist im Skript, aber kein Prüfungsstoff.
 (Der Beweis verwendet die Pumping-Eigenschaft für kontextfreie Sprachen.)

Beispiele für unäre Alphabete

Satz

Die Sprachen

$$L_1 = \{a^p \mid p \text{ ist eine Primzahl}\}$$

 $L_2 = \{a^n \mid n \text{ ist keine Primzahl}\}$
 $L_3 = \{a^n \mid n \text{ ist eine Quadratzahl}\}$
 $L_4 = \{a^{2^n} \mid n \in \mathbb{N}\}$

sind allesamt nicht kontextfrei.

Beispiele für unäre Alphabete

Satz

Die Sprachen

$$L_1 = \{a^p \mid p \text{ ist eine Primzahl}\}$$

 $L_2 = \{a^n \mid n \text{ ist keine Primzahl}\}$
 $L_3 = \{a^n \mid n \text{ ist eine Quadratzahl}\}$
 $L_4 = \{a^{2^n} \mid n \in \mathbb{N}\}$

sind allesamt nicht kontextfrei.

Beweis Wir haben für alle vier Sprachen gezeigt, dass sie nicht regulär sind. Da sie alle über einem unären Alphabet definiert sind, sind sie auch nicht kontextfrei.

Pumping-Eigenschaft ist nicht hinreichend



Pumping-Eigenschaft ist nicht hinreichend



Wichtige Konsequenz:

Das Pumping-Lemma kann nicht verwendet werden, um zu zeigen, dass eine Sprache kontextfrei ist.

Zusammenfassung vom Pumping-Lemma

Bezug zu Kontextfreiheit:

- ▶ Das Pumping-Lemma gibt eine notwendige Bedingung für kontextfreie Sprachen. Sehr informell: Wörter einer kontextfreien Sprache können an zwei Stellen aufgepumpt werden, wenn sie lang genug sind.
- Das Pumping-Lemma gibt keine hinreichende Bedingung für kontextfreie Sprachen, d.h. Kontextfreiheit kann nicht mit dem Pumping-Lemma gezeigt werden.

Anwendung:

- ightharpoonup L hat nicht die Pumping-Eigenschaft $\Longrightarrow L$ ist nicht kontextfrei
- Dies funktioniert nicht für jede nicht kontextfreie Sprache.