#### Formale Sprachen und Komplexität Theoretische Informatik für Studierende der Medieninformatik Sommersemester 2025

**2b** 

### **Deterministische endliche Automaten**

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 21. Juli 2025 Basierend auf Folien von PD Dr. David Sabel



### Fragestellung

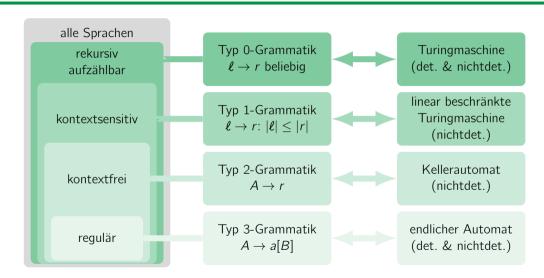
Formalismen, um formale Sprachen zu repräsentieren:

- ► Grammatiken: Sie erzeugen Wörter einer Sprache.
- Maschinenmodelle: Sie erkennen Wörter einer Sprache.

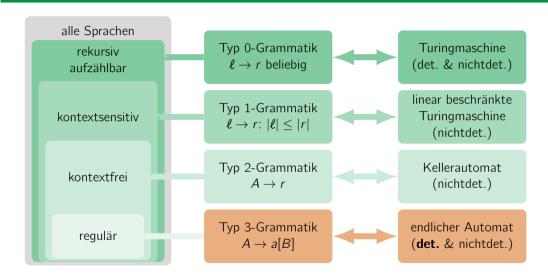
Welcher Formalismus besser ist, hängt von der konkreten Fragestellung ab.

Wichtige Fragestellung: Welche Maschine akzeptiert welche Sprachklasse?

### Überblick über Grammatiken und Maschinenmodelle



#### Überblick über Grammatiken und Maschinenmodelle



### Wiederholung: Reguläre Sprachen

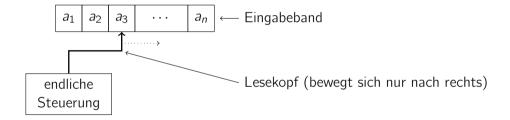
- ► Eine Grammatik  $G = (V, \Sigma, P, S)$  ist vom Typ 3 (alternativ regulär), wenn alle Produktionen in P von der Form  $A \to r \in P$  sind, wobei r = a oder r = aA' für  $a \in \Sigma, A' \in V$ .
- ► Eine Sprache  $L \subseteq \Sigma^*$  ist vom Typ 3 (alternativ regulär), falls es eine Typ 3-Grammatik G gibt, sodass L(G) = L gilt.

#### Deterministische endliche Automaten

#### Informelle Kurzfassung:

- ▶ Deterministische endliche Automaten starten im Startzustand.
- ► Sie lesen zeichenweise ein Eingabewort.
- ► Sie wechseln dabei den Zustand (eindeutig). Es gibt nur endlich viele Zustände.
- ► Nach Lesen der Eingabe: akzeptieren oder verwerfen.
  - ► Akzeptieren = in einem Endzustand
  - ► Verwerfen = nicht in einem Endzustand
- Die akzeptierte Sprache besteht aus allen Wörter, für die der Automat akzeptiert.

#### Illustration eines endlichen Automaten

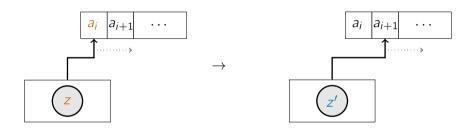


#### **Definition**

Ein deterministischer endlicher Automat (deterministic finite automaton, DFA) ist ein 5-Tupel  $M = (Z, \Sigma, \delta, z_0, E)$ , wobei:

- ► Z ist eine endliche Menge von Zuständen
- ▶  $\Sigma$  ist das (endliche) Eingabealphabet mit  $Z \cap \Sigma = \emptyset$
- ▶  $\delta: Z \times \Sigma \rightarrow Z$  ist die (totale) Überführungsfunktion
- $ightharpoonup z_0 \in Z$  ist der Startzustand
- $ightharpoonup E \subseteq Z$  ist die Menge der Endzustände.

### Illustration des Zustandsübergangs



 $\delta(z, a_i) = z'$  bedeutet: Im Zustand z bei Eingabe  $a_i$  wechselt der DFA in z'.

### Zustandsgraph eines DFA

Für DFA  $M = (Z, \Sigma, \delta, z_0, E)$ :

- Für Zustand  $z \in Z$  gibt es Knoten (z).
- ▶ Startzustand  $z_0 \in Z$ : eingehender Pfeil →  $(z_0)$ .
- ► Endzustände  $z \in E$ : doppelte Kreise  $\boxed{z}$ .
- ▶ Übergänge  $\delta(z_i, a) = z_j$  als Kante  $(z_i)$   $\xrightarrow{a}$   $(z_j)$  dargestellt



### Beispiel für einen DFA

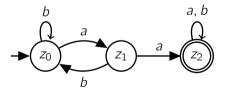
DFA 
$$M=(\{z_0,z_1,z_2\},\{a,b\},\delta,z_0,\{z_2\})$$
 mit 
$$\delta(z_0,a)=z_1\quad \delta(z_1,a)=z_2\quad \delta(z_2,a)=z_2$$
 
$$\delta(z_0,b)=z_0\quad \delta(z_1,b)=z_0\quad \delta(z_2,b)=z_2$$

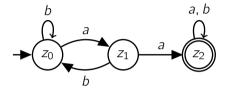
### Beispiel für einen DFA

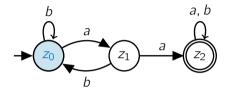
DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu *M*:

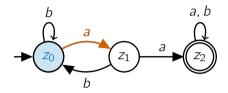




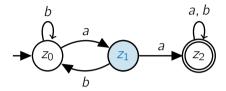


### Abarbeitung der Eingabe abbaaa:

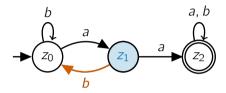
ightharpoonup Starte in  $z_0$ .



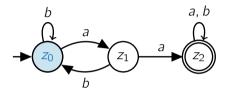
- ightharpoonup Starte in  $z_0$ .
- Lies a



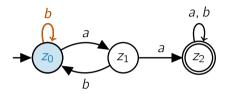
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .



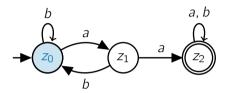
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *a* und wechsle in  $z_1$ .
- ► Lies b



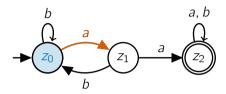
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *a* und wechsle in  $z_1$ .
- ▶ Lies b und wechsle in  $z_0$ .
- ► Lies *b*



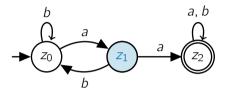
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *a* und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .



#### Abarbeitung der Eingabe abbaaa:

- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

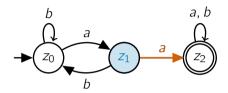
Lies a



### Abarbeitung der Eingabe abbaaa:

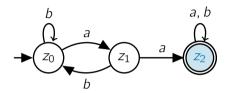
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *a* und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

ightharpoonup Lies a und wechsle in  $z_1$ .



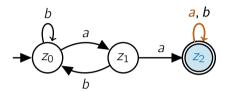
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ▶ Lies b und wechsle in  $z_0$ .
- $\blacktriangleright$  Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ► Lies a



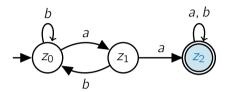
- $\triangleright$  Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ▶ Lies b und wechsle in  $z_0$ .
- $\blacktriangleright$  Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *a* und wechsle in  $z_2$ .



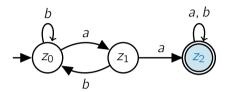
- ightharpoonup Starte in  $z_0$ .
- Lies a und wechsle in  $z_1$ .
- ▶ Lies b und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies a und wechsle in  $z_2$ .
- ► Lies a



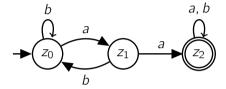
- $\triangleright$  Starte in  $z_0$ .
- Lies a und wechsle in  $z_1$ .
- ▶ Lies b und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

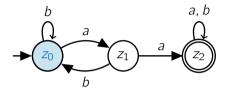
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies a und wechsle in  $z_2$ .
- ightharpoonup Lies a und wechsle in  $z_2$ .



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

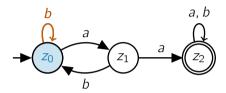
- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies a und wechsle in  $z_2$ .
- ightharpoonup Lies a und wechsle in  $z_2$ .
- ► Akzeptiere.



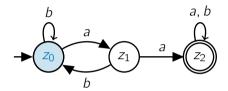


### Abarbeitung der Eingabe bbab:

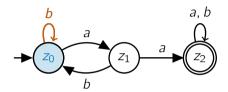
ightharpoonup Starte in  $z_0$ .



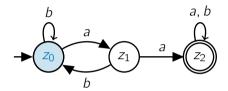
- ightharpoonup Starte in  $z_0$ .
- ► Lies *b*



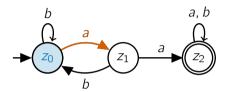
- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ► Lies *b*



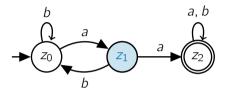
- ightharpoonup Starte in  $z_0$ .
- Lies b und wechsle in  $z_0$ .
- ightharpoonup Lies b und wechsle in  $z_0$ .



### Abarbeitung der Eingabe bbab:

- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

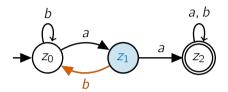
► Lies a



### Abarbeitung der Eingabe bbab:

- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies b und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

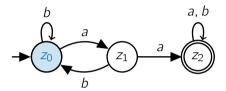
ightharpoonup Lies a und wechsle in  $z_1$ .



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ► Lies b

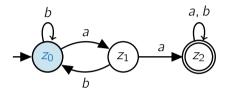
### Beispiel für einen verwerfenden Lauf



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- $\blacktriangleright$  Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

### Beispiel für einen verwerfenden Lauf



- ightharpoonup Starte in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .

- ightharpoonup Lies a und wechsle in  $z_1$ .
- ightharpoonup Lies *b* und wechsle in  $z_0$ .
- Verwirf.

### Akzeptanz bei DFAs

#### **Definition**

Sei  $M = (Z, \Sigma, \delta, z_0, E)$  ein DFA.

Wir definieren  $\delta: Z \times \Sigma^* \to Z$  rekursiv durch

$$\widetilde{\delta}(z,\varepsilon) := z 
\widetilde{\delta}(z,aw) := \widetilde{\delta}(\delta(z,a),w)$$

Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid \widetilde{\delta}(z_0, w) \in E \}$$

### Akzeptanz bei DFAs

#### Definition

Sei  $M = (Z, \Sigma, \delta, z_0, E)$  ein DFA.

Wir definieren  $\delta: Z \times \Sigma^* \to Z$  rekursiv durch

$$\widetilde{\delta}(z,\varepsilon) := z 
\widetilde{\delta}(z,aw) := \widetilde{\delta}(\delta(z,a),w)$$

Die von M akzeptierte Sprache ist

$$L(M) := \{ w \in \Sigma^* \mid \widetilde{\delta}(z_0, w) \in E \}$$

Alternativ:

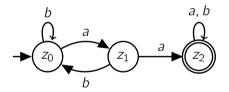
$$\widetilde{\delta}(z, a_1 a_2 \dots a_n) = \delta(\dots \delta(\delta(z, a_1), a_2) \dots, a_n)$$

 $\delta$  wendet  $\delta$  solange an, bis das Eingabewort abgearbeitet ist.

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

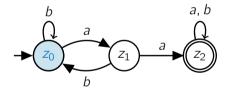


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(\delta(z_0, a), b), b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

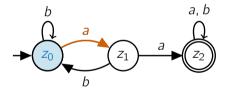


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(\delta(z_0, a), b), b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

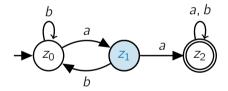


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(\delta(z_0, a), b), b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

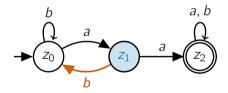


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(z_1, b), b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

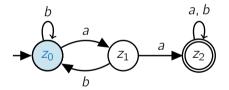


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(z_1, b), b), a), a), a)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu M:

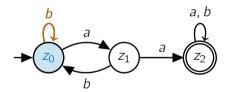


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(z_0, b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

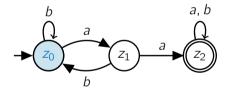


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(\delta(z_0, b), a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu *M*:

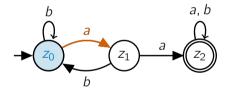


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(z_0, a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu M:

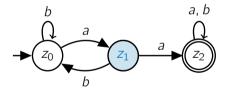


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(\delta(z_0, a), a), a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu *M*:

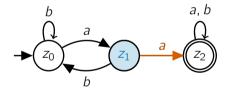


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(z_1, a), a)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu *M*:

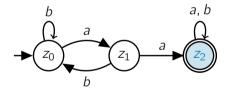


$$\widetilde{\delta}(z_0, abbaaa) = \delta(\delta(z_1, a), a)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

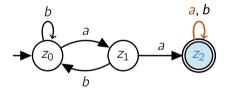


$$\widetilde{\delta}(z_0, abbaaa) = \delta(z_2, a)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

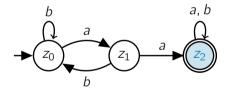


$$\widetilde{\delta}(z_0, abbaaa) = \delta(z_2, a)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E) \text{ mit } E = \{z_2\} \text{ und}$ 

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu *M*:



$$\widetilde{\delta}(z_0, abbaaa) = z_2$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

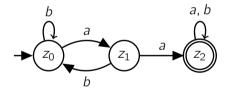


$$\widetilde{\delta}(z_0, abbaaa) = z_2 \in E$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu M:

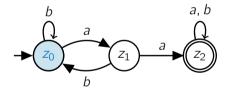


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(\delta(\delta(z_0, b), b), a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu M:

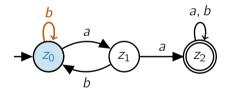


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(\delta(\delta(z_0, b), b), a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu M:

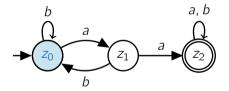


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(\delta(\delta(z_0, b), b), a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu M:

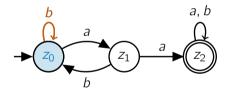


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(\delta(z_0, b), a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu M:

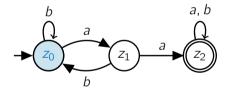


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(\delta(z_0, b), a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu *M*:

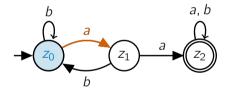


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(z_0, a), b)$$

DFA  $M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$  mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Zustandsgraph zu *M*:

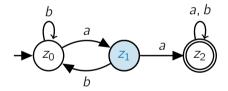


$$\widetilde{\delta}(z_0, bbab) = \delta(\delta(z_0, a), b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

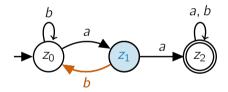


$$\widetilde{\delta}(z_0, bbab) = \delta(z_1, b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

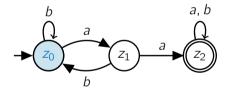


$$\widetilde{\delta}(z_0, bbab) = \delta(z_1, b)$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:

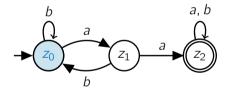


$$\widetilde{\delta}(z_0, bbab) = z_0$$

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu *M*:



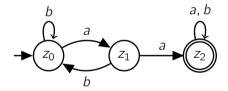
$$\widetilde{\delta}(z_0, bbab) = z_0 \notin E$$

### Akzeptierte Sprache des Beispiels

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

### Zustandsgraph zu M:



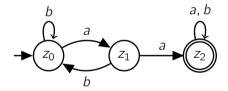
Akzeptierte Sprache = ?

### Akzeptierte Sprache des Beispiels

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, E)$$
 mit  $E = \{z_2\}$  und

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

#### Zustandsgraph zu *M*:



Akzeptierte Sprache =  $\{uaav \mid u, v \in \{a, b\}^*\}$ 

### Läufe von DFAs

#### **Definition**

Seien  $M=(Z,\Sigma,\delta,z_0,E)$  ein DFA und  $w\in\Sigma^*$  ein Wort der Länge n. Die Folge von Zuständen  $z_0,\ldots,z_n$  mit  $z_i=\delta(z_{i-1},w[i])$  für  $i\in\{1,\ldots,n\}$  ist ein Lauf von M für w.

### Läufe von DFAs

#### **Definition**

Seien  $M=(Z,\Sigma,\delta,z_0,E)$  ein DFA und  $w\in\Sigma^*$  ein Wort der Länge n. Die Folge von Zuständen  $z_0,\ldots,z_n$  mit  $z_i=\delta(z_{i-1},w[i])$  für  $i\in\{1,\ldots,n\}$  ist ein Lauf von M für w.

Für einen Lauf schreiben wir auch

$$z_0 \xrightarrow{w[1]} z_1 \xrightarrow{w[2]} \cdots \xrightarrow{w[n-1]} z_{n-1} \xrightarrow{w[n]} z_n$$

### Beispiele für Läufe

DFA 
$$M=(\{z_0,z_1,z_2\},\{a,b\},\delta,z_0,\{z_2\})$$
 mit 
$$\delta(z_0,a)=z_1\quad \delta(z_1,a)=z_2\quad \delta(z_2,a)=z_2$$
 
$$\delta(z_0,b)=z_0\quad \delta(z_1,b)=z_0\quad \delta(z_2,b)=z_2$$

### Beispiele für Läufe

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Lauf für abbaaa (akzeptierend):

$$z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_0 \xrightarrow{b} z_0 \xrightarrow{a} z_1 \xrightarrow{a} z_2 \xrightarrow{a} z_2$$

# Beispiele für Läufe

DFA 
$$M = (\{z_0, z_1, z_2\}, \{a, b\}, \delta, z_0, \{z_2\})$$
 mit

$$\delta(z_0, a) = z_1$$
  $\delta(z_1, a) = z_2$   $\delta(z_2, a) = z_2$   
 $\delta(z_0, b) = z_0$   $\delta(z_1, b) = z_0$   $\delta(z_2, b) = z_2$ 

Lauf für abbaaa (akzeptierend):

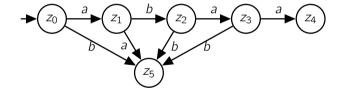
$$z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_0 \xrightarrow{b} z_0 \xrightarrow{a} z_1 \xrightarrow{a} z_2 \xrightarrow{a} z_2$$

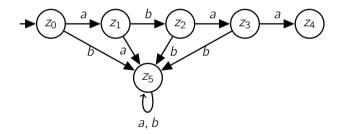
Lauf für *bbab* (verwerfend):

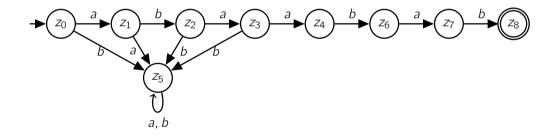
$$z_0 \xrightarrow{b} z_0 \xrightarrow{b} z_0 \xrightarrow{a} z_1 \xrightarrow{b} z_0$$

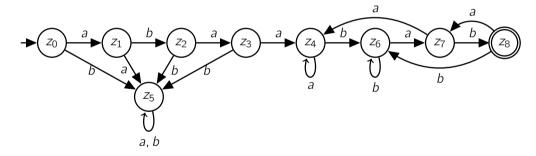




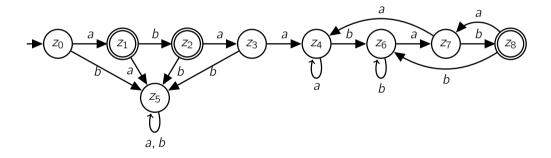


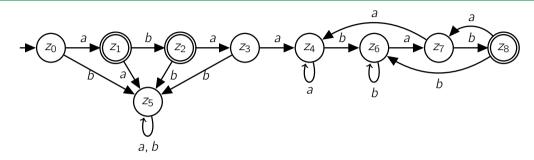






Zusätzlich die Wörter a und ab akzeptieren:





#### Bedeutung der Zustände:

 $z_0 = \varepsilon$  wurde gelesen

 $z_1 = \frac{a}{2}$  wurde gelesen

 $z_2 = ab$  wurde gelesen

 $z_3 = aba$  wurde gelesen

 $z_4 = abaa$  wurde gelesen

z<sub>5</sub> = ein falsches Präfix wurde gelesen (Müllzustand)

 $z_6 = abaa...b$  wurde gelesen

 $z_7 = abaa \dots ba$  wurde gelesen

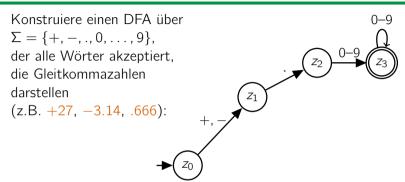
 $z_8 = abaa \dots bab$  wurde gelesen

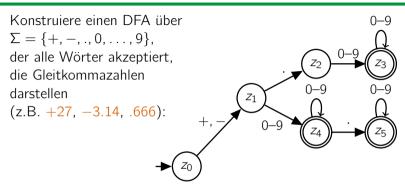
Konstruiere einen DFA über  $\Sigma = \{+, -, ., 0, ..., 9\}$ , der alle Wörter akzeptiert, die Gleitkommazahlen darstellen (z.B. +27, -3.14, .666):

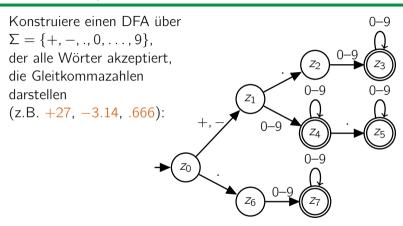
Konstruiere einen DFA über  $\Sigma = \{+, -, ., 0, ..., 9\}$ , der alle Wörter akzeptiert, die Gleitkommazahlen darstellen (z.B. +27, -3.14, .666):

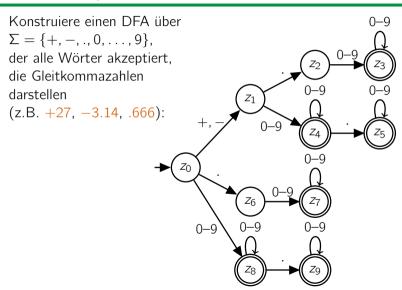


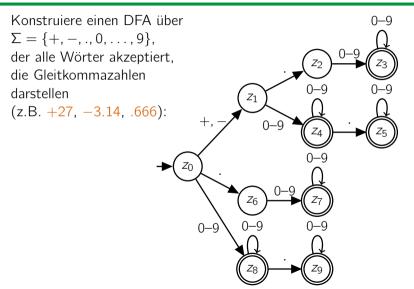
Konstruiere einen DFA über  $\Sigma = \{+, -, ., 0, ..., 9\}$ , der alle Wörter akzeptiert, die Gleitkommazahlen darstellen (z.B. +27, -3.14, .666):

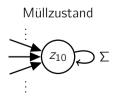












# Anwendungen von Automaten

- ► Automaten werden zur Spezifikation von Systemen und Protokollen verwendet.
- ► Sie werden zur Textsuche und Texterkennung verwendet.
- ► Sie dienen als Implementierung für reguläre Ausdrücke (mehr hierzu später).