Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

4a Reguläre Ausdrücke

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

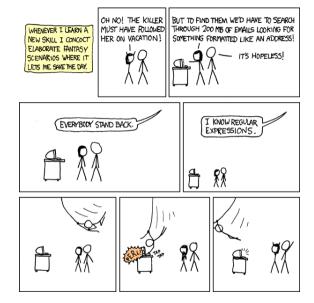
Stand: 21. Juli 2025

Basierend auf Folien von PD Dr. David Sabel und Dr. Jan Johannsen

Reguläre Ausdrücke

Informelle Kurzfassung:

- ► Reguläre Ausdrücke sind (wie Automaten und Grammatiken) ein Formalismus zur Repräsentation von Sprachen.
- ► Sie bieten eine kompakte Notation für reguläre Sprachen an.
- ▶ In der Praxis werden sie verwendet, um Text zu erkennen oder zu suchen.



xkcd.com/208/

Definition

Sei Σ ein Alphabet. Die regulären Ausdrücke über Σ sind definiert durch folgende Regeln (und nur diese):

- ▶ Ø ist ein regulärer Ausdruck.
- ε ist ein regulärer Ausdruck.
- ▶ a mit $a \in \Sigma$ ist ein regulärer Ausdruck.
- ► Wenn α und β reguläre Ausdrücke sind, dann auch $\alpha\beta$ (alternativ α · β).
- Menn α und β reguläre Ausdrücke sind, dann auch $(\alpha|\beta)$.
- ▶ Wenn α ein regulärer Ausdruck ist, dann auch $(\alpha)^*$.

Definition

Die von einem regulären Ausdruck α erzeugte Sprache $L(\alpha)$ ist rekursiv definiert:

```
L(\emptyset) := \emptyset
L(\varepsilon) := \{\varepsilon\}
L(a) := \{a\} \text{ für } a \in \Sigma
L(\alpha\beta) := L(\alpha)L(\beta) = \{uv \mid u \in L(\alpha), v \in L(\beta)\}
L(\alpha|\beta) := L(\alpha) \cup L(\beta)
L((\alpha)^*) := L(\alpha)^*
```

Definition

Die von einem regulären Ausdruck α erzeugte Sprache $L(\alpha)$ ist rekursiv definiert:

$$L(\emptyset) := \emptyset$$

$$L(\varepsilon) := \{\varepsilon\}$$

$$L(a) := \{a\} \text{ für } a \in \Sigma$$

$$L(\alpha\beta) := L(\alpha)L(\beta) = \{uv \mid u \in L(\alpha), v \in L(\beta)\}$$

$$L(\alpha|\beta) := L(\alpha) \cup L(\beta)$$

$$L((\alpha)^*) := L(\alpha)^*$$

Für alle regulären Ausdrücke α, β, γ gilt $L((\alpha|\beta)|\gamma) = L(\alpha|(\beta|\gamma))$. Daher lassen wir Klammern weg und schreiben $(\alpha_1|\alpha_2|\cdots|\alpha_n)$.

- 1. $(a|b)^*aa(a|b)^*$ erzeugt?
- 2. $(\varepsilon|((a|b|c)^*a(a|b|c)(a|b|c)(a|b|c)))$ erzeugt ?

3. ((0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|(2(0|1|2|3))): ((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)) erzeugt ?

- 1. $(a|b)^*aa(a|b)^*$ erzeugt alle Wörter über $\{a,b\}$, die zwei aufeinanderfolgende a's enthalten.
- 2. $(\varepsilon|((a|b|c)^*a(a|b|c)(a|b|c)(a|b|c)))$ erzeugt ?
- 3. ((0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|(2(0|1|2|3))): ((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)) erzeugt ?

- 1. $(a|b)^*aa(a|b)^*$ erzeugt alle Wörter über $\{a,b\}$, die zwei aufeinanderfolgende a's enthalten.
- 2. $(\varepsilon|((a|b|c)^*a(a|b|c)(a|b|c)(a|b|c)))$ erzeugt alle Wörter über $\{a, b, c\}$, die an viertletzter Stelle ein a haben sowie das leere Wort.
- 3. ((0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|(2(0|1|2|3))): ((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)) erzeugt ?

- 1. $(a|b)^*aa(a|b)^*$ erzeugt alle Wörter über $\{a,b\}$, die zwei aufeinanderfolgende a's enthalten.
- 2. $(\varepsilon|((a|b|c)^*a(a|b|c)(a|b|c)(a|b|c)))$ erzeugt alle Wörter über $\{a, b, c\}$, die an viertletzter Stelle ein a haben sowie das leere Wort.
- 3. ((0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|(2(0|1|2|3))): ((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9)) erzeugt alle Wörter über $\{:,0,1,\ldots,9\}$, die Uhrzeiten im 24-Stunden-Format entsprechen.

- 1. alle Wörter über $\{a, b\}$, die das Teilwort abba enthalten:
- 2. alle Wörter über $\{a, b\}$, die das Teilwort aba mindestens zweimal enthalten:
- 3. alle Wörter über {a, b}, die das Teilwort aaa nicht enthalten:
- 4. alle Wörter einer endlichen Sprache $L = \{w_1, \dots, w_n\}$ mit $n \ge 1$:

- 1. alle Wörter über $\{a, b\}$, die das Teilwort abba enthalten: $(a|b)^*abba(a|b)^*$
- 2. alle Wörter über {a, b}, die das Teilwort aba mindestens zweimal enthalten:
- 3. alle Wörter über {a, b}, die das Teilwort aaa nicht enthalten:
- 4. alle Wörter einer endlichen Sprache $L = \{w_1, \dots, w_n\}$ mit $n \ge 1$:

- 1. alle Wörter über $\{a, b\}$, die das Teilwort abba enthalten: $(a|b)^*abba(a|b)^*$
- 2. alle Wörter über $\{a, b\}$, die das Teilwort aba mindestens zweimal enthalten: $((a|b)^*aba(a|b)^*aba(a|b)^*|(a|b)^*ababa(a|b)^*)$
- 3. alle Wörter über {a, b}, die das Teilwort aaa nicht enthalten:
- 4. alle Wörter einer endlichen Sprache $L = \{w_1, \dots, w_n\}$ mit $n \ge 1$:

- 1. alle Wörter über $\{a, b\}$, die das Teilwort abba enthalten: $(a|b)^*abba(a|b)^*$
- 2. alle Wörter über $\{a, b\}$, die das Teilwort *aba* mindestens zweimal enthalten: ((a|b)*aba(a|b)*aba(a|b)*|(a|b)*ababa(a|b)*)
- 3. alle Wörter über $\{a, b\}$, die das Teilwort aaa nicht enthalten: $(b|ab|aab)^*(\varepsilon|a|aa)$
- 4. alle Wörter einer endlichen Sprache $L = \{w_1, \dots, w_n\}$ mit $n \ge 1$:

- 1. alle Wörter über $\{a, b\}$, die das Teilwort abba enthalten: $(a|b)^*abba(a|b)^*$
- 2. alle Wörter über $\{a, b\}$, die das Teilwort aba mindestens zweimal enthalten: ((a|b)*aba(a|b)*aba(a|b)*|(a|b)*ababa(a|b)*)
- 3. alle Wörter über $\{a, b\}$, die das Teilwort aaa nicht enthalten: $(b|ab|aab)^*(\varepsilon|a|aa)$
- 4. alle Wörter einer endlichen Sprache $L = \{w_1, \dots, w_n\}$ mit $n \ge 1$: $(w_1 | \dots | w_n)$

Regeln zum Vereinfachen von regulären Ausdrücken

Kommutativität:

$$(\alpha|\beta) = (\beta|\alpha)$$

Neutrale Elemente:

$$(\emptyset | \alpha) = (\alpha | \emptyset) = \alpha$$

Absorption:

$$\emptyset \alpha = \alpha \emptyset = \emptyset$$

Distributivität:

$$\alpha(\beta|\gamma) = \alpha\beta|\alpha\gamma$$

Gesetze über Kleene-Stern:

$$((\alpha)^*)^* = (\alpha)^*$$
 $(\emptyset)^* = \varepsilon$ $(\varepsilon)^* = \varepsilon$

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis

⊆ Wir zeigen, dass die erzeugte Sprache eines regulären Ausdrucks regulär ist.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis

⊆ Wir zeigen, dass die erzeugte Sprache eines regulären Ausdrucks regulär ist.

Wir konstruieren für einen regulären Ausdruck α einen NFA M_{α} mit ε -Übergängen und eindeutigen Start- und Endzuständen, sodass $L(M_{\alpha}) = L(\alpha)$.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis

⊆ Wir zeigen, dass die erzeugte Sprache eines regulären Ausdrucks regulär ist.

Wir konstruieren für einen regulären Ausdruck α einen NFA M_{α} mit ε -Übergängen und eindeutigen Start- und Endzuständen, sodass $L(M_{\alpha}) = L(\alpha)$.

$$M_{\emptyset} := \longrightarrow$$

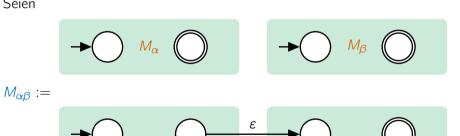
$$M_{\varepsilon} := \longrightarrow$$

$$M_{a} := \longrightarrow$$

Beweis (Fortsetzung) Seien

Beweis (Fortsetzung)

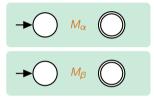
Seien



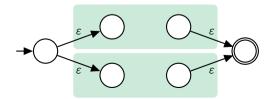
Beweis (Fortsetzung) Seien

Beweis (Fortsetzung)

Seien



 $M_{(\alpha|\beta)} :=$

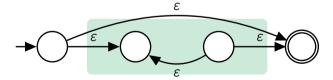


Beweis (Fortsetzung) Sei

Beweis (Fortsetzung)

Sei

 $M_{(\alpha)^*} :=$



Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$

Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$

Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$

Regulärer Ausdruck:

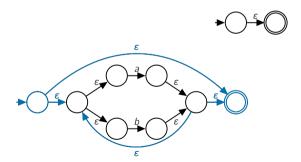
 $(\varepsilon|(a|b)^*b(a|b))$

Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$

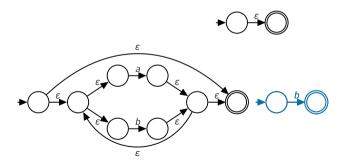
Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$



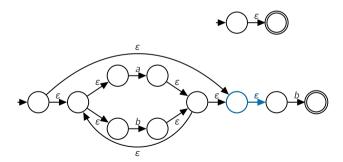
Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$



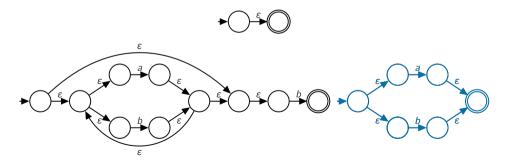
Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$



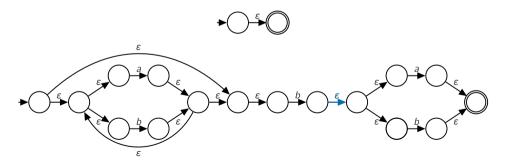
Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$



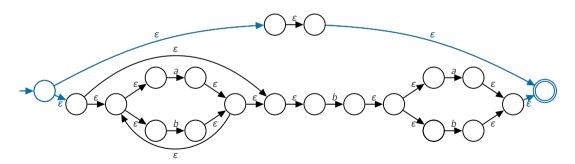
Regulärer Ausdruck:

 $(\varepsilon|(a|b)^*b(a|b))$



Regulärer Ausdruck:

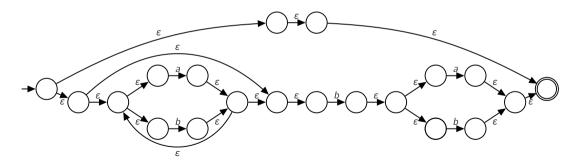
 $(\varepsilon|(a|b)^*b(a|b))$



Beispiel für den NFA zu einem regulären Ausdruck

Regulärer Ausdruck: $(\varepsilon|(a|b)^*b(a|b))$

NFA mit ε -Übergängen:



Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

Induktion über die Größe von α .

► Fall α ist \emptyset , ε oder a: Offensichtlich.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

- ► Fall α ist \emptyset , ε oder a: Offensichtlich.
- Fall α ist $\beta\gamma$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$ und $L(M_{\gamma}) = L(\gamma)$. Die Konstruktion von $M_{\beta\gamma}$ sicherstellt, dass $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma})$. Daher $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma}) = L(\beta)L(\gamma) = L(\beta\gamma)$.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

- ▶ Fall α ist \emptyset , ε oder a: Offensichtlich.
- ► Fall α ist $\beta\gamma$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$ und $L(M_{\gamma}) = L(\gamma)$. Die Konstruktion von $M_{\beta\gamma}$ sicherstellt, dass $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma})$. Daher $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma}) = L(\beta)L(\gamma) = L(\beta\gamma)$.
- Fall α ist $(\beta|\gamma)$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$ und $L(M_{\gamma}) = L(\gamma)$. Die Konstruktion von $M_{\beta\gamma}$ sicherstellt, dass $L(M_{(\beta|\gamma)}) = L(M_{\beta}) \cup L(M_{\gamma})$. Daher $L(M_{(\beta|\gamma)}) = L(M_{\beta}) \cup L(M_{\beta}) = L(\beta) \cup L(\gamma) = L(\beta|\gamma)$.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(M_{\alpha}) = L(\alpha)$ für jeden regulären Ausdruck α gilt. Da $L(M_{\alpha})$ regulär ist, heißt es dann, dass $L(\alpha)$ auch regulär ist.

- ► Fall α ist \emptyset , ε oder a: Offensichtlich.
- ► Fall α ist $\beta\gamma$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$ und $L(M_{\gamma}) = L(\gamma)$. Die Konstruktion von $M_{\beta\gamma}$ sicherstellt, dass $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma})$. Daher $L(M_{\beta\gamma}) = L(M_{\beta})L(M_{\gamma}) = L(\beta)L(\gamma) = L(\beta\gamma)$.
- Fall α ist $(\beta|\gamma)$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$ und $L(M_{\gamma}) = L(\gamma)$. Die Konstruktion von $M_{\beta\gamma}$ sicherstellt, dass $L(M_{(\beta|\gamma)}) = L(M_{\beta}) \cup L(M_{\gamma})$. Daher $L(M_{(\beta|\gamma)}) = L(M_{\beta}) \cup L(M_{\beta}) = L(\beta) \cup L(\gamma) = L(\beta|\gamma)$.
- ► Fall α ist $(\beta)^*$: Die Induktionshypothese liefert $L(M_{\beta}) = L(\beta)$. Die Konstruktion von $M_{(\beta)^*}$ sicherstellt, dass $L(M_{(\beta)^*}) = L(M_{\beta})^*$. Daher $L(M_{(\beta)^*}) = L(M_{\beta})^* = L(\beta)^* = L((\beta)^*)$.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis (Fortsetzung)

 \supseteq Für jede reguläre Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis (Fortsetzung)

 \supseteq Für jede reguläre Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$.

Sei DFA $M = (\{z_1, \ldots, z_n\}, \Sigma, \delta, z_1, E)$ mit L(M) = L.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis (Fortsetzung)

 \supseteq Für jede reguläre Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$.

Sei DFA $M = (\{z_1, \ldots, z_n\}, \Sigma, \delta, z_1, E)$ mit L(M) = L.

Wir konstruieren für M einen regulären Ausdruck α , sodass $L(\alpha) = L(M) = L$.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis (Fortsetzung)

 \supseteq Für jede reguläre Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$.

Sei DFA $M = (\{z_1, \ldots, z_n\}, \Sigma, \delta, z_1, E)$ mit L(M) = L.

Wir konstruieren für M einen regulären Ausdruck α , sodass $L(\alpha) = L(M) = L$.

Hilfsmittel: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Theorem (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis (Fortsetzung)

 \supseteq Für jede reguläre Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$.

Sei DFA
$$M = (\{z_1, \ldots, z_n\}, \Sigma, \delta, z_1, E)$$
 mit $L(M) = L$.

Wir konstruieren für M einen regulären Ausdruck α , sodass $L(\alpha) = L(M) = L$.

Hilfsmittel: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Daher

$$lpha := egin{cases} \emptyset & ext{falls } E = \emptyset \ (lpha_{1,j_1}^n|\cdots|lpha_{1,j_m}^n) & ext{falls } E = \{z_{j_1},\ldots,z_{j_m}\} \end{cases}$$

Beweis (Fortsetzung)

Zur Erinnerung: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Beweis (Fortsetzung)

Zur Erinnerung: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Wir müssen $\alpha_{i,j}^k$ konstruieren. Sei $\{a_1,\ldots,a_q\}=\{a\in\Sigma\mid\delta(z_i,a)=z_j\}.$

Beweis (Fortsetzung)

Zur Erinnerung: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Wir müssen $\alpha_{i,j}^k$ konstruieren. Sei $\{a_1,\ldots,a_q\}=\{a\in\Sigma\mid\delta(z_i,a)=z_j\}$.

$$\alpha_{i,j}^{0} := \begin{cases} \emptyset & \text{falls } i \neq j \text{ und } q = 0\\ (a_{1}|\cdots|a_{q}) & \text{falls } i \neq j \text{ und } q > 0\\ (\varepsilon|a_{1}|\cdots|a_{q}) & \text{falls } i = j \end{cases}$$
$$\alpha_{i,j}^{k+1} := (\alpha_{i,j}^{k} | \alpha_{i,k+1}^{k} (\alpha_{k+1,k+1}^{k})^{*} \alpha_{k+1,j}^{k})$$

Beweis (Fortsetzung)

Zur Erinnerung: $\alpha_{i,j}^k$ erzeugt die Wörter, die von Zustand z_i zu Zustand z_j führen, ohne dabei Zwischenzustände mit Index größer als k zu nutzen.

Wir müssen $\alpha_{i,j}^k$ konstruieren. Sei $\{a_1,\ldots,a_q\}=\{a\in\Sigma\mid\delta(z_i,a)=z_j\}$.

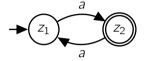
$$\alpha_{i,j}^{0} := \begin{cases} \emptyset & \text{falls } i \neq j \text{ und } q = 0\\ (a_{1}|\cdots|a_{q}) & \text{falls } i \neq j \text{ und } q > 0\\ (\varepsilon|a_{1}|\cdots|a_{q}) & \text{falls } i = j \end{cases}$$
$$\alpha_{i,j}^{k+1} := (\alpha_{i,j}^{k} | \alpha_{i,k+1}^{k} (\alpha_{k+1,k+1}^{k})^{*} \alpha_{k+1,j}^{k})$$

Denn entweder läuft M ohne Zustand z_{k+1} zu besuchen (vgl. $\alpha_{i,j}^k$) oder der "Lauf" kann in drei Teile gespalten werden:

- 1. "Lauf" von z_i bis zum ersten Besuch des Zustands z_{k+1} (vgl. $\alpha_{i,k+1}^k$)
- 2. mehrmaliges, zyklisches Besuchen von k+1 (vgl. $\alpha_{k+1,k+1}^k$)
- 3. letztmaliges Verlassen von z_{k+1} und "Lauf" bis zu z_i (vgl. α_{k+1}^k).

Beispiel für den regulären Ausdruck zu einem DFA

DFA:



Regulärer Ausdruck dazu:

$$\alpha_{1,2}^2 = (\alpha_{1,2}^1 | \alpha_{1,2}^1 (\alpha_{2,2}^1)^* \alpha_{2,2}^1)$$

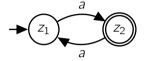
= $((a|\varepsilon(\varepsilon)^* a) | (a|\varepsilon(\varepsilon)^* a) (\varepsilon|a(\varepsilon)^* a)^* (\varepsilon|a(\varepsilon)^* a))$

denn

$$\begin{split} &\alpha_{1,2}^1 = (\alpha_{1,2}^0 | \alpha_{1,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (a | \varepsilon(\varepsilon)^* a) \\ &\alpha_{2,2}^1 = (\alpha_{2,2}^0 | \alpha_{2,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (\varepsilon | a(\varepsilon)^* a) \\ &\alpha_{1,1}^0 = \varepsilon \qquad \alpha_{2,2}^0 = \varepsilon \qquad \alpha_{1,2}^0 = a \qquad \alpha_{2,1}^0 = a \end{split}$$

Beispiel für den regulären Ausdruck zu einem DFA

DFA:



Regulärer Ausdruck dazu:

$$\begin{aligned} \alpha_{1,2}^2 &= (\alpha_{1,2}^1 | \alpha_{1,2}^1 (\alpha_{2,2}^1)^* \alpha_{2,2}^1) \\ &= \left((a | \varepsilon(\varepsilon)^* a) \, | \, (a | \varepsilon(\varepsilon)^* a) \, (\varepsilon | a(\varepsilon)^* a)^* \, (\varepsilon | a(\varepsilon)^* a) \right) \\ &\text{ "aquivalent zu } a(aa)^* \, (\text{durch Vereinfachung}) \end{aligned}$$

denn

$$\begin{split} &\alpha_{1,2}^1 = (\alpha_{1,2}^0 | \alpha_{1,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (a | \varepsilon(\varepsilon)^* a) \\ &\alpha_{2,2}^1 = (\alpha_{2,2}^0 | \alpha_{2,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (\varepsilon | a(\varepsilon)^* a) \\ &\alpha_{1,1}^0 = \varepsilon \qquad \alpha_{2,2}^0 = \varepsilon \qquad \alpha_{1,2}^0 = a \qquad \alpha_{2,1}^0 = a \end{split}$$

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(\alpha) = L(M)$.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(\alpha) = L(M)$.

Für $w \in \Sigma^*$ und z_i, z_j mit $\widetilde{\delta}(z_i, w) = z_j$ sei $visit_i(w) = q_1, \ldots, q_m$ die Folge der besuchten Zustände (wobei $q_1 = z_i$ und $q_m = z_j$).

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(\alpha) = L(M)$.

Für $w \in \Sigma^*$ und z_i, z_j mit $\widetilde{\delta}(z_i, w) = z_j$ sei $visit_i(w) = q_1, \ldots, q_m$ die Folge der besuchten Zustände (wobei $q_1 = z_i$ und $q_m = z_j$).

Wir definieren:

$$L_{i,j}^{k} = \left\{ w \in \Sigma^{*} \middle| \begin{array}{l} \widetilde{\delta}(z_{i}, w) = z_{j} \text{ und } \textit{visit}_{i}(w) = q_{1}, \dots, q_{m}, \\ \text{sodass für } 1 < \textit{I} < \textit{m} \text{: wenn } q_{\textit{I}} = z_{\textit{p}} \text{ dann } p \leq \textit{k} \end{array} \right\}$$

 $L_{i,j}^k$ enthält die Wörter, die von Zustand z_i zu Zustand z_j führen ohne dabei Zwischenzustände mit Index größer als k zu benutzen.

Beweis (Fortsetzung)

Es bleibt zu zeigen, dass $L(\alpha) = L(M)$.

Für $w \in \Sigma^*$ und z_i, z_j mit $\widetilde{\delta}(z_i, w) = z_j$ sei $visit_i(w) = q_1, \ldots, q_m$ die Folge der besuchten Zustände (wobei $q_1 = z_i$ und $q_m = z_j$).

Wir definieren:

$$L_{i,j}^{k} = \left\{ w \in \Sigma^{*} \mid \widetilde{\delta}(z_{i}, w) = z_{j} \text{ und } visit_{i}(w) = q_{1}, \dots, q_{m}, \\ \text{sodass für } 1 < l < m \text{: wenn } q_{l} = z_{p} \text{ dann } p \leq k \right\}$$

 $L_{i,j}^k$ enthält die Wörter, die von Zustand z_i zu Zustand z_j führen ohne dabei Zwischenzustände mit Index größer als k zu benutzen.

Mit Induktion über k können wir zeigen, dass $L(\alpha_{i,j}^k) = L_{i,j}^k$ für jedes $i, j, k \in \{1, ..., n\}$. Siehe Skript.

Beweis (Fortsetzung)
Sei
$$E = \{z_{j_1}, \dots, z_{j_m}\}.$$

Beweis (Fortsetzung) $\text{Sei } E = \{z_{j_1}, \dots, z_{j_m}\}.$ $\text{Falls } m = 0, \text{ dann } L(\alpha) = L(\emptyset) = \emptyset = L(M).$

```
Beweis (Fortsetzung)
Sei \ E = \{z_{j_1}, \dots, z_{j_m}\}.
Falls \ m = 0, \ dann \ L(\alpha) = L(\emptyset) = \emptyset = L(M).
Falls \ m > 0, \ dann
L(\alpha)
```

```
Beweis (Fortsetzung)
Sei \ E = \{z_{j_1}, \dots, z_{j_m}\}.
Falls \ m = 0, \ dann \ L(\alpha) = L(\emptyset) = \emptyset = L(M).
Falls \ m > 0, \ dann
L(\alpha)
= L(\alpha_{1,j_1}^n | \cdots | \alpha_{1,j_m}^n)
```

```
Beweis (Fortsetzung)
Sei \ E = \{z_{j_1}, \dots, z_{j_m}\}.
Falls \ m = 0, \ dann \ L(\alpha) = L(\emptyset) = \emptyset = L(M).
Falls \ m > 0, \ dann
L(\alpha)
= L(\alpha_{1,j_1}^n| \cdots | \alpha_{1,j_m}^n)
= L(\alpha_{1,j_1}^n| ) \cup \cdots \cup L(\alpha_{1,j_m}^n)
```

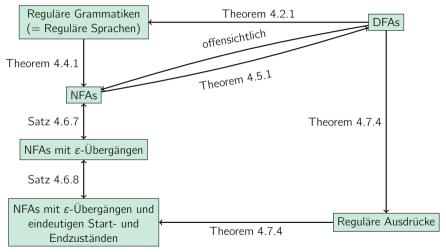
```
Beweis (Fortsetzung)
Sei \ E = \{z_{j_1}, \dots, z_{j_m}\}.
Falls \ m = 0, \ dann \ L(\alpha) = L(\emptyset) = \emptyset = L(M).
Falls \ m > 0, \ dann
L(\alpha)
= L(\alpha_{1,j_1}^n| \cdots | \alpha_{1,j_m}^n)
= L(\alpha_{1,j_1}^n) \cup \cdots \cup L(\alpha_{1,j_m}^n)
= L_{1,j_1}^n \cup \cdots \cup L_{1,j_m}^n
```

```
Beweis (Fortsetzung)
      Sei E = \{z_{i_1}, \dots, z_{i_m}\}.
      Falls m = 0, dann L(\alpha) = L(\emptyset) = \emptyset = L(M).
       Falls m > 0, dann
          L(\alpha)
      =L(\alpha_{1,i_1}^n|\cdots|\alpha_{1,i_m}^n)
      =L(\alpha_{1,i_1}^n)\cup\cdots\cup L(\alpha_{1,i_m}^n)
      =L_{1,i_1}^n\cup\cdots\cup L_{1,i_m}^n
       = L(M)
```

Anwendungen von regulären Ausdrücken

- Reguläre Ausdrücke werden zur lexikalischen Analyse von Programmiersprachen und Domain Specific Languages verwendet, aber auch für Textsuche und -ersetzung in Texteditoren sowie in Befehlszeilenprogramm wie sed und AWK.
- ► Tools wie lex (für C/C++), ANTLR (für Java) und PLY (für Python) generieren lexikalische Analyser ("Lexer") aus regulären Ausdrücken.
- ► Moderne Programmiersprachen unterstützen reguläre Ausdrücke entweder nativ oder mithilfe einer Bibliothek.

Zusammenfassung der Formalismen für reguläre Sprachen



Kanten (\rightarrow) zeigen Kodierungen.