Formale Sprachen und Komplexität Sommersemester 2025

2a

Grammatikbeispiele, Mehrdeutigkeit und Entfernen von ε-Produktionen

Prof. Dr. Jasmin Blanchette

Lehr- und Forschungseinheit für Theoretische Informatik und Theorembeweisen

Stand: 8. April 2025 Basierend auf Folien von PD Dr. David Sabel

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$S \Rightarrow aSBC \Rightarrow aaSBCBC$$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC \Rightarrow aaSBCBCBC \Rightarrow aaaSBCBCBC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBCBC \Rightarrow aaaaBCBCBCBCBC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaBCBCBCBC \Rightarrow aaaaBCBCBCBC \Rightarrow aaaabCBCBCBC$$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC \Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC
```

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC \Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC
```

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC \Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbCCCBC \Rightarrow aaaabbBCCCBCC
```

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBCBC \Rightarrow aaaabbCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCCC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBCBC \Rightarrow aaaabbCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbBCCCCC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBCBC \Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbBCCBCC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCC \Rightarrow aaaabbBCCCC \Rightarrow aaaabbBCCCC \Rightarrow aaaabbbBCCCC \Rightarrow aaaabbbbCCCC
```

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

```
S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBCBC \Rightarrow aaaabbCBCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbbBCCCCC \Rightarrow aaaabbbbCCCCC \Rightarrow aaaabbbbbCCCC \Rightarrow aaaabbbbbcCCCC
```

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

 $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBCBC \Rightarrow aaaabbCBCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbCCBCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbBCCCCC \Rightarrow aaaabbbbCCCCC \Rightarrow aaaabbbbCCCCC \Rightarrow aaaabbbbbCCCCC \Rightarrow aaaabbbbbcCCCC$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

- - \Rightarrow $aaaabbBCCCC \Rightarrow aaaabbBBCCCC \Rightarrow aaaabbbBCCCC$
 - \Rightarrow $aaaabbbbcCCCC \Rightarrow aaaabbbbccCCC \Rightarrow aaaabbbbccCCC$
 - \Rightarrow $aaaabbbbccccc \Rightarrow aaaabbbbccccc$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

- $S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC$
 - \Rightarrow aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC
 - \Rightarrow aaaabbCBCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCBCC
 - \Rightarrow aaaabbBCCCC \Rightarrow aaaabbBBCCCC
 - \Rightarrow aaaabbbbcCCCC \Rightarrow aaaabbbbcCCCC \Rightarrow aaaabbbbccCCC
 - \Rightarrow aaaabbbbcccC \Rightarrow aaaabbbbcccc

Steckengebliebene Folge von Ableitungsschritten:

$$S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow aabcBC$$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

$$S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC$$

$$\Rightarrow$$
 aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC

$$\Rightarrow$$
 aaaabbCBCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCBCC

$$\Rightarrow$$
 aaaabbBCCCC \Rightarrow aaaabbBBCCCC \Rightarrow aaaabbbBCCCC

$$\Rightarrow$$
 aaaabbbbcCCC \Rightarrow aaaabbbbcCCC \Rightarrow aaaabbbbccCC

$$\Rightarrow$$
 aaaabbbbcccC \Rightarrow aaaabbbbcccc

Steckengebliebene Folge von Ableitungsschritten:

$$S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow aabcBC$$

$$L(G) = ?$$

$$G = (\{S, B, C\}, \{a, b, c\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$

Ableitung:

$$S \Rightarrow aSBC \Rightarrow aaSBCBC \Rightarrow aaaSBCBCBC \Rightarrow aaaaBCBCBCBC$$

$$\Rightarrow$$
 $aaaabCBCBCBC \Rightarrow aaaabBCCBCBC \Rightarrow aaaabbCCBCBC$

$$\Rightarrow$$
 aaaabbCBCCBC \Rightarrow aaaabbBCCCBC \Rightarrow aaaabbBCCBCC

$$\Rightarrow$$
 aaaabbBCCCC \Rightarrow aaaabbBBCCCC \Rightarrow aaaabbbBCCCC

$$\Rightarrow$$
 aaaabbbbcCCC \Rightarrow aaaabbbbcCCC \Rightarrow aaaabbbbccCC

$$\Rightarrow$$
 aaaabbbbcccC \Rightarrow aaaabbbbcccc

Steckengebliebene Folge von Ableitungsschritten:

$$S \Rightarrow aSBC \Rightarrow aaBCBC \Rightarrow aabCBC \Rightarrow aabcBC$$

$$L(G) = \{a^n b^n c^n \mid n \in \mathbb{N}_{>0}\}$$

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis

 \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.

Satz

```
Für G = (\{S, B, C\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} gilt L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.
```

- \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.
 - ▶ Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$.

Satz

```
Für G = (\{S, B, C\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} gilt L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.
```

- \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.
 - ▶ Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$.
 - ▶ Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt: $a^n(BC)^n \Rightarrow^* a^n B^n C^n$.

Satz

```
Für G = (\{S, B, C\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} gilt L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.
```

- \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.
 - ▶ Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$.
 - ▶ Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt: $a^n(BC)^n \Rightarrow^* a^n B^n C^n$.
 - ► Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an: $a^nB^nC^n \Rightarrow a^nbB^{n-1}C^n \Rightarrow^* a^nb^nC^n$.

Satz

```
Für G = (\{S, B, C\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} gilt L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.
```

- \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.
 - ▶ Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$.
 - ▶ Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt: $a^n(BC)^n \Rightarrow^* a^n B^n C^n$.
 - ► Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an: $a^nB^nC^n \Rightarrow a^nbB^{n-1}C^n \Rightarrow^* a^nb^nC^n$.
 - ▶ Wende einmal $bC \to bc$ und anschließend n-1 mal $cC \to cc$ an: $a^nb^nC^n \Rightarrow a^nb^ncC^{n-1} \Rightarrow^* a^nb^nc^n$.

Satz

```
Für G = (\{S, B, C\}, \{a, b, c\}, P, S) mit P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\} gilt L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.
```

Beweis

- \supseteq Wir zeigen, dass $a^n b^n c^n \in L(G)$ für alle $n \in \mathbb{N}_{>0}$.
 - ▶ Wende n-1 mal $S \to aSBC$ und dann einmal $S \to aBC$ an: $S \Rightarrow^* a^{n-1}S(BC)^{n-1} \Rightarrow a^n(BC)^n$.
 - ▶ Wende $CB \to BC$ solange an, bis es kein Teilwort CB mehr gibt: $a^n(BC)^n \Rightarrow^* a^n B^n C^n$.
 - ► Wende $aB \to ab$ und anschließend n-1 mal $bB \to bb$ an: $a^nB^nC^n \Rightarrow a^nbB^{n-1}C^n \Rightarrow^* a^nb^nC^n$.
 - ▶ Wende einmal $bC \to bc$ und anschließend n-1 mal $cC \to cc$ an: $a^nb^nC^n \Rightarrow a^nb^ncC^{n-1} \Rightarrow^* a^nb^nc^n$.

Zusammensetzen aller Ableitungsschritte zeigt $S \Rightarrow^* a^n b^n c^n$.

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

 \subseteq Wir zeigen, dass alle Wörter in L(G) von der Form $a^nb^nc^n$ sind.

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

 \subseteq Wir zeigen, dass alle Wörter in L(G) von der Form $a^nb^nc^n$ sind.

Für $S \Rightarrow_G^* u$ mit u Satzform zeigen die Produktionen:

$$\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u).$$

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

 \subseteq Wir zeigen, dass alle Wörter in L(G) von der Form $a^nb^nc^n$ sind.

Für $S \Rightarrow_G^* u$ mit u Satzform zeigen die Produktionen:

$$\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u).$$

Für $S \Rightarrow_G^* w$ mit $w \in \{a, b, c\}^*$ gilt: a's werden ganz links erzeugt, d.h. $w = a^n w'$ mit $w' \in \{b, c\}^*$ und $n = \#_b(w') = \#_c(w')$.

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

 \subseteq Wir zeigen, dass alle Wörter in L(G) von der Form $a^nb^nc^n$ sind.

Für $S \Rightarrow_{c}^{*} u$ mit u Satzform zeigen die Produktionen:

$$\#_a(u) = \#_b(u) + \#_B(u) = \#_c(u) + \#_C(u).$$

Für $S \Rightarrow_{c}^{*} w$ mit $w \in \{a, b, c\}^{*}$ gilt: a's werden ganz links erzeugt,

d.h.
$$w = a^n w'$$
 mit $w' \in \{b, c\}^*$ und $n = \#_b(w') = \#_c(w')$.

Es gilt w' = bw'', da jedes auf a folgende Symbol durch $aB \rightarrow ab$ erzeugt wird und die Produktionen keine Terminalsymbole vertauschen.

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \to bb$, $bC \to bc$ und $cC \to cc$ erzeugt worden sein.

Diese Produktionen erlauben nur einen Wechsel von *b* zu *c* und keine Wechsel von *c* zu *b*. Auch ein Umordnen der Terminalsymbole ist nicht möglich.

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \to bb$, $bC \to bc$ und $cC \to cc$ erzeugt worden sein.

Diese Produktionen erlauben nur einen Wechsel von *b* zu *c* und keine Wechsel von *c* zu *b*. Auch ein Umordnen der Terminalsymbole ist nicht möglich.

Daher gilt $w' = b^i c^j$ und mit $n = \#_b(w') = \#_c(w')$ sogar $w' = b^n c^n$.

Beispiel für eine kontextsensitive Grammatik

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \to bb$, $bC \to bc$ und $cC \to cc$ erzeugt worden sein.

Diese Produktionen erlauben nur einen Wechsel von *b* zu *c* und keine Wechsel von *c* zu *b*. Auch ein Umordnen der Terminalsymbole ist nicht möglich.

Daher gilt $w' = b^i c^j$ und mit $n = \#_b(w') = \#_c(w')$ sogar $w' = b^n c^n$. Also ist $w = a^n b^n c^n$

Beispiel für eine kontextsensitive Grammatik

Satz

Für
$$G = (\{S, B, C\}, \{a, b, c\}, P, S)$$
 mit $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\}$ gilt $L(G) = \{a^nb^nc^n \mid n \in \mathbb{N}_{>0}\}.$

Beweis (Fortsetzung)

Ebenso können die Terminalsymbole des Wortes $w' \in \{b, c\}^*$ nur durch $bB \rightarrow bb$, $bC \rightarrow bc$ und $cC \rightarrow cc$ erzeugt worden sein.

Diese Produktionen erlauben nur einen Wechsel von b zu c und keine Wechsel von c zu b. Auch ein Umordnen der Terminalsymbole ist nicht möglich.

Daher gilt $w' = b^i c^j$ und mit $n = \#_b(w') = \#_c(w')$ sogar $w' = b^n c^n$.

Also ist $w = a^n b^n c^n$.

Aber w war beliebig gewählt. Daher sind alle $w \in L(G)$ von der Form $a^n b^n c^n$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$ \Rightarrow \$aAaAbB\$$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\b

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\ab

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\aab

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

```
S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$
 \Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$
 \Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\$aab
 \Rightarrow aa\$b\$aab
```

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\aab

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\$aab \Rightarrow aabaab$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aaAbAB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\$aab \Rightarrow aabaab$

$$L(G) = ?$$

$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) \text{ mit}$$

$$P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA,$$

$$Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$$

$$S \Rightarrow \$T\$ \Rightarrow \$aAT\$ \Rightarrow \$aAaAT\$ \Rightarrow \$aAaAbBT\$$$

 $\Rightarrow \$aAaAbB\$ \Rightarrow \$aaAAbB\$ \Rightarrow \$aabAAB\$$
 $\Rightarrow \$aabAA\$b \Rightarrow \$aabA\$ab \Rightarrow \$aab\$aab \Rightarrow a\$ab\aab
 $\Rightarrow aa\$b\$aab \Rightarrow aab\$\$aab \Rightarrow aabaab$

$$L(G) = \{ww \mid w \in \{a, b\}^*\}$$

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \to \$T\$, T \to aAT, T \to bBT, T \to \varepsilon, \$a \to a\$, \$b \to b\$, Aa \to aA, Ab \to bA, Ba \to aB, Bb \to bB, A\$ \to \$a, B\$ \to \$b, \$\$ \to \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis

- "⊇" Wir zeigen, dass $ww \in L(G)$ für alle $w \in \{a, b\}^*$.
 - ▶ Mit $S \rightarrow \$7\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis

- ▶ Mit $S \rightarrow \$T\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.
- ▶ Mit $T \to aAT$, $T \to bBT$, $T \to \varepsilon$ wird eine Satzform aus Blöcken aA, bB erzeugt.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis

- ▶ Mit $S \rightarrow \$7\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.
- ▶ Mit $T \rightarrow aAT$, $T \rightarrow bBT$, $T \rightarrow \varepsilon$ wird eine Satzform aus Blöcken aA, bB erzeugt.
- ▶ Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ kommen A's und B's bis vor \$.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \to \$T\$, T \to aAT, T \to bBT, T \to \varepsilon, \$a \to a\$, \$b \to b\$, Aa \to aA, Ab \to bA, Ba \to aB, Bb \to bB, A\$ \to \$a, B\$ \to \$b, \$\$ \to \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis

- ▶ Mit $S \rightarrow \$7\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.
- ▶ Mit $T \rightarrow aAT$, $T \rightarrow bBT$, $T \rightarrow \varepsilon$ wird eine Satzform aus Blöcken aA, bB erzeugt.
- ▶ Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ kommen A's und B's bis vor \$.
- ▶ Mit $A\$ \rightarrow \a , $B\$ \rightarrow \b werden die A's und B's in a's und b's verwandelt.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\}$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis

- ▶ Mit $S \rightarrow \$7\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.
- ▶ Mit $T \rightarrow aAT$, $T \rightarrow bBT$, $T \rightarrow \varepsilon$ wird eine Satzform aus Blöcken aA, bB erzeugt.
- ▶ Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ kommen A's und B's bis vor \$.
- ▶ Mit $A\$ \rightarrow \a , $B\$ \rightarrow \b werden die A's und B's in a's und b's verwandelt.
- Mit $$a \rightarrow a$$, $$b \rightarrow b$$ wird das linke \$ zum rechten geschoben, mit $$$ \rightarrow \varepsilon$ werden die beiden \$'s dann eliminiert.

Satz

```
Für G = (\{S, T, A, B, \$\}, \{a, b\}, P, S) mit P = \{S \rightarrow \$T\$, T \rightarrow aAT, T \rightarrow bBT, T \rightarrow \varepsilon, \$a \rightarrow a\$, \$b \rightarrow b\$, Aa \rightarrow aA, Ab \rightarrow bA, Ba \rightarrow aB, Bb \rightarrow bB, A\$ \rightarrow \$a, B\$ \rightarrow \$b, \$\$ \rightarrow \varepsilon\} gilt L(G) = \{ww \mid w \in \{a, b\}^*\}.
```

Beweis

- ▶ Mit $S \rightarrow \$7\$$ wird zunächst eine Umrahmung mit \$\$ erzeugt.
- ▶ Mit $T \rightarrow aAT$, $T \rightarrow bBT$, $T \rightarrow \varepsilon$ wird eine Satzform aus Blöcken aA, bB erzeugt.
- ▶ Mit $Aa \rightarrow aA$, $Ab \rightarrow bA$, $Ba \rightarrow aB$, $Bb \rightarrow bB$ kommen A's und B's bis vor \$.
- ▶ Mit $A\$ \rightarrow \a , $B\$ \rightarrow \b werden die A's und B's in a's und b's verwandelt.
- Mit $$a \to a$$, $$b \to b$$ wird das linke \$ zum rechten geschoben, mit $$$ \to \varepsilon$ werden die beiden \$'s dann eliminiert.
- ▶ Die relative Lage aller a's zu b's bzw. aller A's zu B's wird nie geändert.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \to \$T\$, T \to aAT, T \to bBT, T \to \varepsilon, \$a \to a\$, \$b \to b\$, Aa \to aA, Ab \to bA, Ba \to aB, Bb \to bB, A\$ \to \$a, B\$ \to \$b, \$\$ \to \varepsilon\}.$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis (Fortsetzung)

" \subseteq " Wir zeigen, dass alle Wörter in L(G) von der Form ww sind.

Satz

Für
$$G = (\{S, T, A, B, \$\}, \{a, b\}, P, S)$$
 mit $P = \{S \to \$T\$, T \to aAT, T \to bBT, T \to \varepsilon, \$a \to a\$, \$b \to b\$, Aa \to aA, Ab \to bA, Ba \to aB, Bb \to bB, A\$ \to \$a, B\$ \to \$b, \$\$ \to \varepsilon\}.$ gilt $L(G) = \{ww \mid w \in \{a, b\}^*\}.$

Beweis (Fortsetzung)

" \subseteq " Wir zeigen, dass alle Wörter in L(G) von der Form ww sind.

Alle Ableitungen müssen mit unwesentlichen Abweichungen von der unter "⊇" angegebenen Form sein und deshalb zu ww führen.

Beispiel:
$$(E, \{*, +, 1, 2\}, P, E)$$
 mit $P = \{E \to E * E, E \to E + E, E \to 1, E \to 2\}$

Zwei Ableitungen für 1 + 2 * 2:

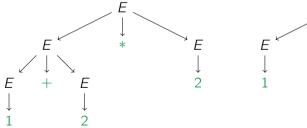
- \triangleright $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 2$
- \triangleright $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 2$

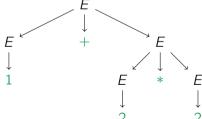
Beispiel: $(E, \{*, +, 1, 2\}, P, E)$ mit $P = \{E \to E * E, E \to E + E, E \to 1, E \to 2\}$

Zwei Ableitungen für 1 + 2 * 2:

- $ightharpoonup E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 2$
- \triangleright $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow 1 + E * E \Rightarrow 1 + 2 * E \Rightarrow 1 + 2 * 2$

Syntaxbäume dazu:





Definition

Eine Typ 2-Grammatik ist mehrdeutig, wenn es verschieden strukturierte Syntaxbäume für dasselbe Wort w gibt.

Definition

Eine Typ 2-Sprache ist inhärent mehrdeutig, wenn es nur mehrdeutige Grammatiken gibt, die diese Sprache erzeugen.

Definition

Eine Typ 2-Grammatik ist mehrdeutig, wenn es verschieden strukturierte Syntaxbäume für dasselbe Wort w gibt.

Definition

Eine Typ 2-Sprache ist inhärent mehrdeutig, wenn es nur mehrdeutige Grammatiken gibt, die diese Sprache erzeugen.

Die Sprache

$$\{a^m b^m c^n d^n \mid m, n \in \mathbb{N}_{>0}\} \cup \{a^m b^n c^n d^m \mid m, n \in \mathbb{N}_{>0}\}$$

ist inhärent mehrdeutig (Beweis in Hopcroft et al. 2006).

ε -Produktionen: 1. Sonderregel

▶ Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht.

ε -Produktionen: 1. Sonderregel

▶ Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht.

Daher:

1. Sonderregel: ε -Produktion in Typ 1, 2, 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 1, 2 oder 3 darf eine Produktion $S \to \varepsilon \in P$ enthalten, vorausgesetzt, dass S auf keiner rechten Seite einer Produktion in P vorkommt.

ε -Produktionen: 1. Sonderregel

▶ Das leere Wort ε kann bisher nicht für Typ 1, 2, 3-Grammatiken erzeugt werden. Produktion $S \to \varepsilon$ erfüllt die Typ 1-Bedingung $|S| \le |\varepsilon|$ nicht.

Daher:

1. Sonderregel: ε -Produktion in Typ 1, 2, 3-Grammatiken

Eine Grammatik $G=(V,\Sigma,P,S)$ vom Typ 1, 2 oder 3 darf eine Produktion $S \to \varepsilon \in P$ enthalten, vorausgesetzt, dass S auf keiner rechten Seite einer Produktion in P vorkommt.

Sonderregel erlaubt nicht:

$$G = (\{S\}, \{a\}, \{S \rightarrow \varepsilon, S \rightarrow aSa\}, S)$$

Sonderregel erlaubt:

$$G = (\{S', S\}, \{a\}, \{S' \rightarrow \varepsilon, S' \rightarrow aSa, S \rightarrow aSa\}, S')$$

Leeres Wort hinzufügen geht mit 1. Sonderregel immer

Satz (Anwendung von 1. Sonderregel)

Sei $G = (V, \Sigma, P, S)$ vom Typ $i \in \{1, 2, 3\}$ mit $\varepsilon \not\in L(G)$. Sei $S' \not\in V$. Dann erzeugt $G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow \varepsilon\} \cup \{S' \rightarrow r \mid S \rightarrow r \in P\}, S')$ die Sprache $L(G') = L(G) \cup \{\varepsilon\}$, G' erfüllt die 1. Sonderregel und G' ist vom Typ i.

Leeres Wort hinzufügen geht mit 1. Sonderregel immer

Satz (Anwendung von 1. Sonderregel)

Sei $G = (V, \Sigma, P, S)$ vom Typ $i \in \{1, 2, 3\}$ mit $\varepsilon \notin L(G)$. Sei $S' \notin V$. Dann erzeugt $G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow \varepsilon\} \cup \{S' \rightarrow r \mid S \rightarrow r \in P\}, S')$ die Sprache $L(G') = L(G) \cup \{\varepsilon\}$, G' erfüllt die 1. Sonderregel und G' ist vom Typ i.

Beweis

- 1. $L(G') = L(G) \cup \{\varepsilon\}$: Da $S' \Rightarrow \varepsilon$, gilt $\varepsilon \in L(G')$. Für $w \neq \varepsilon$ ailt: $S \Rightarrow_{C}^{*} w$. g.d.w. $S' \Rightarrow_{C'}^{*} w$. Der jeweils erste Ableitungsschritt muss ausgetauscht werden, d.h. $S \Rightarrow_C r$ vs. $S' \Rightarrow_{C'} r$.
- 2. Da S' neu ist. kommt S' auf keiner rechten Seite vor.
- 3. Da $S \rightarrow r \in P$ vom Typ *i* sind, sind auch $S' \rightarrow r$ vom Typ *i*.

ε -Produktionen: 2. Sonderregel

Weitere Sonderregel:

2. Sonderregel: ε -Produktionen in Typ 2- und Typ 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 2 oder 3 darf Produktionen von der Form $A \to \varepsilon \in P$ enthalten, wo $A \in V \setminus \{S\}$.

ε -Produktionen: 2. Sonderregel

Weitere Sonderregel:

2. Sonderregel: ε -Produktionen in Typ 2- und Typ 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 2 oder 3 darf Produktionen von der Form $A \to \varepsilon \in P$ enthalten, wo $A \in V \setminus \{S\}$.

Das ist keine echte Erweiterung, denn:

Satz (Entfernen von ε -Produktionen)

Sei $G = (V, \Sigma, P, S)$ eine Typ *i*-Grammatik (mit 1. und 2. Sonderregel), wo $i \in \{2, 3\}$. Dann gibt es eine Typ *i*-Grammatik G' mit L(G') = L(G) und G' enthält keine ε -Produktionen außer $S \to \varepsilon$, falls vorhanden.

ε -Produktionen: 2. Sonderregel

Weitere Sonderregel:

2. Sonderregel: ε -Produktionen in Typ 2- und Typ 3-Grammatiken

Eine Grammatik $G = (V, \Sigma, P, S)$ vom Typ 2 oder 3 darf Produktionen von der Form $A \to \varepsilon \in P$ enthalten, wo $A \in V \setminus \{S\}$.

Das ist keine echte Erweiterung, denn:

Satz (Entfernen von ε -Produktionen)

Sei $G = (V, \Sigma, P, S)$ eine Typ i-Grammatik (mit 1. und 2. Sonderregel), wo $i \in \{2, 3\}$. Dann gibt es eine Typ i-Grammatik G' mit L(G') = L(G) und G' enthält keine ε -Produktionen außer $S \to \varepsilon$, falls vorhanden.

Beweis Algorithmus 1 auf späterer Folie erzeugt G'.

Intuitiver Ansatz:

- 1. Wiederhole bis alle ε -Produktionen (außer $S \to \varepsilon$, falls vorhanden) entfernt sind:
 - 1.1 Sei $A \to \varepsilon \in P$, wo $A \neq S$.
 - 1.2 Entferne $A \rightarrow \varepsilon$.
 - 1.3 Für jede Produktion $B \to uAv$ füge eine neue Produktion $B \to uv$ hinzu, die den Ableitungsschritt $A \Rightarrow \varepsilon$ vorwegnimmt.

Intuitiver Ansatz:

- 1. Wiederhole bis alle ε -Produktionen (außer $S \to \varepsilon$, falls vorhanden) entfernt sind:
 - 1.1 Sei $A \to \varepsilon \in P$, wo $A \neq S$.
 - 1.2 Entferne $A \rightarrow \varepsilon$.
 - 1.3 Für jede Produktion $B \to uAv$ füge eine neue Produktion $B \to uv$ hinzu, die den Ableitungsschritt $A \Rightarrow \varepsilon$ vorwegnimmt.

Mit anderen Worten: Statt $B \to uAv$ gefolgt von $A \to \varepsilon$ anzuwenden, können wir also $B \to uv$ direkt anwenden. Dann brauchen wir $A \to \varepsilon$ nicht mehr.

Intuitiver Ansatz:

- 1. Wiederhole bis alle ε -Produktionen (außer $S \to \varepsilon$, falls vorhanden) entfernt sind:
 - 1.1 Sei $A \to \varepsilon \in P$, wo $A \neq S$.
 - 1.2 Entferne $A \rightarrow \varepsilon$.
 - 1.3 Für jede Produktion $B \to uAv$ füge eine neue Produktion $B \to uv$ hinzu, die den Ableitungsschritt $A \Rightarrow \varepsilon$ vorwegnimmt.

Mit anderen Worten: Statt $B \to uAv$ gefolgt von $A \to \varepsilon$ anzuwenden, können wir also $B \to uv$ direkt anwenden. Dann brauchen wir $A \to \varepsilon$ nicht mehr.

Für eine reguläre Produktion $B \to aA$ wird $B \to a$ hinzugefügt. Die Grammatik bleibt regulär.

Intuitiver Ansatz:

- 1. Wiederhole bis alle ε -Produktionen (außer $S \to \varepsilon$, falls vorhanden) entfernt sind:
 - 1.1 Sei $A \to \varepsilon \in P$, wo $A \neq S$.
 - 1.2 Entferne $A \rightarrow \varepsilon$
 - 1.3 Für jede Produktion $B \to uAv$ füge eine neue Produktion $B \to uv$ hinzu, die den Ableitungsschritt $A \Rightarrow \varepsilon$ vorwegnimmt.

Mit anderen Worten: Statt $B \to uAv$ gefolgt von $A \to \varepsilon$ anzuwenden, können wir also $B \to \mu\nu$ direkt anwenden. Dann brauchen wir $A \to \varepsilon$ nicht mehr.

Für eine reguläre Produktion $B \rightarrow aA$ wird $B \rightarrow a$ hinzugefügt. Die Grammatik bleibt regulär.

Algorithmus 1 basiert auf dieser Idee, entfernt aber alle ε -Produktionen gleichzeitig.

Typ 2-Grammatik mit ε -Produktion: $G = (\{A, S\}, \{0, 1\}, P, S)$ mit $P = \{S \rightarrow AA1, A \rightarrow 0, A \rightarrow \varepsilon\}$

Typ 2-Grammatik mit ε -Produktion: $G = (\{A, S\}, \{0, 1\}, P, S)$ mit $P = \{S \rightarrow AA1, A \rightarrow 0, A \rightarrow \varepsilon\}$ $L(G) = \{001, 01, 1\}$

Typ 2-Grammatik mit
$$\varepsilon$$
-Produktion: $G = (\{A, S\}, \{0, 1\}, P, S)$ mit $P = \{S \rightarrow AA1, A \rightarrow 0, A \rightarrow \varepsilon\}$ $L(G) = \{001, 01, 1\}$

Äquivalente Typ 2-Grammatik ohne ε -Produktion:

$$G' = (\{A, S\}, \{0, 1\}, P', S) \text{ mit } P' = \{S \rightarrow AA1, S \rightarrow A1, S \rightarrow 1, A \rightarrow 0\}$$

```
Typ 2-Grammatik mit \varepsilon-Produktion: G = (\{A, S\}, \{0, 1\}, P, S) \text{ mit } P = \{S \rightarrow AA1, A \rightarrow 0, A \rightarrow \varepsilon\} L(G) = \{001, 01, 1\} Äquivalente Typ 2-Grammatik ohne \varepsilon-Produktion: G' = (\{A, S\}, \{0, 1\}, P', S) \text{ mit } P' = \{S \rightarrow AA1, S \rightarrow A1, S \rightarrow 1, A \rightarrow 0\} L(G') = \{001, 01, 1\}
```

Typ 2-Grammatik mit
$$\varepsilon$$
-Produktion: $G = (\{A, S\}, \{0, 1\}, P, S)$ mit $P = \{S \rightarrow AA1, A \rightarrow 0, A \rightarrow \varepsilon\}$ $L(G) = \{001, 01, 1\}$

Äquivalente Typ 2-Grammatik ohne ε -Produktion:

$$G' = (\{A, S\}, \{0, 1\}, P', S) \text{ mit } P' = \{S \to AA1, S \to A1, S \to 1, A \to 0\}$$

$$L(G') = \{001, 01, 1\}$$

Die neuen Produktionen $S \to A1$, $S \to 1$ nehmen den Ableitungsschritt $A \Rightarrow \varepsilon$ vorweg.

Algorithmus 1: Entfernen von ε -Produktionen

```
Eingabe: Typ i-Grammatik G = (V, \Sigma, P, S) mit \varepsilon-Produktionen, i \in \{2, 3\}
Ausgabe: Typ i-Grammatik G' ohne \varepsilon-Produktionen (außer S \to \varepsilon, falls vorhanden), sodass L(G') = L(G)
Beginn
    finde die Menge W \subseteq V aller Variablen A für die gilt A \Rightarrow^* \varepsilon:
    Beginn
        W := \{A \mid A \to \varepsilon \in P \text{ und } A \neq S\};
        wiederhole
             füge alle A zu W hinzu mit A \rightarrow A_1 \dots A_n \in P und \forall i : A_i \in W:
        bis sich W nicht mehr ändert:
    Ende
    P' := P \setminus \{A \to \varepsilon \mid A \to \varepsilon \in P \text{ und } A \neq S\}:
                                                                                       /* lösche Produktionen A \rightarrow \varepsilon */
    wiederhole
        für alle Produktionen B \to uAv \in P' mit |uv| > 0 und A \in W tue
             füge die Produktion B \rightarrow uv zu P' hinzu;
            /* für B → u'Av'Aw' gibt es (mindestens) zwei Hinzufügungen: Für das Vorkommen von A
                 direkt nach u' als auch für das Vorkommen direkt vor w'
        Ende
    bis sich P' nicht mehr ändert:
    gib G' = (V, \Sigma, P', S) als Ergebnisgrammatik aus:
Fnde
```

$$G = (\{A, B, C, D, S\}, \{0, 1\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, A \rightarrow \varepsilon, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$

$$G = (\{A, B, C, D, S\}, \{0, 1\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, A \rightarrow \varepsilon, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$

1. Finde Menge W der Variablen, die ε herleiten:

$$W = \{A, C\}$$
 da $A \rightarrow \varepsilon$ und $C \rightarrow AAA$

$$G = (\{A, B, C, D, S\}, \{0, 1\}, P, S) \text{ mit } P = \{S \to 1A, A \to AB, A \to DA, A \to \varepsilon, B \to 0, B \to 1, C \to AAA, D \to 1AC\}$$

1. Finde Menge W der Variablen, die ε herleiten:

$$W = \{A, C\}$$
 da $A \rightarrow \varepsilon$ und $C \rightarrow AAA$

2. Starte mit

$$P' = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$$

$$G = (\{A, B, C, D, S\}, \{0, 1\}, P, S) \text{ mit}$$

 $P = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, A \rightarrow \varepsilon, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$

1. Finde Menge W der Variablen, die ε herleiten:

$$W = \{A, C\}$$
 da $A \rightarrow \varepsilon$ und $C \rightarrow AAA$

2. Starte mit

$$P' = \{S \rightarrow 1A, A \rightarrow AB, A \rightarrow DA, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, D \rightarrow 1AC\}$$

3. Füge Produktionen für Vorkommen von A und C hinzu:

$$P' = \{S \rightarrow 1A, S \rightarrow 1, A \rightarrow AB, A \rightarrow B, A \rightarrow DA, A \rightarrow D, B \rightarrow 0, B \rightarrow 1, C \rightarrow AAA, C \rightarrow AA, C \rightarrow A, D \rightarrow 1AC, D \rightarrow 1A, D \rightarrow 1C, D \rightarrow 1\}$$