Formale Sprachen und Komplexität Sommersemester 2025

5b Die Chomsky-Normalform

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel

Kontextfreie Sprachen

Zusammenfassung:

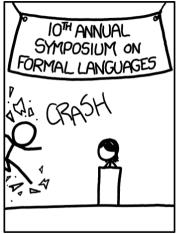
- ► Kontextfreie Sprachen (context-free languages, CFLs) werden von kontextfreien Grammatiken (context-free grammars, CFGs) erzeugt.
- ▶ Das sind die Typ 2-Sprachen bzw. die Typ 2-Grammatiken.
- ▶ Bedingung: Alle linken Seiten der Produktionen bestehen aus genau einer Variablen, d.h. die Produktionen sind von der Form $A \rightarrow r$.

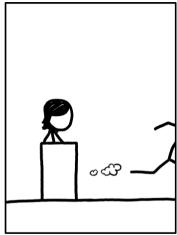
Kontextfreie Sprachen

Zusammenfassung:

- ► Kontextfreie Sprachen (context-free languages, CFLs) werden von kontextfreien Grammatiken (context-free grammars, CFGs) erzeugt.
- ▶ Das sind die Typ 2-Sprachen bzw. die Typ 2-Grammatiken.
- ▶ Bedingung: Alle linken Seiten der Produktionen bestehen aus genau einer Variablen, d.h. die Produktionen sind von der Form $A \rightarrow r$.

Kontextfreie Sprachen sind insbesondere nützlich um Sprachen mit Klammerungen zu beschreiben, z.B. Programmiersprachen.





xkcd.com/1090/

Beispiele für kontextfreie Sprachen

Die CFG
$$G_1 = (\{S, T\}, \{a, b\}, P_1, S)$$
 mit

$$P_1 := \{ S \to \varepsilon \mid T, \\ T \to aTb \mid ab \}$$

erzeugt die Sprache $\{a^j b^j \mid j \in \mathbb{N}\}$, die daher kontextfrei ist.

Beispiele für kontextfreie Sprachen

Die CFG
$$G_1 = (\{S, T\}, \{a, b\}, P_1, S)$$
 mit

$$P_1 := \{ S \to \varepsilon \mid T, \\ T \to aTb \mid ab \}$$

erzeugt die Sprache $\{a^j b^j \mid j \in \mathbb{N}\}$, die daher kontextfrei ist.

Die CFG
$$G_2 = (\{E, M, A, Z, R\}, \{+, *, (,)\} \cup \{0, ..., 9\}, P_2, E)$$
 mit

$$P_{2} := \{E \rightarrow M \mid E + M, \\ M \rightarrow A \mid M * A, \\ A \rightarrow Z \mid (E), \\ Z \rightarrow 1R \mid \dots \mid 9R, \\ R \rightarrow 0R \mid \dots \mid 9R \mid \epsilon\}$$

erzeugt einfache arithmetische Ausdrücke nach der "Punkt vor Strich"-Regel.

Normalformen von Grammatiken

- Normalformen fordern eine spezielle Form der Produktionen.
- ➤ Sie sind nützlich, wenn man Grammatiken analysiert oder Algorithmen auf Grammatiken formuliert: Man muss dann nur diese Form (statt aller erlaubten) von Produktionen betrachten.
- Wir betrachten zwei Normalformen: die Chomsky-Normalform und die Greibach-Normalform.

Die Chomsky-Normalform

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Chomsky-Normalform, wenn für jede Produktion $A \to w \in P$ gilt: $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Die Chomsky-Normalform

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Chomsky-Normalform, wenn für jede Produktion $A \to w \in P$ gilt: $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Beispiele:

▶ Die CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$ ist nicht in Chomsky-Normalform. Nur die Produktion $A \rightarrow AA$ passt zum vorgeschriebenen Format.

Definition

Eine CFG $G = (V, \Sigma, P, S)$ ist in Chomsky-Normalform, wenn für jede Produktion $A \to w \in P$ gilt: $w = a \in \Sigma$ oder w = BC mit $B, C \in V$.

Beispiele:

- ▶ Die CFG $G = (\{A\}, \{(,), [,]\}, \{A \to (A) \mid () \mid [A] \mid [] \mid AA\}, A)$ ist nicht in Chomsky-Normalform. Nur die Produktion $A \rightarrow AA$ passt zum vorgeschriebenen Format.
- ▶ Die CFG $G' = (\{A, B, C, D, E, F, G\}, \{(,), [,]\}, P, A)$ mit

$$P := \{A \to BF \mid BC \mid DG \mid DE \mid AA, \\ B \to (, C \to), D \to [, E \to], F \to AC, G \to AE\}$$

ist in Chomsky-Normalform, und erzeugt dieselbe Sprache wie G.

Für CFG G in Chomsky-Normalform gilt, dass Ableitungen eines Worts $w \in L(G)$ immer genau aus $2 \cdot |w| - 1$ Ableitungsschritten bestehen.

Zudem sind die dazugehörigen Syntaxbäume immer Binärbäume (Bäume, wobei jeder Knoten 0 oder 2 Kinder hat), bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.

Für CFG G in Chomsky-Normalform gilt, dass Ableitungen eines Worts $w \in L(G)$ immer genau aus $2 \cdot |w| - 1$ Ableitungsschritten bestehen.

Zudem sind die dazugehörigen Syntaxbäume immer Binärbäume (Bäume, wobei jeder Knoten 0 oder 2 Kinder hat), bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.

Sei die CFG
$$G' = (\{A, B, C, D, E, F, G\}, \{(,), [,]\}, P, A)$$
 mit

$$P := \{A \to BF \mid BC \mid DG \mid DE \mid AA, \\ B \to (, C \to), D \to [, E \to], F \to AC, G \to AE\}$$

Für CFG G in Chomsky-Normalform gilt, dass Ableitungen eines Worts $w \in L(G)$ immer genau aus $2 \cdot |w| - 1$ Ableitungsschritten bestehen.

Zudem sind die dazugehörigen Syntaxbäume immer Binärbäume (Bäume, wobei jeder Knoten 0 oder 2 Kinder hat), bis auf die letzte Schicht, die Produktionen $A \rightarrow a$ anwendet.

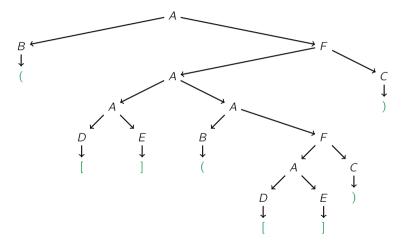
Sei die CFG
$$G' = (\{A, B, C, D, E, F, G\}, \{(,), [,]\}, P, A)$$
 mit

$$P := \{A \to BF \mid BC \mid DG \mid DE \mid AA, \\ B \to (, C \to), D \to [, E \to], F \to AC, G \to AE\}$$

Ableitung von ([]([])):

```
A \Rightarrow BF \Rightarrow (F \Rightarrow (AC \Rightarrow (AAC \Rightarrow (DEAC \Rightarrow ([EAC \Rightarrow (EAC \Rightarrow (AC \Rightarrow (DEAC \Rightarrow (EAC \Rightarrow (AC \Rightarrow (DEAC \Rightarrow (EAC \Rightarrow (AC \Rightarrow (A
                                                                                      \Rightarrow ([]AC \Rightarrow ([]BFC \Rightarrow ([](FC \Rightarrow ([](ACC \Rightarrow ([](DECC
                                                                                            \Rightarrow (||(|ECC)\Rightarrow (||(||CC)\Rightarrow (||(||))C\Rightarrow (||(||)))
```

Der Syntaxbaum zur vorherigen Ableitung:



Herstellen der Chomsky-Normalform

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Herstellen der Chomsky-Normalform

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Grundgedanke der Prozedur:

- 1. Entferne ε -Produktionen (wie in früherer Vorlesung).
- 2. Entferne Produktionen von der Form $A \rightarrow B$ ("Entfernen von Einheitsproduktionen").
- 3. Ersetze alle Terminale a in rechten Seiten, die nicht nur aus a bestehen, durch neue Variablen A und füge Produktionen $A \rightarrow a$ hinzu.
- 4. Zerlege alle Produktionen von der Form $A \to B_1 \cdots B_m$ mit m > 2 in mehrere: $A \to B_1C_1, C_1 \to B_2C_3, \dots, C_{m-2} \to B_{m-1}B_m$

0. Eingabe: CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$.

- 0. Eingabe: CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$.
- 1. Es gibt keine ε -Produktionen zu entfernen.

- 0. Eingabe: CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$.
- 1. Es gibt keine ε -Produktionen zu entfernen.
- 2. Es gibt keine Einheitsproduktionen zu entfernen.

- 0. Eingabe: CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$.
- 1. Es gibt keine ε -Produktionen zu entfernen.
- 2. Es gibt keine Einheitsproduktionen zu entfernen.
- 3. Das Ersetzen von Terminalen führt zu $G_3 = (\{A, B, C, D, E\}, \{(,), [,]\}, P_3, A)$ mit

$$P_3 := \{ A \to BAC \mid BC \mid DAE \mid DE \mid AA \}$$
$$B \to (, C \to), D \to [, E \to] \}$$

- 0. Eingabe: CFG $G = (\{A\}, \{(,), [,]\}, \{A \rightarrow (A) \mid () \mid [A] \mid [] \mid AA\}, A)$.
- 1. Es gibt keine ε -Produktionen zu entfernen.
- 2. Es gibt keine Einheitsproduktionen zu entfernen.
- 3. Das Ersetzen von Terminalen führt zu $G_3 = (\{A, B, C, D, E\}, \{(.), [.]\}, P_3, A)$ mit

$$P_3 := \{A \to BAC \mid BC \mid DAE \mid DE \mid AA\}$$
$$B \to (, C \to), D \to [, E \to]\}$$

4. Die Zerlegung von langen rechten Seiten führt zu $G' = (\{A, B, C, D, E, F, G\}, \{(,), [,]\}, P', A)$ mit

$$P' := \{A \to BF \mid BC \mid DG \mid DE \mid AA, \\ B \to (, C \to), D \to [, E \to], F \to AC, G \to AE\}$$

Entfernen von Einheitsproduktionen

Intuitiv ist klar, dass $A \to B$ entfernt werden kann: Wenn erst $A \to B$, dann $B \to w$ angewendet wird, kann man auch gleich $A \to w$ anwenden.

Entfernen von Einheitsproduktionen

Intuitiv ist klar, dass $A \to B$ entfernt werden kann: Wenn erst $A \to B$, dann $B \to w$ angewendet wird, kann man auch gleich $A \to w$ anwenden.

Algorithmisch zu beachten:

- Eliminiere in der richtigen Reihenfolge: Wenn $A \to B$ und $B \to C$, dann ist Ersetzen von $A \to B$ durch $A \to C$ nicht zielführend.
- ightharpoonup Zyklen $A_1 o A_2$, $A_2 o A_3$, ..., $A_n o A_1$ müssen vorher entfernt werden.

Gib die so entstandene Grammatik als G' aus:

```
Eingabe: Eine CFG G = (V, \Sigma, P, S)
Beginn
    Erzeuge gerichteten Graph D = (V, E), mit (A, B) \in E für jede Einheitsproduktion A \to B \in P;
    solange es einen Zyklus (A_1, A_2), \ldots, (A_{n-1}, A_n), (A_n, A_1) \in E gibt tue
                                                                       /* entferne zyklische Reaeln */
       P := P \setminus \{A_1 \rightarrow A_2, \dots, A_{n-1} \rightarrow A_n, A_n \rightarrow A_1\}:
       P := P[A_1/A_2, \dots, A_1/A_n]; /* ersetze alle Vorkommen von A_i durch A_1 für i = 2, \dots, n */
      V := V \setminus \{A_2, A_3, \dots, A_n\}:
                                                                                                   /* lösche A2.... An */
      S := S[A_1/A_2...A_1/A_n]; /* ersetze Startsymbol durch A_1, falls es A_i, 2 \le i \le n war */
      E := E \setminus \{(A_1, A_2), \dots, (A_{n-1}, A_n), (A_n, A_1)\};
                                                                  /* entferne Zvklus aus Graph */
    E := E[A_1/A_2, \dots, A_1/A_n]; /* ersetze A_i durch A_1 für i = 2, \dots, n in anderen Kanten */
    Sortiere D topologisch und nummeriere die Variablen in V durch (und benenne entsprechend in E, P, S um),
     sodass gilt: A_i \rightarrow A_i impliziert i < j;
    Sei V = \{A_1, ..., A_{\nu}\}:
    für i = k bis 1 tue
       wenn A_i \rightarrow A_i \in P dann
           Seien A_i \rightarrow w_1, \dots, A_i \rightarrow w_m alle Produktionen mit A_i als linker Seite;
          P := P \cup \{A_i \rightarrow w_1, \dots, A_i \rightarrow w_m\}; /* füge A_i \rightarrow w_k hinzu für A_i \rightarrow A_i und A_i \rightarrow w_k */
        P := P \setminus \{A_i \to A_j\};
                                                                                                    /* entferne A_i \rightarrow A_i */
```

Satz

Algorithmus 5 berechnet bei Eingabe einer CFG G mit $\varepsilon \notin L(G)$ eine CFG G', die keine Einheitsproduktionen hat, sodass gilt L(G') = L(G).

Wenn G keine ε -Produktionen hat, dann hat auch G' keine ε -Produktionen.

Satz

Algorithmus 5 berechnet bei Eingabe einer CFG G mit $\varepsilon \notin L(G)$ eine CFG G', die keine Einheitsproduktionen hat, sodass gilt L(G') = L(G).

Wenn G keine ε -Produktionen hat, dann hat auch G' keine ε -Produktionen.

Beweis Das Entfernen eines Zyklus ändert die erzeugte Sprache nicht.

Satz

Algorithmus 5 berechnet bei Eingabe einer CFG G mit $\varepsilon \notin L(G)$ eine CFG G', die keine Einheitsproduktionen hat, sodass gilt L(G') = L(G).

Wenn G keine ε -Produktionen hat, dann hat auch G' keine ε -Produktionen.

Beweis Das Entfernen eines Zyklus ändert die erzeugte Sprache nicht.

Das Entfernen einer Einheitsproduktion $A_i \rightarrow A_i$ in der rückwärts-laufenden für-Schleife ändert die erzeugte Sprache nicht. Dies ist eine Instanz der Operation "Inlining von Produktionen", die wir gleich korrekt beweisen werden.

Beweis (Fortsetzung) Es werden keine Einheitsproduktionen eingeführt, da die Produktionen topologisch sortiert behandelt werden. Wenn $A_i \to A_j$ entfernt wird, wurden vorher alle Einheitsproduktionen $A_j \to A_k$ entfernt. D.h. zu diesem Zeitpunkt gilt: für alle Produktionen $A_j \to w$ besteht w nicht nur aus einer Variablen.

Beweis (Fortsetzung) Es werden keine Einheitsproduktionen eingeführt, da die Produktionen topologisch sortiert behandelt werden. Wenn $A_i \to A_j$ entfernt wird, wurden vorher alle Einheitsproduktionen $A_j \to A_k$ entfernt. D.h. zu diesem Zeitpunkt gilt: für alle Produktionen $A_j \to w$ besteht w nicht nur aus einer Variablen.

Es werden offensichtlich nie ε -Produktionen eingeführt.

Beweis (Fortsetzung) Es werden keine Einheitsproduktionen eingeführt, da die Produktionen topologisch sortiert behandelt werden. Wenn $A_i \to A_j$ entfernt wird, wurden vorher alle Einheitsproduktionen $A_j \to A_k$ entfernt. D.h. zu diesem Zeitpunkt gilt: für alle Produktionen $A_j \to w$ besteht w nicht nur aus einer Variablen.

Es werden offensichtlich nie ε -Produktionen eingeführt.

Der Algorithmus terminiert:

▶ Die solange-Schleife terminiert, da jede Iteration die Anzahl der Zyklen strikt verkleinert.

Die für-Schleife terminiert offensichtlich.

Lemma (Inlining von Produktionen)

Sei $G = (V, \Sigma, P, S)$ eine CFG mit

- $A \rightarrow \mu B \nu \in P$
- \triangleright $B \rightarrow w_1 \mid \dots \mid w_n$ alle Regeln mit B als linker Seite

und sei $G' = (V, \Sigma, (P \setminus \{A \rightarrow uBv\}) \cup \{A \rightarrow uw_1v \mid \ldots \mid uw_nv\}, S).$ Dann gilt L(G') = L(G).

Inlining von Produktionen

Beweis Das folgt durch Modifizieren der Syntaxbäume zur Ableitung mit G bzw. G': Tausche alle Baumabschnitte

$$u \stackrel{A}{\searrow} V$$

im Syntaxbaum mit G durch

$$u \stackrel{A}{\searrow} v_i \stackrel{A}{\searrow} v$$

im Syntaxbaum mit G'.

Algorithmus 6: Herstellen der Chomsky-Normalform

```
Eingabe: CFG G mit \varepsilon \notin L(G)
Ausgabe: CFG G' in Chomsky-Normalform mit L(G') = L(G)
Beginn
    Entferne die \varepsilon-Produktionen in G mit Algorithmus 1 und
     entferne anschließend die Einheitsproduktionen mit Algorithmus 5:
    Sei G' = (V', \Sigma, P', S') die entstandene Grammatik;
   für alle a \in \Sigma tue
        Sei B eine neue Variable:
        /* Führe neue Variable B für a ein, und ersetze Vorkommen von a durch B
        G' := (V' \cup \{B\}, \Sigma, \{A \to w[B/a] \mid A \to w \in P' \text{ und } |w| > 1\}
                                \cup \{A \to w \mid A \to w \in P' \text{ und } |w| = 1\} \cup \{B \to a\}.S\}
       Nun sind alle Regeln von der Form A \rightarrow a oder A \rightarrow B_1 \cdots B_m mit m > 2
    für alle A \to B_1 \cdots B_m \in P' mit m > 2 tue
        Seien C_1, \ldots, C_{m-2} neue Variablen:
        V' := V' \cup \{C_1, \ldots, C_{m-2}\}:
        /* Ersetze in P' die Produktion A \rightarrow B_1 \cdots B_m durch neue Regeln
                                                                                                                     * ,
       P' := (P' \setminus \{A \rightarrow B_1 \cdots B_m\})
              \bigcup \{A \to B_1C_1\} \cup \{C_i \to B_{i+1}C_{i+1} \mid \text{für } i = 1, \dots, m-3\} \cup \{C_{m-2} \to B_{m-1}B_m\}
```

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Beweis Algorithmus 6 berechnet eine solche äquivalente CFG.

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Beweis Algorithmus 6 berechnet eine solche äquivalente CFG.

Die Schritte "Entfernen von ε -Produktionen" und "Entfernen von Einheitsproduktionen" haben wir als korrekt gezeigt.

Korrektheit von Algorithmus 6

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Beweis Algorithmus 6 berechnet eine solche äquivalente CFG.

Die Schritte "Entfernen von ε -Produktionen" und "Entfernen von Einheitsproduktionen" haben wir als korrekt gezeigt.

Die Schritte "Einführen von Produktionen $B \to a$ " und "Behandlung von $A \to B_1 \cdots B_m$ " sind Varianten der korrekten Operation "Boxing von Satzformen", die wir gleich korrekt beweisen werden.

Korrektheit von Algorithmus 6

Theorem

Für jede CFG G mit $\varepsilon \notin L(G)$ kann eine CFG G' in Chomsky-Normalform berechnet werden, sodass L(G') = L(G) gilt.

Beweis Algorithmus 6 berechnet eine solche äguivalente CFG.

Die Schritte "Entfernen von ε -Produktionen" und "Entfernen von Einheitsproduktionen" haben wir als korrekt gezeigt.

Die Schritte "Einführen von Produktionen $B \to a$ " und "Behandlung von $A \to B_1 \cdots B_m$ sind Varianten der korrekten Operation "Boxing von Satzformen". die wir gleich korrekt beweisen werden.

Am Ende der Berechnung haben alle Produktionen die gewünschte Form.

Lemma (Boxing von Satzformen)

```
Sei G eine CFG mit G = (V, \Sigma, P \cup \{A \rightarrow w_1 \cdots w_n\}, S).
Seien B_1, \ldots, B_n neue Variablen (d.h. V \cap \{B_1, \ldots, B_n\} = \emptyset) und G' = (V \cup \{B_1, \ldots, B_n\}, \Sigma, P \cup \{A \rightarrow B_1 \cdots B_n, B_1 \rightarrow w_1, \ldots, B_n \rightarrow w_n\}, S).
Dann gilt L(G') = L(G).
```

Lemma (Boxing von Satzformen)

```
Sei G eine CFG mit G = (V, \Sigma, P \cup \{A \rightarrow w_1 \cdots w_n\}, S).
Seien B_1, \ldots, B_n neue Variablen (d.h. V \cap \{B_1, \ldots, B_n\} = \emptyset) und G' = (V \cup \{B_1, \ldots, B_n\}, \Sigma, P \cup \{A \rightarrow B_1 \cdots B_n, B_1 \rightarrow w_1, \ldots, B_n \rightarrow w_n\}, S).
Dann gilt L(G') = L(G).
```

Beweis

⊇ Wir zeigen: $w \in L(G)$ impliziert $w \in L(G')$. Konstruiere aus $S \Rightarrow_G^* w$ die Ableitung $S \Rightarrow_{G'}^* w$: Übersetze jeden Schritt $uAv \Rightarrow_G uw_1 \cdots w_n v$ in $uAv \Rightarrow_{G'} uB_1 \cdots B_n v \Rightarrow_{G'}^n uw_1 \cdots w_n v$.

Boxing von Satzformen

Beweis (Fortsetzung)

 \subseteq Wir zeigen: $w \in L(G')$ impliziert $w \in L(G)$. Betrachte den Syntaxbaum für $S \Rightarrow_{G'}^* w$. Identifiziere die Anwendungen der Regeln $A \to B_1 \cdots B_n$ und $B_i \to w_i$, und modifiziere den Syntaxbaum durch Anwendung der Regel $A \to w_1 \cdots w_n$. Lies Ableitung $S \Rightarrow_G^* w$ ab.

Weiteres Beispiel für die Herstellung der Chomsky-Normalform

Eingabe:
$$G_0 = (\{A, B, C, D, S\}, \{0, 1\}, P_0, S)$$
 mit $P_0 = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$

$$G_0 = (\{A, B, C, D, S\}, \{0, 1\}, P_0, S) \text{ mit } P_0 = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$$

$$G_0 = (\{A, B, C, D, S\}, \{0, 1\}, P_0, S) \text{ mit } P_0 = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$$

Finde Menge W der Variablen, die ε herleiten: $W = \{A, C\}$ da $A \to \varepsilon$ und $C \to AAA$

$$G_0 = (\{A, B, C, D, S\}, \{0, 1\}, P_0, S) \text{ mit } P_0 = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$$

- ► Finde Menge W der Variablen, die ε herleiten: $W = \{A, C\}$ da $A \to \varepsilon$ und $C \to AAA$
- Starte mit

$$G_1 = (\{A, B, C, D, S\}, \{0, 1\}, P_1, S) \text{ mit}$$

 $P_1 = \{S \to 1A, A \to AB, A \to DA, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$

$$G_0 = (\{A, B, C, D, S\}, \{0, 1\}, P_0, S) \text{ mit } P_0 = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$$

- ► Finde Menge W der Variablen, die ε herleiten: $W = \{A, C\}$ da $A \to \varepsilon$ und $C \to AAA$
- Starte mit

$$G_1 = (\{A, B, C, D, S\}, \{0, 1\}, P_1, S) \text{ mit}$$

 $P_1 = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$

► Füge Produktionen für Vorkommen von *A* und *C* hinzu:

$$P_1 = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

▶ Der gerichtete Graph ist $D' = (\{S, A, B, C, D\}, \{(A, B), (A, D), (C, A)\}).$

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

- ▶ Der gerichtete Graph ist $D' = (\{S, A, B, C, D\}, \{(A, B), (A, D), (C, A)\}).$
- ▶ Es gibt keine Zyklen, wir erhalten $G_2 = G_1$.

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

- ▶ Der gerichtete Graph ist $D' = (\{S, A, B, C, D\}, \{(A, B), (A, D), (C, A)\}).$
- ▶ Es gibt keine Zyklen, wir erhalten $G_2 = G_1$.
- Sortieren und Umbenennen der Variablen, sodass " $A_i \rightarrow A_j$ impliziert i < j" gilt, erfordert eine Umbenennung ρ , welche die Beziehungen A < B, A < D, C < A erzeugt.

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

- ▶ Der gerichtete Graph ist $D' = (\{S, A, B, C, D\}, \{(A, B), (A, D), (C, A)\}).$
- ▶ Es gibt keine Zyklen, wir erhalten $G_2 = G_1$.
- Sortieren und Umbenennen der Variablen, sodass " $A_i \rightarrow A_j$ impliziert i < j" gilt, erfordert eine Umbenennung ρ , welche die Beziehungen A < B, A < D, C < A erzeugt.
- ▶ Wir wählen ρ mit $\rho(C) = A_1$, $\rho(A) = A_2$, $\rho(B) = A_3$, $\rho(D) = A_4$, $\rho(S) = A_5$.

$$P_{1} = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1 C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$

- ▶ Der gerichtete Graph ist $D' = (\{S, A, B, C, D\}, \{(A, B), (A, D), (C, A)\}).$
- ▶ Es gibt keine Zyklen, wir erhalten $G_2 = G_1$.
- Sortieren und Umbenennen der Variablen, sodass " $A_i \rightarrow A_j$ impliziert i < j" gilt, erfordert eine Umbenennung ρ , welche die Beziehungen A < B, A < D, C < A erzeugt.
- Wir wählen ρ mit $\rho(C) = A_1$, $\rho(A) = A_2$, $\rho(B) = A_3$, $\rho(D) = A_4$, $\rho(S) = A_5$.
- ▶ Das liefert uns $G_3 = (\{A_1, A_2, A_3, A_4, A_5\}, \Sigma, P_3, A_5)$ mit $P_3 = \{A_5 \rightarrow 1A_2, A_5 \rightarrow 1, A_2 \rightarrow A_2A_3, A_2 \rightarrow A_3, A_2 \rightarrow A_4A_2, A_2 \rightarrow A_4, A_3 \rightarrow 0, A_3 \rightarrow 1, A_1 \rightarrow A_2A_2A_2, A_1 \rightarrow A_2A_2, A_4 \rightarrow 1A_2A_1, A_4 \rightarrow 1A_2, A_4 \rightarrow 1A_1, A_4 \rightarrow 1\}$

$$P_{3} = \{A_{5} \rightarrow 1A_{2}, A_{5} \rightarrow 1, A_{2} \rightarrow A_{2}A_{3}, A_{2} \rightarrow A_{3}, A_{2} \rightarrow A_{4}A_{2}, A_{2} \rightarrow A_{4}, A_{3} \rightarrow 0, A_{3} \rightarrow 1, A_{1} \rightarrow A_{2}A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{4} \rightarrow 1A_{2}A_{1}, A_{4} \rightarrow 1A_{2}, A_{4} \rightarrow 1A_{1}, A_{4} \rightarrow 1\}$$

▶ Nun läuft die für-Schleife für *i* von 5 bis 1:

- ▶ Nun läuft die für-Schleife für *i* von 5 bis 1:
 - Für i = 5, i = 4, i = 3 gibt es jeweils keine Produktion der Form $A_i \rightarrow A_j$.

$$P_{3} = \{A_{5} \rightarrow 1A_{2}, A_{5} \rightarrow 1, A_{2} \rightarrow A_{2}A_{3}, A_{2} \rightarrow A_{3}, A_{2} \rightarrow A_{4}A_{2}, A_{2} \rightarrow A_{4}, A_{3} \rightarrow 0, A_{3} \rightarrow 1, A_{1} \rightarrow A_{2}A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}A_{1}, A_{2} \rightarrow 1A_{2}A_{1}, A_{2} \rightarrow 1A_{2}A_{2}, A_{3} \rightarrow 1A_{1}, A_{4} \rightarrow 1A_{1}, A_{4} \rightarrow 1\}$$

- ▶ Nun läuft die für-Schleife für *i* von 5 bis 1:
 - Für i = 5, i = 4, i = 3 gibt es jeweils keine Produktion der Form $A_i \rightarrow A_i$.
 - Für i=2 wird $A_2 \rightarrow A_3$ ersetzt durch $A_2 \rightarrow 0$, $A_2 \rightarrow 1$, und es wird $A_2 \rightarrow A_4$ ersetzt durch $A_2 \rightarrow 1A_2A_1$, $A_2 \rightarrow 1A_2$, $A_2 \rightarrow 1A_1$ und $A_2 \rightarrow 1$. Danach ist

$$P_{4} = \{A_{5} \rightarrow 1A_{2}, A_{5} \rightarrow 1, A_{2} \rightarrow A_{2}A_{3}, A_{2} \rightarrow 0, A_{2} \rightarrow 1, A_{2} \rightarrow A_{4}A_{2}, A_{2} \rightarrow 1A_{2}A_{1}, A_{2} \rightarrow 1A_{2}, A_{2} \rightarrow 1A_{1}, A_{3} \rightarrow 0, A_{3} \rightarrow 1, A_{1} \rightarrow A_{2}A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{4} \rightarrow 1A_{2}A_{1}, A_{4} \rightarrow 1A_{2}, A_{4} \rightarrow 1A_{1}, A_{4} \rightarrow 1\}$$

$$P_{3} = \{A_{5} \rightarrow 1A_{2}, A_{5} \rightarrow 1, A_{2} \rightarrow A_{2}A_{3}, A_{2} \rightarrow A_{3}, A_{2} \rightarrow A_{4}A_{2}, A_{2} \rightarrow A_{4}, A_{3} \rightarrow 0, A_{3} \rightarrow 1, A_{1} \rightarrow A_{2}A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{1}, A_{2} \rightarrow 1A_{2}A_{1}, A_{2} \rightarrow 1A_{2}A_{2}, A_{3} \rightarrow 1A_{1}, A_{4} \rightarrow 1\}$$

- Nun läuft die für-Schleife für i von 5 bis 1:
 - ▶ Für i = 5, i = 4, i = 3 gibt es jeweils keine Produktion der Form $A_i \rightarrow A_i$.
 - Für i = 2 wird $A_2 \rightarrow A_3$ ersetzt durch $A_2 \rightarrow 0$, $A_2 \rightarrow 1$ und es wird $A_2 \rightarrow A_4$ ersetzt durch $A_2 \rightarrow 1A_2A_1$, $A_2 \rightarrow 1A_2$, $A_3 \rightarrow 1A_1$ und $A_2 \rightarrow 1$. Danach ist

$$P_{4} = \{A_{5} \rightarrow 1A_{2}, A_{5} \rightarrow 1, A_{2} \rightarrow A_{2}A_{3}, A_{2} \rightarrow 0, A_{2} \rightarrow 1, A_{2} \rightarrow A_{4}A_{2}, A_{2} \rightarrow 1A_{2}A_{1}, A_{2} \rightarrow 1A_{2}, A_{2} \rightarrow 1A_{1}, A_{3} \rightarrow 0, A_{3} \rightarrow 1, A_{1} \rightarrow A_{2}A_{2}A_{2}, A_{1} \rightarrow A_{2}A_{2}, A_{1} \rightarrow A_{2}, A_{4} \rightarrow 1A_{2}A_{1}, A_{4} \rightarrow 1A_{2}, A_{4} \rightarrow 1A_{1}, A_{4} \rightarrow 1\}$$

Für i = 1 wird $A_1 \rightarrow A_2$ ersetzt durch $A_1 \rightarrow A_2 A_3$, $A_1 \rightarrow 0$, $A_1 \rightarrow 1$, $A_1 \rightarrow A_4 A_2$, $A_1 \rightarrow 1A_2A_1$, $A_1 \rightarrow 1A_2$ und $A_1 \rightarrow 1A_1$

▶ Daher ist die Grammatik nach Entfernen von Einheitsproduktionen:

$$\begin{split} G_5 &= (V_5, \Sigma, P_5, A_5) \text{ mit } V_5 = \{A_1, A_2, A_3, A_4, A_5\} \text{ und} \\ P_5 &= \{A_5 \to 1A_2, A_5 \to 1, A_2 \to A_2A_3, A_2 \to 0, A_2 \to 1, \\ A_2 \to A_4A_2, A_2 \to 1A_2A_1, A_2 \to 1A_2, A_2 \to 1A_1, A_3 \to 0, \\ A_3 \to 1, A_1 \to A_2A_2A_2, A_1 \to A_2A_2, A_1 \to A_2A_3, A_1 \to 0, \\ A_1 \to 1, A_1 \to A_4A_2, A_1 \to 1A_2A_1, A_1 \to 1A_2, A_1 \to 1A_1, \\ A_4 \to 1A_2A_1, A_4 \to 1A_2, A_4 \to 1A_1, A_4 \to 1 \} \end{split}$$

Schritt 3: Terminale durch Variablen darstellen

► Füge $B_0 \rightarrow 0$ und $B_1 \rightarrow 1$ hinzu und ersetze in rechten Seiten mit Wortlänge > 1:

$$\begin{split} P_6 &= \{B_0 \to 0, \, B_1 \to 1, \, A_5 \to B_1 A_2, \, A_5 \to 1, \, A_2 \to A_2 A_3, \, A_2 \to 0, \\ A_2 \to 1, \, A_2 \to A_4 A_2, \, A_2 \to B_1 A_2 A_1, \, A_2 \to B_1 A_2, \\ A_2 \to B_1 A_1, \, A_3 \to 0, \, A_3 \to 1, \, A_1 \to A_2 A_2 A_2, \, A_1 \to A_2 A_2, \\ A_1 \to A_2 A_3, \, A_1 \to 0, \, A_1 \to 1, \, A_1 \to A_4 A_2, \, A_1 \to B_1 A_2 A_1, \\ A_1 \to B_1 A_2, \, A_1 \to B_1 A_1, \, A_4 \to B_1 A_2 A_1, \\ A_4 \to B_1 A_2, \, A_4 \to B_1 A_1, \, A_4 \to 1\} \end{split}$$

Schritt 4: Rechte Seiten zerlegen

► Zerlege rechte Seiten mit Wortlänge > 2:

Ergibt
$$G_7 = (V_7, \Sigma, P_7, A_5)$$
, wobei $V_7 = \{A_1, A_2, A_3, A_4, A_5, B_0, B_1, C_1, C_2, C_3, C_4\}$ $P_7 = \{B_0 \to 0, B_1 \to 1, A_5 \to B_1 A_2, A_5 \to 1, A_2 \to A_2 A_3, A_2 \to 0, A_2 \to 1, A_2 \to A_4 A_2, A_2 \to B_1 C_1, C_1 \to A_2 A_1, A_2 \to B_1 A_2, A_2 \to B_1 A_1, A_3 \to 0, A_3 \to 1, A_1 \to A_2 C_2, C_2 \to A_2 A_2, A_1 \to A_2 A_2, A_1 \to A_2 A_3, A_1 \to 0, A_1 \to 1, A_1 \to A_4 A_2, A_1 \to B_1 C_3, C_3 \to A_2 A_1, A_1 \to B_1 A_2, A_1 \to B_1 A_1, A_4 \to B_1 C_4, C_4 \to A_2 A_1, A_4 \to B_1 A_2, A_4 \to B_1 A_1, A_4 \to 1\}$

Schritt 4: Rechte Seiten zerlegen

Zerlege rechte Seiten mit Wortlänge > 2:

Ergibt
$$G_7 = (V_7, \Sigma, P_7, A_5)$$
, wobei $V_7 = \{A_1, A_2, A_3, A_4, A_5, B_0, B_1, C_1, C_2, C_3, C_4\}$ $P_7 = \{B_0 \to 0, B_1 \to 1, A_5 \to B_1 A_2, A_5 \to 1, A_2 \to A_2 A_3, A_2 \to 0, A_2 \to 1, A_2 \to A_4 A_2, A_2 \to B_1 C_1, C_1 \to A_2 A_1, A_2 \to B_1 A_2, A_2 \to B_1 A_1, A_3 \to 0, A_3 \to 1, A_1 \to A_2 C_2, C_2 \to A_2 A_2, A_1 \to A_2 A_2, A_1 \to A_2 A_3, A_1 \to 0, A_1 \to 1, A_1 \to A_4 A_2, A_1 \to B_1 C_3, C_3 \to A_2 A_1, A_1 \to B_1 A_2, A_1 \to B_1 A_1, A_4 \to B_1 C_4, C_4 \to A_2 A_1, A_4 \to B_1 A_2, A_4 \to B_1 A_1, A_4 \to 1\}$

G₇ ist in Chomsky-Normalform.